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ABSTRACT

In this paper, a novel method for voiced / unvoiced deci-
sion in speech and music signals is presented. Voiced / un-
voiced decision is required for many applications, including
better modeling for analysis/synthesis, detection of model
changes for segmentation purposes and better signal char-
acterization for indexing and recognition applications. The
proposed method is based on the Generalized Likelihood
Ratio Test (GLRT) and assumes colored Gaussian noise
with unknown covariance. Under voiced hypothesis, a har-
monic plus noise model is assumed. The derived method is
combined with a Maximum A-posteriori Probability (MAP)
scheme to obtain a voiced unvoiced tracking algorithm. The
performance of the proposed method is tested under the
Keele University database for different signal-to-noise ratios
(SNRs), and the results show that the algorithm performs
well even under severe noise conditions.

1. INTRODUCTION

Growing demand for advanced speech and audio applica-
tions requires new processing methods that are both flexible
and robust to acoustical, environmental and system errors.
As the demand for variable-rate speech coding applications
increases, the role of voicing detection / decision is crucial
for efficient bandwidth reduction. In speech, a decision is
made between voiced and unvoiced speech phonemes. Cor-
rect voicing detection also allows for signal segmentation,
reconstruction and denoising.

Recent works on voicing decision implement various meth-
ods of sound modeling. In [1], a statistical model based on
Voiced Activity Detector (VAD) is presented. The decision
rule is established from the geometric mean of the likeli-
hood ratios for individual frequency bands. A first order
Hidden Markov Model (HMM) based hang-over scheme is
applied.

Another algorithm for voicing decision within a pitch-
detection method is presented in [2]. The pitch detection
is performed via a cepstrum-based method. Initial voicing
decision is made by defining a threshold to the median val-
ues of the cepstral peaks. Further voicing considerations
are made based upon the Zero Crossing Rate (ZCR) of the
signal and a short-time energy decision.

A comparison of several pitch detection / voicing deci-
sion methods is presented in [3]. The comparison is carried
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out between a SIFT-based method [4], a Frobenius Norm
based method [5], and bilinear time-frequency based meth-
ods [6] is performed using the Keele University database
[9].

Due to the periodic nature of speech and most musical
instruments, it is possible to closely represent the voiced
signal of a speaking person, singing voice or musical instru-
ment by a collection of sinusoidal oscillators. The harmonic
model assumes all sinusoidal components are harmonically
related, i.e. the frequencies of the sinusoids are at integer
multiples of the fundamental frequency. This approach re-
duces the number of parameters in the model and achieves
more accurate estimates of signal of interest parameters
than the sinusoidal model.

In this paper, the voicing decision problem is addressed
using a Generalized Likelihood Ratio Test (GLRT). Assum-
ing Markovian dynamics, Maximum A-posteriori Probabil-
ity (MAP) tracking of a time-varying locally harmonic sig-
nal is performed. Voicing is considered as an additional
state in the global likelihood function. The voiced log-
likelihood, evaluated for estimated pitch, is compared to
the unvoiced log-likelihood in every frame. The described
GLRT is shown to be the relation between the projection of
the signal upon the harmonic subspace and its projection
upon the orthogonal, non-harmonic subspace.

2. PROBLEM FORMULATION

Let y be a finite audio frame with L samples at ¢;, | =
1,2,---,L. The harmonic model for the measurements of
a given voiced frame is presented in [7] and can be written
as

y = A(wo)b +n, (1)

where A(wo) is the harmonic matrix and b is the harmonic
coefficient vector. The harmonic matrix, A(wo), can be
partitioned as A (wo) = [A°(wo) A®(wo)] where

[A°(wo)]im = cos(womty) , m=0,--- , M, Il=1--- L,

[As(wo)]lm:sin(womtl), m=1,---,M, |=1,---,L ,

where M is the total number of harmonics in the signal and

A e c S s 1T
b:[Oa"'a Mabla"'abM] .
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In this work, we assume the noise covariance matrix,
R, is unknown. However, with no loss of generality it can
be assumed that some prior knowledge on the variance of
the noise component is available, i.e., Rn = ® + 021, where
® is an unknown non-negative definite matrix, while o2
is known. This is not a limiting assumption, since in cases
when o2 is unknown, the results can be obtained by looking
at the limit o2 — 0.

Therefore, the problem is to decide between the follow-
ing two hypotheses:

Hy:y=A(wo)b+mn;,
Hyo:y=ngp.

(2)

The first hypothesis, H;, corresponds to the case of voiced
speech. The signal is considered as harmonic with additive
noise. Hypothesis Hy corresponds to the case of unvoiced
speech or silence, in which the signal contains background
noise only. Under this hypothesis, the signal is modeled as
a colored, zero-mean Gaussian noise with unknown covari-
ance matrix.

3. GLRT FOR VOICED / UNVOICED
DECISION

The GLRT for decision between the two hypotheses, stated
above, is:

H,

MaXyg,b,Ra f(¥Y|wo, b, Rn; H1) >
GLRT = 0.2, %n . 3
maxg,, f(y|Rn; Ho) < 7 ®)

Hy

We now proceed to develop the likelihood functions for both
hypotheses and present the resulting GLRT.

3.1. H;: Harmonic 4+ Noise

In order to derive the log-likelihood function under hypoth-
esis Hi, the results obtained in [8] are employed. Consider
the data model

Yir = agsg +ng , k:]-:’K (4)

in which the signal s 2 {sr}_,, is unknown deterministic,
and the noise vectors are an i.i.d. sequence with n; ~
N°¢(0,R,) where R,, = & 4+ ¢21 and ® is an unknown non-
negative-definite matrix. Then in [8] it is shown that the
log-likelihood function for estimating @ (after maximization
with respect to the nuisance parameters, Ra, s) is given by

Ly(8) = —log(n"0,) —
L-1

Z [Iog(maX(AK,l,ai)) + S (5)

=1 ma‘x()‘K,l:GTZL) ’

where L is the size of the vector yi. {\k,};;" denote the
eigenvalues of the matrix Ky = TfST‘g, in which S is the
sample covariance matrix and T is an L x (L — 1) matrix

whose columns are orthogonal to ag such that Eg £ [ag To]
defines a complete orthonormal basis which satisfies

EYEy = BEl = agall + T¢T =1. (6)

In our problem, the unknown deterministic vector is

A N A .
0 = (wo,b")T, ag = ”—2((:—2)):—” and s = ||A(wo)b||. A single
snapshot is available in each frame and therefore the sample
covariance matrix is given by S = yy. The matrix Ky can

be rewritten as
Ko =Ty yy"To . (7)

The rank of Ky is 1 and therefore all of its eigenvalues are
zero except the first one, A\;1. It can be shown that the
eigenvalues of the matrix Ky are given by (A1,0,---,0):

A=y TeTyy . ®)
Assuming A\; > o2, the log-likelihood function is *
L,(0) = —% [log ((ZTr)LUfL) +logAi +1+4 (L —2)log 0721] .
(9)
According to (6), TyT¢ =1— agaj, and thus,
A=y" (A -asag)y =y"y —|ag'y|”, (10)

Maximization of —log A1 is achieved when |a}y|? is max-
imal. Returning to the original model parameters 8 =
(wo, b), it follows:

bAAH

yy' Ab _ b?AfyyH Ab
A7 Dbl [l Ab|

bEAHEAbL (11)

lag'y|> =

Maximization of (11) with respect to b is given by the
maximum generalized eigenvalue of (G,H), where G =
A"yyT A and H = A” A are matrices of size (2M + 1) x
(2M+1). Let y1 > 72 > +++ > y2m+1 and (ug, Uz, - -+, Uzpr41)
denote the generalized eigenvalues and eigenvectors of (G, H),
respectively:

Glli = ’yq;Huq; . (12)
Then, maxy % = 71. By substituting the terms
for G and H in Eq. (12), and left-multiplying by (A7 A)~*,
one obtains

(ATA) 'A T yy" Au; = yiu; . (13)

Since rank((ATA)'AfyyTA)=1then ya =v3 = --- =
Yam+1 = 0 and 71 can be obtained by left multiplying (13)

>

by y2 A, which yields 71 = y#Pa(wo)y with Pa (wo)
A(wo)(AH (wo)A (wo)) YA (wo) denoting the harmonic pro-
jection matrix. Thus:

max A1 = vy (I-Pa(wo))y, (14)

and the resulting log-likelihood function under hypothesis
H, is given by maximization of :

Li(wo,b) =
—log (07 *7V) ~log (y" (1~ Pa(wo)y) — 1 (15)

with respect to wo: L1 = max,, L1 (wo, 6) = L1 (Do, f)) .

INote that in this problem the data vector is real.
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3.2. Hp: Noise Only

We now develop the likelihood function under hypothesis
Hy, which represents the case of colored Gaussian noise
with unknown covariance matrix, R,. The log-likelihood
function under hypothesis Hp is given by:

Lo = r%axlogf(y|Rn;H0)

1 Hpp-1
nﬁzix{—2 [log|27ar|+y R, y]} , (16)

where the maximization is performed with the constraint
R, = ® + o021 assuming non-negative definite matrix, ®.
Without this constraint, i.e. when o2 = 0, the ML estimate
of Rn is Rn = yy”. In [8] it is shown that the constraint
ML estimate of Ry is obtained by the sample covariance
matrix after thresholding its eigenvalues by o2. The sam-
ple covariance matrix in this case is given by S = yy”,
and by thresholding its eigenvalues the ML estimate of the
covariance matrix is given by

2
Rn = (1 - yifny) yy? + 021, (17)

with eigenvalues ¢1 = y?y, ¢2 = --- = g1 = o}, and
therefore

L—1
log [Ra| = logq = log(y"y) + (L — 1)log oy . (18)
=1

Using the Bartlett identity, it can be shown that vy ft; ly =
1. The resulting log-likelihood function under hypothesis
Ho is

Lo = —% [log ((271')1’02(1‘71)) +log(y™y) + 1] . (19)

3.3. Decision Between Hypotheses

For deriving the GLRT, the two log-likelihood functions are
subtracted:

vy
(I—Pa())y
In terms of the harmonic projection matrix P a (&o) and its

complement, P (&0) £ I—Pa (@o), the GLRT is expressed
as:

L1 - Lo = log yH (20)

H,
llyll” IPayl” +[[Payl® >
GLRT = = n. (21)
IPayll? IPayll? <
0
Finally the test can be rewritten as
H,
[Payl® > '
Ayl > o _1=q . (22)
IPayl> <
0

The GLRT for voicing decision proposes to measure the
ratio between the energies in the harmonic part of the signal
and the non-harmonic part. If the energy of the harmonic
part of the signal is large compared to the non-harmonic
part, then voicing is decided.

4. MULTIPLE FRAME TRACKING

A forward / backward Viterbi-like tracking algorithm is ap-
plied to the multi-framed signal. The MAP estimator for
the fundamental frequency (pitch) was presented in [7], and
is based on measurements collected over several frames. In
this method, a grid of possible states for the fundamen-
tal frequency, wo is determined, and the likelihood function
is calculated for each frame. The tracking algorithm esti-
mates and tracks the fundamental frequency using the like-
lihood function at each frame and the transition probability
matrix, introducing the prior statistical knowledge on the
fundamental frequency dynamics.

A similar tracking algorithm for MAP-based voicing de-
cision is implemented with an additional unvoiced state.
Therefore, the log-likelihood under hypothesis Hy is cal-
culated in addition to Li(wo). The transition probability
matrix is also extended to include transition to and from the
unvoiced state between adjacent frames. This algorithm si-
multaneously tracks the pitch and decides between the two
hypotheses.

Tracking is performed on the input matrix comprised of
the log-likelihood functions, [L1 Lo+mno], where no = log(n)
is the actual threshold value used for the test.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the results of the proposed
GLRT decision method. The tests were performed using the
Keele University pitch database, developed for the purpose
of comparing pitch extraction algorithms [9]. The database
consists of two types of signal: an acoustic signal digitized
at a sampling rate of 20 KHz and a laryngograph of the
acoustic signal. Five female and five male speakers were
recorded reading the same passage of English text. The
recordings were performed in low ambient noise conditions
using a sound-proof room. The database includes reference
files containing voiced / unvoiced segmentation and a pitch
estimate for 25.6 msec segments overlapping every 10 msec.
The reference files also mark uncertain pitch and voicing
decision.

The proposed decision method was tested in varying
noise conditions. White Gaussian noise was added to the
signals at SNR’s of 0 dB to 25 dB. Calculation of the er-
ror decision probabilities is comprised of unvoiced frames
detected as voiced frames, P.(Hp), and voiced frames de-
tected as unvoiced frames, P.(H1). The total error decision
probability for 60 sec data of a single speaker as a function
of SNR can be seen in Fig. 1. The average voicing deci-
sion error appears in Table 1: Fig. 2 presents P.(Hj) as a

SNR [dB] | Female Data | Male Data | Full Database
5 16 21 19
10 9 11 10
15 6 6.4 6
20 4.1 4.8 4.5
25 3.2 4.7 4

Table 1: Average GLRT decision error percentage

function of P.(H;) for SNR values of 5, 10 and 20 dB.
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In [3], a comparison of several different pitch detection
and voicing detection methods was tested against the Keele
pitch database. Fig. 3 presents the UV-V / V-UV error re-
sults (Pe(H1) versus P.(Hy)) for the methods compared in
this study. No additive noise was added to the signal. Com-
parison between the performance of the proposed GLRT
decision method (Fig. 2) and the methods presented in [9]
(Fig. 3) shows that the proposed method provides better
voicing decision performance. For example, at SNR = 10
dB, the GLRT obtains P.(H1) = P.(Hp) = 0.1, better than
the methods presented in Fig. 3 (noise free tests).

o L L L L
(o] 5 10 15 20 25

SNR [dB]

Figure 1: GLRT error results for single speaker

Figure 2: V-UV error (P.(H1)) vs. UV-V (P.(Hp)) error
for SNR = 5, 10, 20 dB.

6. CONCLUSIONS

The problem of voiced / unvoiced decision was addressed in
this paper. A novel method based on the GLRT was derived
where the voiced hypothesis was modeled by a harmonic
signal and an additive Gaussian noise with unknown co-
variance. The unvoiced data model was a zero-mean, Gaus-
sian vector with unknown covariance matrix. A MAP-based
tracking algorithm was implemented. The results show bet-
ter performance comparing to other existing methods for
voice / unvoiced decision algorithms. The proposed deci-
sion method is robust to high noise level, and performs well
even at low SNR’s.
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Figure 3: Error graph for methods presented in [3].
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