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ABSTRACT 
 
In this paper we proposed an intonation prediction model for 
Mandarin TTS systems. Our model can output real pitch patterns 
by finding a suitable real pitch pattern from the training corpus. 
This method is a new experiment. The advantages of our model 
are as follows. (1) It can improve the naturalness of the 
synthesized speech. It gets higher scores in the subjective 
listening tests. (2) It has high accuracies. The average errors of 
0.425ms and 0.457ms were obtained for the inside and outside 
tests, respectively. The pattern errors of 0.128ms and 0.129ms 
were obtained for the inside and outside tests, respectively. We 
found that pattern error measurement method compiles with 
human hearing. (3) The training corpus need not be very large. It 
can relieve the data sparsity problem.  

 
1. INTRODUCTION 

 
A Text-to-Speech (TTS) system can translate an arbitrary 

input sentence into its corresponding speech. A Mandarin TTS 
system is composed of three components, namely text analysis, 
prosody generation, and speech synthesis. The input sentence is 
first passed to the text analysis module. In this module, word 
segmentation and character-to-phoneme conversion are done. 
Some text analysis module also outputs the part-of-speech (POS) 
information and parsing results. Then the words and phonemes 
are passed to the prosody generation module. In this module, the 
prosodic information of each syllable (corresponding to a 
Chinese character) is obtained. They are duration, coarticulation 
or pause, volume, and pitch contours. Finally the speech 
synthesis module extracts the required synthesis units and does 
some signal processing to get the desired speech.  

The goal of a prosody generator is to mimic the human 
rhythm, which includes syllable duration, pause, energy, and 
pitch contours produced by people. The prediction accuracy of 
prosody generator will affect intelligibility and naturalness of 
the synthesized speech. In general, the rule-based approach and 
data-driven approach are two major methods to generate 
prosodic information. Also some systems used the hybrid 
method — the Bell Laboratories Mandarin TTS system for 
example [13]. In Bell Laboratories Mandarin TTS system, the 
syllable duration prediction module used the data-driven 
approach, and the intonation prediction module used the rule-
based approach. Besides, Wu and Chen [14] had proposed a 
word-prosody template tree method for a Mandarin TTS system. 
It needs linguistic experts to write rules in rule-based models 
[7,8,9]. It is difficult to create enough rules that cover all of the 

cases in a language. Moreover, some rules may contradict one 
another. The data-driven approach can automatically learn the 
relationship between input texts and labeled speech corpora, so it 
does not need a lot of linguistic knowledge. Neural nets 
[3,11,12], CART (Classification and Regression Tree) [1], and 
statistical models [6,10,15] are common methods in the data-
driven approach. 

This paper focuses on the intonation prediction module of 
prosody generator for Mandarin TTS systems. The framework of 
our model is a statistical model with hierarchical structure. In the 
past, there are many papers proposed to deal with the prosody 
generation problem [2,3,5-15]. The outputs of most prosody 
generators are not natural rhythms produced by people, so the 
naturalness of synthesized speech is still not good enough. In 
this paper we proposed an intonation prediction model that can 
output real pitch patterns. The block diagram of our model is 
show in Fig. 1. The input sentence is first passed to the text 
analysis module, and then the results of this module will be 
passed to the basic intonation prediction module. The outputs of 
this module are artificial pitch patterns. Finally, we use the 
predicted value of the basic intonation prediction module to find 
a suitable real pitch pattern from the training corpus. Most of 
outputs of our model are natural pitch patterns. 

This paper is organized as follows. Section 2 describes the 
basic intonation prediction module. Section 3 presents how to 
find a suitable real pitch pattern from the training corpus. 
Section 4 focuses on the experimental results. Section 5 is the 
summary. 
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Fig. 1: Block diagram of our intonation prediction model. 
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2. BASIC INTONATION PREDICTIN MODULE 

 
In this section we proposed a statistical intonation prediction 

module with hierarchical structure for Mandarin TTS systems. 
There are four levels in our module: syllable level, word level, 
prosodic phrase level, and utterance level. Here “hierarchy” 
means that each lower level is a subset of a higher level. The 
linguistic features that we used in each level are as follows: 
Syllable level: consonant type, vowel type, and tone type. 
Word level: word length and the position of the character in the 
word. 
Prosodic phrase level: number of words in the phrase and the 
position of the word in the phrase. 
Utterance level: number of phrases in the utterance and the 
position of the phrase in the utterance. 

In each level, we calculate the means of syllables with the 
same condition. Finally, we combine the results of each level in 
our module by using a linear regression method to get a 
predicted value. Since there are only a few parameters in each 
level, the size of our training corpus need not be very large. 
Thus the data sparsity problem, which is often encountered in 
using some other models, can be relieved. The preparation of a 
corpus often needs lots of human work. The speech data must be 
correctly segmented and marked. These information can only be 
obtained semi-automatically up to now. Human checking is 
required to get precise information. Besides, smaller training 
corpus size can also save the training time and disk space. We 
use the orthogonal polynomial expansions to represent a pitch 
contour [4]. Each pitch contour can be represented as a four-
coefficient vector, the first coefficient is the mean of the pitch 
contour, and the other three coefficients represent its shape. The 
distance measure between two pitch contours A=(a0, a1, a2, a3) 
and B=(b0, b1, b2, b3) can be defined as 
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3. SEARCH METHOD: TONE COMBINATION 

 
In recent years, some approaches were proposed to choose the 

speech unit from a large speech corpus in order to improve the 
quality of the synthesized speech [5,14]. But there are no papers 
dealing with the prosodic information generation problem can 
output real pitch pattern by searching the speech corpus, as we 
know.  

Mandarin is a tonal language. There are five tones in 
Mandarin. They are high level (tone 1), mid-rising (tone 2), mid-
falling-rising (tone 3), high falling (tone 4), and neutral tone 
(tone 5). The pitch contour patterns of four lexical tones in 
Mandarin are show in Fig. 2 [4]. Tone is the most important 
feature that affects the pitch contours of a syllable. And word is 
the basic meaningful unit in Mandarin. Each word has one to 
several Chinese characters. Tone combination is the tone 
sequence of the characters in a word. We adopt three-syllable 
and two-syllable tone combination as our search feature, because 
most words in our training corpus are trisyllabic or disyllabic 
words. Besides, a multi-syllable word has strong inter-syllable 
coarticulations, which will affect the pitch contours. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2: The pitch contours of 4 lexical tones in Mandarin. 
 
For each syllable in the test utterance, we use the following 

steps to output a real pitch pattern. First, we use the predicted 
value of the basic intonation prediction module to search a 
suitable three-syllable tone combination pattern in a word from 
the training corpus. If the search succeeds, we let it be the output. 
Secondly, if the search fails in the first step, we search the two-
syllable tone combinations. If the search succeeds, we get the 
output. Third, if the search fails in the second step, we use the 
predicted value of the basic intonation prediction module as the 
output. The detail algorithm is show in Algorithm Natural Pitch. 
We first make some definitions. 

 
Definitions: For syllable S, let P(S)and P’(S) be the original 
pitch contour and the predicted pitch contour from the basic 
intonation prediction module, respectively. N is the number of 
syllables in the training corpus. Consider a syllable Si in a word 
W=S1S2…Sm, where m is the word length of W. Let Tsi be the 
tone of syllable Si. Define 3TS(Si)= {Tsi-1 Tsi Tsi+1 (Si-1, Si, and 
Si+1 are in the same word)} be the 3-syllable tone sequence of Si. 
Define 2TS(Si)={Tsi Tsi+1, Tsi-1 Tsi ( Si and Si+1 or Si-1 and Si are 
in the same word)} be the 2-syllable tone sequence of Si. 
 
Algorithm Natural Pitch: 
Input: A syllable S in the test set and P’(S), the predicted pitch 

contour by the basic intonation prediction module. 
Output: A pitch pattern that is similar to P’(S), which may exist 

in the training corpus. 
Steps: 
1. Let M3 be the set of syllables Si, i=1,2,…,N, in the training 

set such that 3TS(Si)= 3TS(S). If M3 is non-empty, find the 
syllable Sk in M3 such that Dis(P’(S),P(Sk)) is minimum; 
output P(Sk). Otherwise go to Step 2. 

2. Let M2 be the set of syllable Si, i=1,2,…,N, in the training 
set such that 2TS(Si)∩ 2TS(S) ≠ ∅. If M2 is non-empty, 
find the syllable Sk in M2 such that Dis(P’(S),P(Sk)) is 
minimum; output P(Sk). Otherwise go to Step 3. 

3. Output P’(S) as the predicted pitch contour. 
 

By Algorithm Natural Pitch, the predicted value for 
monosyllabic word is always the output of basic intonation 
prediction module, which is usually an artificial pitch pattern. 
 

4. EXPERIMENTAL RESULTS 
 

The texts in our corpus are articles adopted from daily 
newspapers. There are 11205 Chinese characters and 865 
sentences in these articles. The ratio of training data and testing 
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data size are 84.51% (9469 Chinese characters) and 15.49% 
(1736 Chinese characters), respectively. A female speaker 
recorded the voice files. The average speaking rate is about three 
Chinese characters per second. All data were recorded at the 
sampling rate of 12kHz. 

 
4.1. Prediction Errors 

 
The average errors of the basic intonation prediction module 

(BIPM) and the basic intonation prediction module plus tone 
combination search method (BIPM+TC), i.e. our intonation 
prediction model, are show in Table 1. 

 
Table 1: Average errors of our models. (Unit: ms/syllable) 

Tests  
Methods Inside Outside 

BIPM 0.43 0.446 
BIPM + TC 0.435 0.451 

 
For BIPM, average errors of 0.43ms and 0.446ms were 

obtained for the inside and outside tests, respectively. For 
BIPM+TC, average errors of 0.435ms and 0.451ms were 
obtained for the inside and outside tests, respectively. In our 
intonation prediction model, there are 144 (about 1.52%) and 0 
syllables that can find the original pitch pattern from the training 
corpus for inside and outside test, respectively.  

 
4.2. Subjective Listening Tests 

 
From Table 1, BIPM seems better than BIPM+TC, because it 

has smaller errors. It contradicts our supposition that using real 
pitch pattern can improve the naturalness of the synthesized 
speech, so we designed some listening tests to check whether our 
supposition is right. In our experiments, the subjective MOS 
(Mean Opinion Score) evaluation has ten classes. Score 10 for 
the best (excellent), and score 1 for the worst (unsatisfactory). 
The participators of the first inside test, second inside test, and 
outside test are 25, 40, and 42 college students, respectively. The 
subjective MOS of the BIPM and BIPM+TC are show in Table 2. 

 
Table 2: MOS of our models. 

Inside  
Tests  

Methods First time Second time 
Outside 

BIPM 6.88 6.45 6.81 
BIPM + TC 7.03 6.81 7.36 

 
For BIPM, MOSs of 6.88, 6.45, and 6.81 were obtained for 

the first inside, second inside, and outside listening tests, 
respectively. For BIPM+TC, MOSs of 7.03, 6.81, and 7.36 were 
obtained for the first inside, second inside, and outside listening 
tests, respectively. In the first inside listening test, the evaluation 
data are 30 items (words or sentences). There are 20 testing 
items in BIPM+TC that have equal or higher prediction error 
than those in BIPM. But all of these items get higher MOS than 
those in BIPM. And there are 27 items in BIPM+TC that get 
higher MOS than those in BIPM for first inside listening test. 
The results are summarized in Table 3.  

 
 

Table 3: Some information for BIPM+TC in the listening tests. 
Info.

Tests Info. A Info. B Info. C 

First inside test 20 27 30 
Second inside test 20 28 30 
Outside test 13 12 15 
Info. A: # of test items in BIPM+TC that have equal or higher 
prediction error than those in BIPM. 
Info. B: # of test items in BIPM+TC that get higher MOS that 
those in BIPM. 
Info. C: # of test items in the test. 

 
The evaluation data of the second inside listening test are 30 

items. There are 20 testing items in BIPM+TC that have equal or 
higher prediction error than those in BIPM. But all of these 
items get higher MOS than those in BIPM. And there are 28 
items in BIPM+TC getting higher MOS than those in BIPM for 
the second inside listening test, as can be seen in Table 3. In the 
outside listening test, the evaluation data are 15 items. There are 
9 testing items in BIPM+TC that have higher prediction error yet 
higher MOS than those in BIPM. There are 4 items in BIPM+TC 
that have equal prediction error with those in BIPM; 2 of these 
items get higher MOS, the others get equal MOS. There are 12 
items in BIPM+TC getting higher MOS than those in BIPM for 
the outside listening test, as can be seen in Table 3. 

 
4.3. Pattern Error Measurement 

 
Experimental results show that using real pitch pattern can 

improve the naturalness of synthesized speech, while the 
distance measure method, Eq. (1), does not comply with human 
hearing. So we use the “Pattern Error” [10] to calculate the 
prediction error instead. The pattern error between two pitch 
contours ),...,,( 21 nxxxX =  and ),,...,,( 21 nyyyY =  where 
n  is the number of pitches, is defined as 

,iii yxE −=  (2) 
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where ),( YXAE means average error (distance) between X and 
Y. 

A characteristic of pattern error is that if the pitch contours X 
and Y are two parallel lines, the pattern error between X and Y 
will be zero. The pattern errors of our models are show in Table 
4. For BIPM, pattern errors of 0.136ms and 0.137ms were 
obtained for the inside and outside tests, respectively. For 
BIPM+TC, pattern errors of 0.128ms and 0.129ms were 
obtained for the inside and outside tests, respectively.  

 
Table 4: Pattern errors of our model. (Unit: ms/syllable) 

Test  
Method Inside Outside 

BIPM 0.136 0.137 
BIPM+TC 0.128 0.129 
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From Table 4, we can see that BIPM+TC has better accuracy 
(using pattern error measurement method) than BIPM. And by 
the results of listening tests, we know BIPM+TC gets higher 
MOS than BIPM. So we think the pattern error measure method 
is closer to human hearing (compared with Eq. (1)), and the 
outputs of BIPM+TC have better pitch contour patterns. 

 
5. SUMMARY 

 
In this paper we proposed a statistical intonation prediction 

model with hierarchical structure for Mandarin TTS systems. 
There are 4 levels in our model; they are syllable level, word 
level, prosodic phrase level, and utterance level. Here 
“hierarchy” means that each lower level is a subset of a higher 
level. This model can relieve the data sparsity problem, so the 
size of the training corpus need not be very large. Our model can 
output real pitch patterns by finding a suitable real pitch pattern 
from the training corpus. We found that using real pitch pattern 
can improve the naturalness of the synthesized speech. We also 
found that the pattern error measurement method complies with 
human hearing. Our model has high accuracies; the average 
errors of 0.425ms and 0.457ms were obtained for the inside and 
outside tests, respectively. The pattern errors of 0.128ms and 
0.129ms were obtained for the inside and outside tests, 
respectively.  
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