
GRADIENT-DESCENT BASED WINDOW OPTIMIZATION FOR
LINEAR PREDICTION ANALYSIS

Wai C. Chu

DoCoMo USA Labs – Mobile Media Laboratory

181 Metro Drive, Suite 300, San Jose, CA 95110, U.S.A.
wai@docomolabs-usa.com

ABSTRACT

The autocorrelation method of linear prediction (LP)
analysis relies on a window for data extraction; we propose
an approach to optimize the window based on gradient-
descent. It is shown that the optimized window has
improved performance with respect to popular windows,
such as Hamming. The technique has potential in quality
improvement for many LP-based speech coders.

1. INTRODUCTION

The autocorrelation method of LP analysis [1] is widely
adopted by many modern speech coding algorithms. The
basic procedure consists of signal windowing,
autocorrelation calculation, and solving the normal
equation leading to the LP coefficients. The role of the
window is in the isolation of a frame of the input signal so
that the resultant LP coefficients reflect the properties of
the particular frame. There are many types of windows
utilized by various speech coding standards, many of them
rely on the following expression for autocorrelation
computation:

1

[] [] [] [] []
N

k l

R l w k s k w k l s k l
−

=

= − −∑ . (1)

In the above equation, R[l] represents the autocorrelation
values, with l = 0, 1, 2, …, being the time-lag of interest.
The sequence w[n], n = 0 to N-1 is the window of length N;
while the input sequence is denoted by s[n]. It is assumed
that w[n] = 0 outside the interval n ∈ [0, N-1].
 Most windows adopted by coding standards
have a tapered-end appearance in time domain: beginning
and end of the window have low amplitudes, with a peak
located in between. These windows are described by
simple formulas, and their selections are inspired by the
smooth appeal in time domain, frequently linked to
spectrum estimation applications. We propose in the

present study an optimization procedure that can lead to
windows with better performance. The technique is based
on gradient-descent where the gradient is derived from the
Levinson-Durbin algorithm.

2. OPTIMAL WINDOW

Input signal samples located within the analysis interval
are processed to obtain the LP coefficients, these are used
for actual synthesis or prediction inside the synthesis
interval. The two intervals might not be the same in
practice. Several metrics are defined to quantify the
performance of a given window. The prediction-error
energy at the synthesis interval n ∈ [n1, n2] is given by

() ()
2 2

1 1

2

1

2 2

2

1

ˆ[] [] []

[] []

n n

n n n n

n M

i
n n i

J e n s n s n

s n a s n i

= =

= =

= = −

 = + − 
 

∑ ∑

∑ ∑
 (2)

note that e[n] denotes the prediction error; input speech
and predicted speech are denoted by s[n] and [̂]s n ,

respectively; ai, i = 1 to M are the LP coefficients, with M
being the prediction order. Alternative performance
quantifier is the prediction gain, given by

() ()
2 2

1 1

2 2

1010log [] []
n n

n n n n

PG s n e n
= =

 
=  

 
∑ ∑ , (3)

that is, it is the ratio (in dB) between the signal energy and
prediction-error energy.
 Given a large amount of speech data, the optimal
window is the one capable of producing the lowest
prediction-error energy, or highest prediction gain,
averaged over all signal frames. This definition makes
sense for coding applications, since most of them rely on
some form of quantization of the excitation signal to the
synthesis filter. Thus, the lower the magnitude of the

I - 4600-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

excitation signal, the lower is the error of the synthetic
speech.
 In the subsequent sections we will measure the
performance of the window using prediction-error power
(PEP) – the time-averaged prediction-error energy, and
segmental prediction gain (SPG) – the frame-averaged
prediction gain in decibel domain.

3. GRADIENT-DESCENT OPTIMIZATION

The prediction-error energy (2) can be considered as a
function of the N samples of the window. By finding the
gradient of J with respect to the window sequence

[0] [1] [1]

T
J J J

J
w w w N

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ − 

L (4)

it is possible to adjust it in the direction negative to the
gradient so as to reduce the prediction-error energy; this is
the principle of gradient-descent and is widely used to deal
with a variety of practical problems [2]. Derivative of (2)
with respect to the window sequence w[n] is found as

2

1

2

1 1

[]
2 []

[] []

2 [] [] .
[]

n

k n

n M
i

k n i

J e k
e k

w n w n

a
e k s k i

w n

=

= =

∂ ∂
=

∂ ∂

∂ 
= − ∂ 

∑

∑ ∑
 (5)

Derivative of the LP coefficients can be calculated from the
Levinson-Durbin algorithm [4]; that is, start from a zero-
order predictor and increase the order one at a time. Detail
procedure is given below.

• Initialization, l = 0:

 0 [0]
[] []
J R

w n w n
∂ ∂

=
∂ ∂

; n = 0, …, N-1. (6)

• Recursion. For l = 1, 2, …, M:

1

1 1

(1) (1)1
(1) 1

1 1

1 [] []
[] [] []

[][]
[] ,

[] [] []

l l

l l

l ll
l i i l

i
i l

k JR l R l
w n J w n J w n

a a R l i JR l i
a R l i

w n w n J w n

−

− −

− −−
− −

= −

∂ ∂∂
= − +∂ ∂ ∂

∂ − ∂∂ −
+ − − ∂ ∂ ∂ 

∑
(7)

()

[] []

l
l la k

w n w n
∂ ∂

= −
∂ ∂

, (8)

and for i = 1, 2, …, l-1:

() (1) (1)
(1)

[] [] [] []

l l l
li i l l i

l i l

a a k a
a k

w n w n w n w n

− −
− −

−

∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂
 (9)

stop if l = M. Otherwise

()2 1
11 2

[] [] []
l l l

l l l

J J k
k k J

w n w n w n
−

−

∂ ∂ ∂
= − −

∂ ∂ ∂
. (10)

Note that ai = ai

(M) and the k is are the reflection
coefficients. The sought derivatives are found in (8) and
(9). In actual implementation, steps (6) to (10) are
embedded within the framework of the Levinson-Durbin
algorithm, where the LP coefficients are found from the
known autocorrelation values. Derivative of (1) is given by

(
)

[] [] [];0
[] [] [];[]
[] [] [][]

[] [] ;otherwise

w n l s n l s n n l
w n l s n l s n N l n NR l
s n w n l s n lw n

w n l s n l

+ + ≤ <
 − − − ≤ <∂ =  − − +∂ 
 + +

 (11)

 In summary, we compute the gradient (4) by
finding the autocorrelation values using the window and
the input signal (1), their derivatives are found from (11);
the LP coefficients are solved using the Levinson-Durbin
algorithm with the autocorrelation values as inputs, their
derivatives are found using (6) to (10); in addition, the
prediction-error sequence is calculated using the input
signal and the LP coefficients. The results are plugged into
(5) to obtain the desired quantities.
 Given a set of speech data {sk[n], k = 0, 1, …, Nt-
1} known as the training data set of size Nt , where each
sk[n] is an array containing the speech samples. We seek
to find a window in such a way that the PEP averaged over
the entire training data set is minimized. The steps to
follow are:

1. Initialization. Use an initial window w0 and
compute the PEP of the whole training set, denote
result as PEP0. Initial window can be chosen
arbitrarily. Set m ← 1.

2. Gradient-descent. Set wm ← wm-1. For k ← 0 to Nt
– 1:

• Calculate error gradient ∇J with respect
to wm and sk.

• Update window:

[] [] .
[]m m

m

J
w n w n

w n
µ

∂
← − ⋅

∂
 (12)

3. Decision to stop training. Find PEP using wm for
the whole training set, denote result as PEPm. If
PEPm has not decreased substantially with
respect to PEPm-1, stop; otherwise set m ← m+1
and go back to Step 2.

In order to find the PEP of a certain window with respect
to the training data set, the whole set is LP analyzed frame-
by-frame using the given window with the power of
prediction error found at the end, which represents a

I - 461

➡ ➡

performance measure. Also note in (12) that the step size
parameter µ determines the adaptation speed, it is constant
and can be selected experimentally for a given situation.
One complete pass through the training data set with
window update is referred to as one epoch (Step 2).

4. EXPERIMENTAL RESULTS

All experiments share the same training data set, created
using 54 files from the TIMIT database [3] (downsampled
to 8kHz), total duration is approximately three minutes. To
evaluate the generalization capability of the optimized
window for signals outside the training data set, a testing
data set is formed using 6 files not included in the training
data set; total duration is roughly 8.4 second. Prediction
order is always equal to ten.

The first experiment consists on applying the
window optimization procedure for four window lengths:
120, 160, 200, and 240 samples. Total number of training
epochs is equal to 100, with µ = 10-9 and an initial
rectangular window. In addition, the analysis interval is
equal to the synthesis interval with lengths equal to that of
the window. Figure 1 shows the SPG results, where we can
appreciate the growth as training progresses, which tend
to saturate after roughly 20 epochs. Performance gain is
usually high at the beginning of the training cycles, with
gradual lowering and eventual arrival to a local optimum.
Longer windows tend to have lower SPG, which is
expected since the same prediction order is applied for all
cases, and a lower number of samples are better modeled
by the same amount of LP coefficients.
 Figure 2 shows the initial and final windows for N
= 240. All windows upon convergence developed a similar
tapered-end appearance, with the middle samples slightly
elevated. The experiment was repeated for an initial
Hamming window, with the results summarized in Figure 3.
As we can see, performances of the optimized windows
regardless of the initial condition are quite similar; in fact,
their final shapes are alike, implying that sensitivity of the
solution toward initial window is low. Moreover,
enhancement is consistent for both training and testing
data set, hence optimization gain can be generalized for
data outside the training set. For initial rectangular
window, PEP dropped an average of 6.3% in training, and
8.2% in testing. For initial Hamming window, PEP dropped
an average of 1.2% in training, and 1.3% in testing.
Percentage drop in PEP for the case of Hamming window is
not as much as for the initial rectangular window, since the
Hamming window with its tapered-end shape represents a
superior choice for the problem at hand.

Figure 1. Segmental prediction gain (SPG) as a function of
the training epoch (m) in an experiment. Four window
lengths are considered, starting from top: 120, 160, 200, and
240.

Figure 2. Initial and final (solid trace) windows for a length
of 240 samples in an experiment.

Figure 3. Performance comparisons (PEP) between four
windows as a function of the length (N): rectangular
(square), Hamming (diamond), optimized from rectangular
(x), and optimized from Hamming (+).

1 10 100

9.6

SPG

9.2

0 100 200 300
 n

1.5

w[n]

0

 150 200 150 200 250
 N N

2.6.104

 PEP

2.2.104

Training

Testing

I - 462

➡ ➡

In the second experiment we consider the 240-
sample analysis interval with coordinate n ∈ [0, 239]. Five
synthesis intervals are defined: I1 = [0, 59], I2 = [60, 119], I3
= [120, 179], I4 = [180, 239], and I5 = [240, 259]; that is, the
first four intervals are located inside the analysis interval,
while the last one is located outside; a 240-sample initial
rectangular window is used. Optimization is performed for
1000 epochs with µ = 10-9. The final windows are plotted in
Figure 4; as expected, they take on a shape that reflects the
underlying position of the synthesis interval. Performance
gain for I1 to I4 is due to suppression of signals outside
the region of interest; while for I5, putting most of the
weights near the end of the analysis interval plays an
important role. The PEP dropped an average of 10.1% in
training and 13.6% in testing.

5. CONCLUSION

A window optimization procedure for the autocorrelation
method of LP analysis is described, which is based on the
principle of gradient-descent. Given a large amount of
training data, the window is tuned so as to reduce the
prediction-error power. In essence, the best shape of the
window is found, maintaining the rest of the parameters
(length, prediction order, etc.) fixed. Based on the gradient,
the window is changed toward the optimal

shape, defined as the one providing the lowest prediction-
error power. It is observed that the optimized window can
be generalized in the sense that performance gain applies
equally well to data outside the training data set. The
described approach was inspired by back-propagation
training in neural networks [5]. We are currently extending
the method to the schemes adopted by standardized
coders.

6. REFERENCES

[1] L. R. Rabiner and R. W. Schafer, Digital Processing of
Speech Signals, Prentice Hall, Englewood Cliffs, NJ, 1978.

[2] S. S. Rao, Engineering Optimization – Theory and
Practice, 3rd edition, John Wiley & Sons, 1996.

[3] J. Garofolo et al, DARPA TIMIT, Acoustic-Phonetic
Continuous Speech Corpus CD-ROM, National Institute
of Standards and Technology, 1993.

[4] S. J. Orfanidis, Optimum Signal Processing, 2nd edition,
McGraw-Hill, 1988.

[5] S. Haykin, Neural Networks, Macmillan, 1994.

Figure 4. Optimized windows in an experiment, a 240-sample rectangular window is used to start.

0 50 100 150 200
n

3

w[n]

0

 I1 I2 I3 I4 I5

I - 463

➡ ➠

