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ABSTRACT

In this paper, we discuss a direct measure for aperiodic energy
and periodic energy in speech signals. Most measures for
aperiodicity have been indirect, such as zero crossing rate, high-
frequency energy and the ratio of high-frequency energy to low-
frequency energy. Such indirect measurements will usually fail
in situations where there is both strong periodic and aperiodic
energy in the speech signal, as in the case of some voiced
fricatives or when there is a need to distinguish between high
frequency periodic versus high frequency aperiodic energy. We
propose an AMDF based temporal method to estimate directly
the amount of periodic and aperiodic energy in the speech
signal. The algorithm also gives an estimate of the pitch period
in periodic regions.

1. INTRODUCTION

Periodic sounds are produced by quasi-periodic lateral
movements of the vocal folds. Aperiodic sounds are mainly
produced by creating turbulence in the flow of air through the
vocal tract. Turbulence is created when there is rapid airflow
through a narrow constriction. The amount of turbulence and
hence the amount of aperiodicity is increased if there is an
obstacle in the main pathway that is downstream from the
constriction. As the constriction narrows, the transglottal
pressure decreases and the vocal fold vibration ceases. But
vocal fold vibration can be maintained by active expansion of
the vocal tract volume, which inhibits the buildup of intraoral
pressure. This latter situation gives rise to what are called
voiced consonants, which may exhibit both periodic and
aperiodic energy. [1]

In previous work, algorithms have been developed to
directly measure if the speech signal is periodic and a binary
decision is made about whether the speech signal is voiced or
unvoiced [2]. If the signal is judged unvoiced, then indirect
measures such as zero crossing rate and the ratio of low- to
high-frequency energy are used to determine if the signal
contains noise. In [3], estimates of simultaneous voiced and
turbulence-noise components in the speech signal are obtained,
but the performance of the system relies on accurate estimates
of the pitch period. However, pitch estimation is a difficult task
that is prone to errors (pitch doubling and pitch halving).

In this paper, we discuss a system that first detects periodic
and aperiodic components, and then gives an estimate of pitch
period in the periodic region. The performance of the system is
evaluated using a speech-like synthetic database and two speech
databases that have EGG data recorded simultaneously.
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This system can be used in a task such as segmentation into
voiced and unvoiced regions; the recognition of regions where
both excitation components exist — e.g. in a breathy vowel [1]
or a voiced fricative. It will also replace the ESPS [8] tools and
the indirect aperiodicity measures that were used in [7].

2. SYSTEM DISCRIPTION

Fig. 1 depicts the various stages of the signal processing
involved in the analysis. The analysis starts with the speech
signal being passed through a 60-channel auditory gamma-tone
filterbank with characteristic frequencies (CFs) based on
physiological data [4]. The CFs of the model are roughly
linearly spaced at low frequencies and logarithmically spaced at
higher frequencies, with bandwidths that are approximately

constant-Q. The temporal envelopes €, () of the individual

channels are obtained by the function:

e,() = x,()+j - H{x,(1)}|
where X; () is the input signal, and H{xi ()} is the Hilbert

transform of the input signal

If the channel output is not silent, the temporal envelope is
analyzed for periodicity and aperiodicity. To do so, we use the
short-time average magnitude difference function (AMDF),
which is defined as:

v, (k)= i | x(n+m)w(m)—x(n+m—k)yw(m—-Fk)|

m=—oo

Where x(n) is the input signal, & is the lag and w(m) is the
window. In our case, w(m) is a 20ms rectangular window. For

periodic sounds, the AMDF function usually attains local
minima (referred as dips hereafter) at lags roughly equivalent to
the pitch period and its integer multiples (see Fig. 2). In the
case of aperiodic sounds, the dip locations are random. This is
used as a basis for further analysis. If the windowed signal over
which the AMDF is computed is such that there is a
considerable monotonous energy change within the window,
then the temporal envelopes may be tilted before the AMDF is
computed. The AMDFs of the non-silent channel are computed
at a rate of 10ms. The location of valid dips and their respective
strengths are estimated by computing the convex hull of the
AMDF. Any decision about the periodicity or aperiodicity is
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Fig. 1. Flow of algorithm

deferred until the next stage. Once the AMDF dips are
computed on all the channels over the entire signal, a summary
periodicity confidence is computed at a frame rate of 2.5ms. To
compute this, all the dips in all the channels that are within
10ms of the particular frame are added point-by-point. In a
typical periodic frame, the dips will cluster at multiples of the
pitch period. On the other hand, in a typical aperiodic frame,
the dips will be randomly scattered over the entire range (see fig
3). Notice that for the aperiodic frame, the depths of the dip are
considerably smaller than the depths of the dips in the periodic
frame.

Fig 2. Top. AMDF of an aperiodic signal
Bottom AMDF of a periodic signal

As can be seen in Fig. 3, for periodic signals the dips cluster at
T, (fundamental period) and its multiples. A weighted sum of
the strengths of all the dips that lie in the neighborhood of these
locations is computed and the maximum value is the summary
periodicity confidence. The dips are classified as either “within
cluster” or “outside cluster” based on an exponential curve that
is fitted on each side of the cluster centroid. For an aperiodic
frame, the exponential curve will not fit and then the “within
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cluster” boundary is fixed to a nominal small value. Note that
this confidence is just an estimate of whether the frame is
periodic or aperiodic and the actual decision is deferred until the
next step. This confidence value is used as a guide for further
analysis.

In the next step, each channel is analyzed for periodicity and
aperiodicity. If all the dips in a given channel fall in the “within
cluster” range, then that channel is called periodic. Otherwise, it
is called aperiodic. As the analysis advances, the cluster
locations from the previous frames are used to decide where to
form the clusters for the next frames. Thus, the system adapts to
the speaker characteristics very rapidly.

The proportion of the periodic energy in the frame is obtained
by taking the ratio of the sum of energies in all the periodic
channels and the total energy in that frame. The proportion of
the aperiodic energy is obtained in a similar way.

A pitch estimate is given in those frames where the periodic
energy proportion is above a certain threshold. The centroids of
the clusters obtained in the above-mentioned way are the pitch
estimates for the given frame and their tightness measures (the
weighted sum of all the dips that lie within a certain
neighborhood of the centroid) are the confidences of those
estimates being the pitch periods. We have incorporated
memory into the pitch tracker to obtain smooth pitch contours

3. DATABASE

The system was evaluated on two speech databases that had the
electroglottograph (EGG) data recorded simultaneously and on
a database of synthetic signals. MOCHA database [5] consists
of 460 utterances each spoken by two speakers. The second
speech database consists of 50 utterances spoken each by one
male and one female [6]. In the present work, EGG output was
used to demarcate periodic and aperiodic regions.

The synthetic speech-like signals database is the same as the
one used in [3]. The signals are the outputs from a 50-pole LPC
(linear Predictive Coding) synthesis filter when it is excited by a
pulse train that is corrupted by Gaussian white noise (GWN).
Pulses of frequency 120Hz, 131Hz and 200Hz were used. The
SNR varied from e to —5dB. The pitch period and amplitude of
this pulse was perturbed by specified degrees of jitter (0 to 5%




fluctuation in the pitch period) and shimmer (0 to 1.5dB
fluctuation in the amplitude of the signal).
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Fig. 3. Clustering of dips across channels.
Top: Aperiodic frame. Bottom: periodic frame

4. RESULTS
4.1 Evaluation on the Synthetic data

To evaluate the performance of our system we compared the
output SNR with the SNR of the input signal. We define output
SNR as:

SNR =10*1log,,(v/u)

where v=periodic energy and u is the aperiodic energy
calculated by our detector. Fig. 4. shows the actual SNR versus
the output SNR for the pulse with frequency 131Hz and no jitter
or shimmer. Notice that the difference between the actual SNR
and the output SNR increases as the actual SNR is increased.
This can be attributed to the fact that our algorithm makes a
binary decision between periodicity and aperiodicity for each
non-silent channel. As a result, if a particular channel that had
both periodic and aperiodic energy was called periodic, then the
aperiodic energy from that channel will contribute towards
periodic energy. As the SNR increases the periodic component
increases and the above mentioned effect dominates.

The same trend was observed for pulses with other frequencies.
For a given SNR there was minimal deviation in the output
SNR at different degrees of jitter and shimmer proving that the
algorithm is robust to deviations in the pitch period and the
pulse amplitude. Fig 5. shows the output of our system for a
pulse at 131 Hz at e SNR with 3% jitter and 1dB shimmer.

Fig.4. (solid line) output SNR by our system
(dashed line) ideal output SNR

4.2. Evaluation on the natural speech databases

All the comparisons were made on a frame basis at a frame rate
of 2.5ms. Table 1 shows the performance of our system on the
MOCHA database. ‘per_accur’ is the periodicity accuracy and
is defined as the ratio of the number of non-silent frames that
have the periodic energy above a predetermined threshold and
the corresponding EGG output is non-zero to the total number
of frames that have a non-zero EGG output. ‘aper_accur’ is the
aperiodicity accuracy and is defined as the ratio of the number
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Fig. 5. output of the our system on a pulse of 131Hz at oo SNR
and with 3% jitter and 1 dB shimmer.Top panel; the pulse
signal. Second. spectogram of the signal. Third: the channels
that were detected periodic Fourth: solid line: periodic energy
X line : aperiodic energy. Bottom panel: pitch estimate, notice
that the pitch estimate is not a constant indicating that, the
detector is able to track the pitch changed caused by the jiter.

of non-silent frames that have the aperiodic energy above a
predetermined threshold and the corresponding EGG output is
zero to the total number of non-silent frame that have zero EGG
output.
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Fig 6. output of our system on “I shall paint this room mauve with a few beige dots.”

Top panel: the waveform. Second: spectogram. Third: dark spots are the locations that were judged as aperiodic
and the light ones are the ones that were judged as periodic.Fourth: solid line: periodic energy. x line: aperiodic
energy. bottom panel: solid line: pitch detected by our system. X line: pitch estimated from the EGG data.

Male Female Overall
per_accur 0.97 0.93 0.95
aper_accur 0.94 0.89 0.90

Table 1. Performance on MOCHA database

Male Female Overall
per_accur 0.93 0.87 0.90
aper_accur 0.91 0.92 0.92

Table 2. Performance on DB2 database

The phonetic transcription of the MOCHA database was used to
evaluate the performance of our system on the sounds that can
exhibit strong periodicity and strong aperiodicity. (voiced
fricatives and voiced stops). 21.6% of the total frames of these
sounds had both high periodic and high aperiodic energy
whereas only 0.1% of the frames of the highly aperiodic sounds
(voiceless fricatives and voiceless stops) show high periodic
and high aperiodic energy. And only 6% of the frames of the
highly periodic sounds (vowels, sonorant consonants) show
both high periodic and high aperiodic energy. Possible reasons
for the high aperiodic energy in the 6% of the periodic frames
are breathiness and the transitions between periodic and
aperiodic sounds.

Fig 6. shows the output of our system on an utterance from
DB2.

5. DISCUSSION

We have presented an algorithm that gives direct estimates of
periodic and aperiodic energy in the speech signals and have
demonstrated its efficiency by evaluating it on speech-like
synthetic data and on natural speech. Our future work is to
extend this algorithm to give accurate estimates of pitch period

and to use the periodic & aperioidic energy parameters in our
Event Based Speech (EBS) recognizer.

REFERENCES

1. ] K.N. Stevens, Acoustic Phonetics, MIT Press,
Cambridge, Mass., 1998.

2. Zhang et. al. ‘Pitch estimation based on circular
AMDEF’ ICASSP-02, pp [-341-344

3. Jackson P.J. et. al. ‘Pitch-Scaled Estimation of
Simultaneous  Voiced and  Turbulence-Noise
Components in Speech’ IEEE Trans. Speech and
Audio Processing, vol. 9, No. 7, October 2001

4. L.H. Carney, “A model for the responses of low-
frequency auditory-nerve fibers in cat,” J. Acoust.
Soc. Am., Vol. 93, pp. 401-417, 1993

5. Wrench, A.A., "A multichannel/multispeaker ine
articulatory ~ database for continuous speech
recognition ere research", In Phonus, Research Report
No. 4, Institute e of Phonetics, University of Saarland,
In press, 2000.

6. Bagshaw, P. C. et.al. ‘Enhanced pitch tracking and
the processing of FO contours for computer and
intonation teaching’ Proc. European Conf. on Speech
Comm. (Eurospeech), pp. 1003-1006

7. Deshmukh o. et. al. ‘Acoustic —phonetic speech
parameters  for  speaker-independent  speech
recognition’ ICASSP-02 pp. [-593-596

8. ESPS 5.3.1, Entropic Research Laboratory, Inc.,
1999.

I-451




