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ABSTRACT 

 
The autocorrelation method of linear prediction (LP) 
analysis relies on a window for data extraction; we propose 
an approach to optimize the window based on gradient-
descent. It is shown that the optimized window has 
improved performance with respect to popular windows, 
such as Hamming. The technique has potential in quality 
improvement for many LP-based speech coders. 

 

1. INTRODUCTION 
 
The autocorrelation method of LP analysis [1] is widely 
adopted by many modern speech coding algorithms. The 
basic procedure consists of signal windowing, 
autocorrelation calculation, and solving the normal 
equation leading to the LP coefficients. The role of the 
window is in the isolation of a frame of the input signal so 
that the resultant LP coefficients reflect the properties of 
the particular frame. There are many types of windows 
utilized by various speech coding standards, many of them 
rely on the following expression for autocorrelation 
computation: 
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In the above equation, R[l] represents the autocorrelation 
values, with l = 0, 1, 2, …, being the time-lag of interest. 
The sequence w[n], n = 0 to N-1 is the window of length N; 
while the input sequence is denoted by s[n]. It is assumed 
that w[n] = 0 outside the interval n ∈ [0, N-1].  
 Most windows adopted by coding standards 
have a tapered-end appearance in time domain: beginning 
and end of the window have low amplitudes, with a peak 
located in between. These windows are described by 
simple formulas, and their selections are inspired by the 
smooth appeal in time domain, frequently linked to 
spectrum estimation applications. We propose in the 

present study an optimization procedure that can lead to 
windows with better performance. The technique is based 
on gradient-descent where the gradient is derived from the 
Levinson-Durbin algorithm. 
 

2. OPTIMAL WINDOW 
 
Input signal samples located within the analysis interval 
are processed to obtain the LP coefficients, these are used 
for actual synthesis or prediction inside the synthesis 
interval. The two intervals might not be the same in 
practice. Several metrics are defined to quantify the 
performance of a given window. The prediction-error 
energy at the synthesis interval n ∈ [n1, n2] is given by 
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note that e[n] denotes the prediction error; input speech 
and predicted speech are denoted by s[n] and [̂ ]s n , 

respectively; ai, i = 1 to M are the LP coefficients, with M 
being the prediction order. Alternative performance 
quantifier is the prediction gain, given by 
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that is, it is the ratio (in dB) between the signal energy and 
prediction-error energy.  
 Given a large amount of speech data, the optimal 
window is the one capable of producing the lowest 
prediction-error energy, or highest prediction gain, 
averaged over all signal frames. This definition makes 
sense for coding applications, since most of them rely on 
some form of quantization of the excitation signal to the 
synthesis filter. Thus, the lower the magnitude of the 
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excitation signal, the lower is the error of the synthetic 
speech. 
 In the subsequent sections we will measure the 
performance of the window using prediction-error power 
(PEP) – the time-averaged prediction-error energy, and 
segmental prediction gain (SPG) – the frame-averaged 
prediction gain in decibel domain. 
 

3. GRADIENT-DESCENT OPTIMIZATION 
 
The prediction-error energy (2) can be considered as a 
function of the N samples of the window. By finding the 
gradient of J with respect to the window sequence 
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it is possible to adjust it in the direction negative to the 
gradient so as to reduce the prediction-error energy; this is 
the principle of gradient-descent and is widely used to deal 
with a variety of practical problems [2]. Derivative of (2) 
with respect to the window sequence w[n] is found as 
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Derivative of the LP coefficients can be calculated from the 
Levinson-Durbin algorithm [4]; that is, start from a zero-
order predictor and increase the order one at a time. Detail 
procedure is given below. 

• Initialization, l = 0: 
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• Recursion. For l = 1, 2, …, M: 
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and for i = 1, 2, …, l-1: 
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stop if l = M. Otherwise 
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Note that ai = ai

(M) and the k is are the reflection 
coefficients. The sought derivatives are found in (8) and 
(9). In actual implementation, steps (6) to (10) are 
embedded within the framework of the Levinson-Durbin 
algorithm, where the LP coefficients are found from the 
known autocorrelation values. Derivative of (1) is  given by 
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 In summary, we compute the gradient (4) by 
finding the autocorrelation values using the window and 
the input signal (1), their derivatives are found from (11); 
the LP coefficients are solved using the Levinson-Durbin 
algorithm with the autocorrelation values as inputs, their 
derivatives are found using (6) to (10); in addition, the 
prediction-error sequence is calculated using the input 
signal and the LP coefficients. The results are plugged into 
(5) to obtain the desired quantities.  
 Given a set of speech data {sk[n], k  = 0, 1, …, Nt-
1} known as the training data set of size Nt , where each 
sk[n] is an array containing the speech samples. We seek 
to find a window in such a way that the PEP averaged over 
the entire training data set is minimized. The steps to 
follow are: 
 

1. Initialization. Use an initial window w0 and 
compute the PEP of the whole training set, denote 
result as PEP0. Initial window can be chosen 
arbitrarily. Set m ← 1. 

2. Gradient-descent. Set wm ← wm-1. For k  ← 0 to Nt 
– 1: 

• Calculate error gradient ∇J with respect 
to wm and sk. 

• Update window: 

[ ] [ ] .
[ ]m m

m

J
w n w n

w n
µ

∂
← − ⋅

∂
           (12) 

3. Decision to stop training. Find PEP using wm for 
the whole training set, denote result as PEPm. If 
PEPm has not decreased substantially with 
respect to PEPm-1, stop; otherwise set m ← m+1 
and go back to Step 2. 

 
In order to find the PEP of a certain window with respect 
to the training data set, the whole set is LP analyzed frame-
by-frame using the given window with the power of 
prediction error found at the end, which represents a 
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performance measure. Also note in (12) that the step size 
parameter µ determines the adaptation speed, it is constant 
and can be selected experimentally for a given situation. 
One complete pass through the training data set with 
window update is referred to as one epoch (Step 2). 
 

4. EXPERIMENTAL RESULTS 
 
All experiments share the same training data set, created 
using 54 files from the TIMIT database [3] (downsampled 
to 8kHz), total duration is approximately three minutes. To 
evaluate the generalization capability of the optimized 
window for signals outside the training data set, a testing 
data set is formed using 6 files not included in the training 
data set; total duration is roughly 8.4 second. Prediction 
order is always equal to ten. 

The first experiment consists on applying the 
window optimization procedure for four window lengths: 
120, 160, 200, and 240 samples. Total number of training 
epochs is equal to 100, with µ = 10-9 and an initial 
rectangular window. In addition, the analysis interval is 
equal to the synthesis interval with lengths equal to that of 
the window. Figure 1 shows the SPG results, where we can 
appreciate the growth as training progresses, which tend 
to saturate after roughly 20 epochs. Performance gain is 
usually high at the beginning of the training cycles, with 
gradual lowering and eventual arrival to a local optimum. 
Longer windows tend to have lower SPG, which is 
expected since the same prediction order is applied for all 
cases, and a lower number of samples are better modeled 
by the same amount of LP coefficients. 
 Figure 2 shows the initial and final windows for N 
= 240. All windows upon convergence developed a similar 
tapered-end appearance, with the middle samples slightly 
elevated. The experiment was repeated for an initial 
Hamming window, with the results summarized in Figure 3. 
As we can see, performances of the optimized windows 
regardless of the initial condition are quite similar; in fact, 
their final shapes are alike, implying that sensitivity of the 
solution toward initial window is low. Moreover, 
enhancement is consistent for both training and testing 
data set, hence optimization gain can be generalized for 
data outside the training set. For initial rectangular 
window, PEP dropped an average of 6.3% in training, and 
8.2% in testing. For initial Hamming window, PEP dropped 
an average of 1.2% in training, and 1.3% in testing. 
Percentage drop in PEP for the case of Hamming window is 
not as much as for the initial rectangular window, since the 
Hamming window with its tapered-end shape represents a 
superior choice for the problem at hand. 
 

 

Figure 1. Segmental prediction gain (SPG) as a function of 
the training epoch (m) in an experiment. Four window 
lengths are considered, starting from top: 120, 160, 200, and 
240. 

 

Figure 2. Initial and final (solid trace) windows for a length 
of 240 samples in an experiment. 

 
 

 
 
Figure 3. Performance comparisons (PEP) between four 
windows as a function of the length (N): rectangular 
(square), Hamming (diamond), optimized from rectangular 
(x), and optimized from Hamming (+). 
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In the second experiment we consider the 240-
sample analysis interval with coordinate n ∈ [0, 239]. Five 
synthesis intervals are defined: I1 = [0, 59], I2 = [60, 119], I3 
= [120, 179], I4 = [180, 239], and I5 = [240, 259]; that is, the 
first four intervals are located inside the analysis interval, 
while the last one is located outside; a 240-sample initial 
rectangular window is used. Optimization is performed for 
1000 epochs with µ = 10-9. The final windows are plotted in 
Figure 4; as expected, they take on a shape that reflects the 
underlying position of the synthesis interval. Performance 
gain for I1 to I4 is due to suppression of signals outside 
the region of interest; while for I5, putting most of the 
weights near the end of the analysis interval plays an 
important role. The PEP dropped an average of 10.1% in 
training and 13.6% in testing. 
 

5. CONCLUSION 
 
A window optimization procedure for the autocorrelation 
method of LP analysis is  described, which is based on the 
principle of gradient-descent. Given a large amount of 
training data, the window is tuned so as to reduce the 
prediction-error power. In essence, the best shape of the 
window is found, maintaining the rest of the parameters 
(length, prediction order, etc.) fixed. Based on the gradient, 
the window is changed toward the optimal 

shape, defined as the one providing the lowest  prediction-
error power. It is observed that the optimized window can 
be generalized in the sense that performance gain applies 
equally well to data outside the training data set. The 
described approach was inspired by back-propagation 
training in neural networks [5]. We are currently extending 
the method to the schemes adopted by standardized 
coders. 
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Figure 4. Optimized windows in an experiment, a 240-sample rectangular window is used to start. 
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