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ABSTRACT

A new approach for efficient text analyzer is proposed.
The prosody generator driven method is employed to
design an efficient text analyzer for Mandarin text-to-
speech. Three heuristic and theoretical methods are used
to examine the capability of each linguistic feature. Firstly,
the contribution of each linguistic feature on prosody
generator is examined experimentally. Secondly, the
cross-influence of each linguistic feature on the prosody
generator is analyzed. Thirdly, the problem of over- and
under- classification on the linguistic feature will be
inspected.

Finaly, these three analytic results are referenced to
design an efficient text analyzer. More than 39,103
Chinese characters are employed to examine the
performance of our text analyzer. Less than 78msis need
for word tagging under P4-1.4G PC. The correction rate
with 97% is achieved. It confirms that the performance of
our text analyzer is very good. Moreover, more natural
and fluent speech is obtained under the lower computation.

1. INTRODUCTION

Text-to-Speech(TTS) which automatically converts the
text into the running speech is an important technology
for the application on multimedia and friendly Ul. Many
attractive applications such as email reader, e-book, news
reader,.. etc, are designed based on the TTS technology.
In general, the natural and fluent speech is the main goal
for TTS.

A general TTS system includes text analysis(TA),
prosody generator(PG), synthesis unit generator(SUG),
and speech synthesizer(SS) [1]. The TA resolves the text
syntactically or semantically and extracts some linguistic
features. Usually, the work of TA needs the help from
linguist. The PG receives linguistic feature and generates
prosodic information. The prosodic information includes
the pitch contour, energy contour, and duration. The
naturalness of synthesized speech is determined by the
prosodic information. The SUG generates the most
suitable speech template for synthesized speech. The SS
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adopts prosodic information and synthesis unit. Then, the
algorithm of prosodic modification is implemented on the
synthesis unit and the natural speech is generated.

In the past, most linguists pay their effort on the
architecture of TA. They do their best to find as more
linguistic features as possible. Thus, some high-level
linguistic features such as the boundary of phrase,
prosodic phrase, sub-sentence, etc,.. are anayzed and
extracted. In a genera TTS system, good prosodic
information will generate the good and natural speech.
However, more linguistic features will not guarantee with
good prosodic information. But it will need much effort
and dramatic computation for the high-level linguistic
feature. Moreover, some linguistic feature will interfere
and degrade the performance of PG.

In other side, most experts of acoustics and computer
science pay their effort on the good statistical model for
PG and SUG. However, in order to have the best prosodic
information, not only needs a good PG model, but also
needs the most suitable linguistic feature. Thus, the
suitable linguistic feature which is driven by the
performance of PG is the best policy. In the other word,
the best linguistic features which are used to generate the
best prosodic information must be determined by the
performance of the PG. It means that, linguistic and
acoustic analysis need to be considered together for the
best speech.

In this paper, an efficient TA by PG-driven approach
is proposed. Three important topics are analyzed. Firstly,
the contribution of each linguistic feature on the PG is
examined. Secondly, the cross-influence of each linguistic
feature will be analyzed. Lastly, the problem of over-
classification on linguistic feature will be examined.
Finally, an efficient TA isimplemented according to these
analysis results. The efficient TA with low computation
and high performance on PG will be achieved.

In the following sections, the RNN-based prosody
generator will be described in Section 2. Three topics of
the analytic methods will be described and defined clearly
in Section 3. Section 4 will shows the experimental results
and discussions. The conclusion will be given in the last
section.
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2. THE RNN-BASED PROSODY GENERATOR

The RNN-based prosody generator will be used in this
paper. Fig.1 depicts the block diagram of the four-layer
RNN [2]. The input linguistic features include the tone
(Tone), the consonant initial (Ini), the vowel final (Fin),
the part-of-speech (POS), the word's length (Len), the
punctuation mark (PM), and the indicator (L) which
shows the first, the middle, or the last character in aword.
The eight outputs of prosodic parameters include four
parameters of pitch contour, energy, pause duration, initial
duration, and final duration.

POS, Len, PM
|

Hidden Layer |

Tone, Ini, Fin, L

L |
f Hidden Layer 11
[ Output Layer

Pitch Contour, Energy,
Pause/Initial/Final Durations

Fig.l. The block diagram of RNN-based prosody
generator.

3. SYSTEM DESCRIPTION
In this section, three topics will be discussed in detail.
3.1 TheContribution of Linguistic Feature

The contribution of each linguistic feature(LF) on the

PG isinspected by the performance of the RNN-based PG.

The score function for each LF's contribution is defined
as S(LF) which is equal to the value of root-mean-sgquare-
error(RMSE) between the real and synthesized prosodic
information.

NG 12
S(LF,) = [%Z S (RP, | - SPM)Z} : )

the RP,; is the j-th real prosodic information at the n-th
syllable and N=35,000, J=8. More than 35,000 syllables
are employed to estimate the value of S(LF). For a fixed
linguistic feature LF;, the more less S(LF;) is obtained,
the more contribution on PG will be presented. The value
of S(LF;) can help us to realize the capability of each
linguistic feature. Furthermore, an efficient text analyzer
can be implemented according to these results.

For more precise definition, the RMSE of each LF
versus the pitch contour can be defined as below:

1/2
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R(x=xk,pnch)={N—ZZ{T[pj(i)l—O[pj(i)nz} , (@

| =1 j=0
where  x =x ={Tone Ini,Fin L, Len, POS,PM} 1<k<7 represents
the different LF. The y, is the number of training data

The T(p ()] and ofp (i) arethe target and output values of

the i-th coefficient of pitch contour respectively. The
RMSE of pause duration, initial duration, final duration,
and energy for each LF can also be obtained from the
following equations respectively.
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Finally, these RMSE values can used to redize the
capability of each linguistic feature.

Moreover, the conditional entropy of linguistic
feature and prosodic information can help usto predict the
capability of each LF before the training process. In this
paper, the normalized conditional entropy of pitch contour
with regard to each LF is discussed. It can be calculated
by three steps. Firstly, the vector quantization (VQ)
agorithm is used to classify the pitch contour pattern of
training data into 64 clusters. Secondly, the conditional
entropy of pitch contour with regard to each LF can be
estimated from the following equation.
H(Pitch|><):N§)p(cx(i)) H (Pitch | C, (i), (7)

i=1

the N(X)={5,22,39,4,5,4312 is the class numbers of each
LF. The p(c, (i)) isthe probability of the i-th class on
LF, ¢, (i) - The H(Pitch|C,(i)) is the conditional
entropy of pitch contour with regard to i-th class of LF. It
can be obtained by

H (Pitch | C, (i)):fi P(C, (1) 1Cx (1)) -10g,[ P(C, (}) ICx (], (8)
where p(C, (i) 1C, (1) is the conditional probability
of j-th clusterc, (j) in VQ agorithm under the i-th

class of LF. The n, is the number of cluster and is

defined as 64. Lastly, the normalized conditional entropy
with their maximum entropy can be defined as

Hm,<Pitch|X)=%, )

where the i (pitch| x) IS the maximum entropy and is
defined as
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H o (Pitch | X) = Nf,) P(Cx (1)) -10g,[NCy (1)]. (10)

The nc, (i) represents the pattern numbers in i-th class
and is expected to be an uniform distribution.

3.2 TheCross-Influence of Each Linguistic Feature

The cross-influence is regarded as the relation
between each two or more linguistic features. The analysis
result of cross-influence can help us to select the optimal
combination of linguistic feature and design an efficient
TA. There are four relations of cross-influence which is
defined as below.

a.  Cooperation:

AR(AB,Y) > AR(A,Y) + AR(B, Y), (1)
where AR(X,Y) = R(Null,Y) - R(X,Y), is the differentia
RMSE between the ‘Null’ case( R(Null,Y)) and the ‘X’
case. The‘X’ isoneof LF. The ‘Y’ is one of the prosodic
parameter which is defined as
Y ={Pitch, Pau, Irifin, Firdl, Energy} . Then, AR(AB,Y) represents

the differentiadl RMSE with two LFs('A’ and ‘B’)
simultaneously.
b. Independence:

AR(AB,Y) = AR(A,Y) + AR(B, Y), (12
c. Overlapped:

Max{AR(A Y), AR(B, Y)] < AR(AB,Y) < AR(AY) + AR(B,Y), (13)
d. Interference:
AR(AB,Y) < Max{AR(A, Y), AR(B, Y)]. 14

3.3 TheClassification of Linguistic Feature

The suitable classification on each LF will make the
best performance on the prosody generator. In the other
side, the redundancy of computation on TA and
degradation of natural on PG will be obtained. There are
two problems of classification. One is the over-
classification. The other is the under-classification. The
problems of classification can be inspected by the value of
normalized differential RMSE which is normalized by
their entropy with respect to each LF. The normalized
differential RMSE is defined as

AR(X,Y)

NR(X,Y) = (15)
H(X)

N(X)

where H(X)= 3 p(Cy(i))-log,[ p(Cx (1))]. represents the

entropy of each LF. Two conditions of classification will
be discussed in the following item.
a. Over-classification:

H(X_) <H(X_), NR(X_, Y) > NR(X_,,Y). (16)

The C; is small than C,. TheH(x_)andH(X ) represent

the entropy of different classification with the LF ‘X’
respectively.

b. Under-classification:
H(X_) < H(X_), NR(X_,Y) < NR(X_,. Y). (17

4. EXPERIMENTAL RESULT

In this paper, more than 35,000 syllables waveform and
its relative Chinese characters are employed to train and
examine our approach. A complete TA is employed to
extract the LF as many as possible firstly. The RNN-based
PG is employed to examine the contribution of each LF
secondly. Seven types of LF and five types of prosodic
information are analyzed, respectively and simultaneously.
Three important topics are analyzed and discussed via the
experimental result.

In the first topic, the RMSE of RNN-based pitch
generator for each LF is estimated and depicted in Fig.2.
The ‘Tone will have the greatest contribution than the
others. It means that the ‘Tone' is the best LF for pitch
generator. Moreover, the ‘Fin’ and ‘L’ will amost have
no any contribution on pitch generator. The ‘Null’ means
that no any LF is employed to generate the pitch. Its
RMSE is equal to the standard deviation of pitch. Table 1
lists the normalized conditional entropy which is
estimated by using Eqg. (7)-(10). The large value of the
entropy means that the pitch is almost uniform distributed
for each type of LF. It will decrease the performance of
PG. Table 1 is estimated by theoretical analysis and Fig.2
is obtained by experimental result. They have the same
result and conclusion.
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Fig. 2. The RMSE of each LF vs. Pitch

Table 1. The normalized conditional entropy of pitch
with regard to each LF.

Tone Ini Fin L Len POS

H(Pitch | X)|0.390542| 0.525332|0.556035 | 0.433985| 0.430717|0.523520

In the second topic, Table 2 shows the differential
RMSE of each prosody with ‘Tone', ‘Ini’, ‘Fin’, ‘IF’, and
‘TIF, respectively. The ‘IFF means that the initial and
final types of syllable are taken as LF, simultaneoudly.
The ‘TIF means that the tone, the initial, and the final
types of syllable are taken as LF, simultaneously. Table 3

I -490




shows the type of cross-influence of each LF. The
‘Cooperation’ case is the best solution and the
‘Interference’ case must be avoided. Table 3 points out
the best direction for the implementation of TA system.

Table 2. Thedifferential RMSE of each LF

" Pause Initial Final
(?()mhs) Duration | Duration | Duration E(rljeég);y
W (10ms) (10ms) (10ms)

Tone 6.379313| 0.096487| 0.168615| 0.809698| 0.297440

Ini 3.168502| 0.171919| 2.678541| 0.967988| 0.625193
Fin 0.590008| 0.019043| 0.371558| 0.501969| 0.414191
IF 4.183168| 0.148693| 2.680984| 1.432132| 0.964136

TIF 6.771739| 0.192073| 2.744602| 1.613471| 1.383982

Table 3. Thetype of cross-influence for each LF

IF TIF
Pitch Cooperation Overlapped
Pause Duration Interference Overlapped
Initial Duration Overlapped Overlapped
Final Duration Overlapped Overlapped
Energy Overlapped Cooperation

In the third topic, Table 4 lists the situation of
classification on the fina type of syllable and the POS
type of word. The ‘Fin39' and ‘Finl7’ represent the
different classification of 39 and 17 classes on the fina
type respectively. The ‘POSA3’ and ‘POS13' represent the
43 and 13 classes on the POS type. In Table 4, the final
type with ‘Fin39' is over-classified for the initial duration,
final duration, and energy generators. But, the ‘Finl?7’ is
under-classified for the pitch and pause duration
generators. Moreover, the POS type with ‘PO$A3’ is
over-classified for pitch, initiad duration, and final
duration generators. According to the results on Table 4,
the suitable classification on each LF for prosody
generator can be achieved. Furthermore, Fig. 3 shows the
RMSE with the original classification on LF(Total) and
the simple classification on fina, POS, and PM
types(Total’). The performance with the Total’ approach
has no obvious degradation. But the computation of the
Total’ approach isreduced dramaticaly in the TA.

Table4. The situation of classification on the final type
of syllable and the POS type of word

NR(X,Y) Pitch Pause Initial Fina

Duration | Duration | Duration Energy

Fin39 | 0.122852 | 0.003065 | 0-077366 | 0.104520 | 0.086243

Final (Over) (Over) (Over)
0.102503 | 0.003741

Finl7 (Under) | (Under) 0.082753 | 0.118892 | 0.088066

POSA3 0.699324 0.198106 0.031626 | 0.120975

(Over) (Over) (Over) 0.301990

Pos13| 0.969081 | 218499 | 045709 | 0.184358 | 0160280

(Under) (Under)
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Fig. 3. The RMSE with original classification on LF vs.
simple classification on LF.

According to above analysis results, an efficient TA
with the best performance can be easily achieved. Totally
39,103 Chinese characters are employed to test the
performance of our TA. Only 78ms CPU time under the
PC(Pentium-1V, 1.4GHz) is achieved. Moreover, the
correction rate of word tagging with 97% is achieved. It
confirms that the performance of our text analyzer is very
good.

5. CONCLUSION

A new approach for the implementation of an efficient TA
for Mandarin TTS is proposed. Three heuristic and
theoretical analysis methods are employed to examine the
capability of each LF. The problem of contribution, cross-
influence, and over-classification of each LF can be easily
inspected. Finally, an efficient TA can be easily achieved.
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