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ABSTRACT

We propose a new method to design speech/non-speech
classifiers for voice activity detection and robust endpoint
detection using the adaptive boosting (AdaBoost) algorithm.
The method uses a combination of simple base classifiers
through the AdaBoost algorithm and a set of optimized speech
features combined with spectral subtraction. The key ben-
efits of this method are the simple implementation and low
computational complexity. The AdaBoost classifier com-
bined with spectral subtraction significantly improved the
receiver operating characteristic curves of the G.729 voice
activity detector. For speech recognition purpose, the method
reduced 20–50% of miss errors for the same false alarm rate
by using additional band pass energy and spectral distortion
based on mel frequency cepstral coefficients.

1. INTRODUCTION

As speech recognition technologies are recently applied to
portable devices in realistic noisy environments, robust speech
detection has become one of the most critical components
for speech recognition systems. Speech detection or end-
point detection has turned out to significantly influence word
accuracy in case of cellular phones in a noisy automobile
environment [1][2]. Conventional endpoint detection algo-
rithms based on energy and zero crossing rate (ZCR) cannot
handle noisy speech signals properly in mobile communica-
tions. Hence, additional features such as high-pass/low-pass
energies, linear prediction coding (LPC) residual and auto-
correlation of LPC residual information have been explored
to improve robustness and accuracy. For noisy speech de-
tection, speech enhancement stages are often adopted be-
fore speech/non-speech classification to reduce noise and
therefore a new endpoint detector should be designed for
enhanced speech signals. A necessary and strong constraint
for speech/non-speech classification algorithms is that they
should have as low computational complexity as possible to
reduce computational burden on the entire speech recogni-
tion system.

To satisfy the constraint, we use an adaptive boosting
(AdaBoost) algorithm [5] [6] to design speech/non-speech

classifiers. The speech/non-speech classifier designed with
the AdaBoost algorithm combines very simple base classi-
fiers to achieve the accuracy similar to the manually-optimized
G.729 voice activity detector (VAD) [7] with comparable
computational complexity. We achieved classification per-
formance superior to the G.729 VAD by adopting and weight-
ing new features for spectral subtracted signals. Further
analysis of the learned weights for the base classifiers re-
vealed the contribution of each feature component. The pro-
posed method was evaluated using the Aurora database for
voice activity detection and robust speech detection.

2. SPEECH/NON-SPEECH CLASSIFICATION
USING THE ADABOOST ALGORITHM

2.1. Voice Activity Detector

The G.729 VAD uses the following features for speech/non-
speech classification in the first stage [7]: (1) instantaneous
full-band log energy, (2) low-band log energy difference, (3)
full-band log energy difference, (4) spectral distortion mea-
sured by line spectral frequencies, and (5) zero-crossing rate
difference. Each difference feature is obtained by the differ-
ence between the instantaneous parameter and the running
average of the background noise. For each frame, the ini-
tial VAD decision was made by using a speech/non-speech
classifier with 14 hyperplanes whose parameters were de-
termined by visual inspection over a large database. For
simplicity of the design, each hyperplane uses only two fea-
tures.

In our design we keep the simplicity of the speech/non-
speech classifier of the G.729 Annex B while we train the
hyperplanes in a principled and automatic manner using the
AdaBoost algorithm. All differential features were normal-
ized to have zero mean and unit variance along each axis.
We used a perceptron as the base classifier with the sig-
moidal activation function f(x) = tanh(γx) where x is
the feature vector and γ = 4 is used to control the range
of boundary regions. The sign of the base classifier output
ht(x) is the predicted label and the magnitude denotes a
measure of confidence. We use base classifiers with linear
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Fig. 1. Speech/Non-speech classifier using the AdaBoost
algorithm.

decision boundaries due to fast and simple learning proce-
dures. For ht(x), we chose to use a decision stump where
only a single feature is used in each perceptron for its sim-
plicity. Experimental results showed that performance dif-
ference between the decision stump and the general per-
ceptron was not significant. The final classifier is given by
H(x) = sign(

∑
T

t=1
αt(ht(x) + δ)) where αt is the weight

for the t-th base classifier and δ is a parameter to control the
hit and false alarm rates.

Fig. 1 shows the block diagram of the speech/non-speech
classifier based on adaptive boosting [5]. When only one
feature is used for each classifier, it partitions the feature
space into vertical or horizontal decision boundaries. The
decision boundary of the final classifier become non-linear
because the signum function is used to combine the base
classifiers.

For spectral subtraction, the noise spectrum is estimated
from the input signals and subtracted from the magnitude
spectrum of input signals. First the smoothed spectrum was
obtained by filtering in the spectral direction as well as in
the temporal direction. Then the noise spectrum was esti-
mated by tracking the minimum statistics of the magnitude
spectrum [4], where the minimum of each frequency bin
within the time window of 1 second was regarded as a noise
component. The over-subtraction technique was also ap-
plied to reduce musical noise. This method does not require
any other assumption on input speech utterances and can be
used continuously without reinitialization.

2.2. For Robust Endpoint Detection

The G.729 VAD is targeted for speech signals with rather
low level of noise signals and its performance degrades as
the signal-to-noise ratio (SNR) goes down to about 5 dB.
Therefore a speech enhancement block was applied before
feature extraction. In addition, it is advantageous to use
mel-frequency cepstral coefficient (MFCC)-based features
so that we can combine feature extraction and spectral sub-
traction to share the required computation with a speech rec-
ognizer.

Features for speech/non-speech classification are extracted
as shown in Fig. 2: (1) full-band speech log energy differ-
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Fig. 2. Feature extraction in combination with spectral sub-
traction.

ence, (2) low-band speech log energy difference (0 – 1.0
kHz), (3) pass-band speech log energy difference (1.0 – 2
kHz), (4) spectral distortion measured by MFCC, (5) zero
crossing rate difference, and (6) instantaneous total log en-
ergy. We note that in this case the band energies are for
spectral-subtracted signals. The low-pass log energy and
band-pass log energy are useful to reject high-frequency
noise (e.g., drill noise) and low-frequency noise (car noise)
[3]. The MFCC-based distortion measure can be easily com-
puted from the feature extraction of the standard speech rec-
ognizers.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

3.1. Speech Database

The Aurora speech database [2] was used to evaluate the
performance of the proposed speech detector. The speech/non-
speech classifiers were trained with speech data in all envi-
ronments and all SNR levels available in the database. For
the test set, the speech data with the same noise environ-
ments were used in the same range of SNRs. Label infor-
mation was obtained by using a Viterbi aligner obtained
from multi-style training, manually corrected by viewing
the spectrogram and used to train the classifiers. We used
randomly-sampled 12000 frames as the training data set and
another 3000 frames as the validation data set. Speech data
with babble noise in different SNR conditions were used as
the test data set.

3.2. Voice Activity Detection

We did not use the hang-over scheme [7] to compare only
the speech/non-speech classification performance. The num-
ber of base classifiers used in the test was decided to give
the minimum error rate for the validation test set. In this
case the number of the base classifiers used in the test was
95. The performance points of the G.729 VAD were lo-
cated near or on the receiver operating characteristic (ROC)
curves of our proposed method. However, the AdaBoost-
based classification has the advantage that it can provide a
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Fig. 3. ROC curves of voice activity detection of spectral-
subtracted signals. The filled symbols denote the perfor-
mance of the G.729 VAD without any additional process-
ing, where the performance is shown as a point for each
SNR condition.

flexible trade-off between the hit rate and the false alarm
rate by controlling only one parameter δ depending on ap-
plications.

We trained the AdaBoost classifier using the speech sig-
nals enhanced by spectral subtraction. To obtain the ROC
curves for spectral subtracted signals shown in Fig. 3, we
normalized αt to have unity sum of absolute value of αt

and varied δ discretely from −0.3 to 0.5 with a step size of
0.05. Each symbol in the ROC curve denotes the condition
with a certain control parameter. The filled symbols denote
the case of the G.729 VAD without any additional process-
ing, where the performance is shown as a point for each
SNR condition because the G.729 VAD has a fixed parame-
ter. Although its performance degraded slightly in the clean
speech case, the hit rate at the same false alarm rate was im-
proved in the noisy cases. One important advantage in using
the AdaBoost-based classifier is that we can automatically
obtain a simple classifier with performance comparable to
the manually optimized classifier.

The performance of the G.729 with spectral subtraction
was not plotted because the operating points were mostly
out of the current plot range. This is due to the changes
in the speech signal characteristic induced by the spectral
subtraction algorithm and the G.729 VAD cannot adapt to
the distorted signals.

3.3. Robust Endpoint Detection

For robust endpoint detection, we attempted to use better
features derived from the feature extraction module for speech
recognition as described in Section 2.2. As shown in Fig.
4, we analyzed the learned weight values and found that
the low- and pass-band energies largely contribute to the
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Fig. 4. Feature weights for the MFCC case for the first
25 base classifiers (left) and relative weight of each feature
component averaged all base classifiers (right). In the left
figure, the darkness of a square denotes the magnitude of
the corresponding weight.

performance of the classifier. In particular, the low-band
speech log energy has a relatively large weight and the spec-
tral distortion feature has a lower weight than the G.729
VAD because spectral subtraction introduced spectral dis-
tortion. However, the MFCC-based spectral distortion fea-
ture did not have a large weight because the spectral sub-
traction caused nonlinear distortion on the spectrum of the
input signals. To the contrary, the instantaneous full-band
log energy and the low-band energy were the most impor-
tant two features in case of the G.729-based features.

Fig. 5 shows the ROC curves in the babble noise en-
vironments using spectral subtraction and the new features.
In every SNR condition the AdaBoost-based speech/non-
speech classifier yielded improved performance. For the
same false alarm rate condition as in the G.729 VAD, the
miss rate (= 1 − hit rate) decreased by 20–50 percent.
This improvement mainly results from spectral subtraction
and the proper design of the classifier as the features are
changed.
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Fig. 5. ROC curves in case of new features. Spectral sub-
traction was applied before feature extraction.

We compared the performance of the G.729 VAD with
10 dB SNR as shown in Fig. 6: the AdaBoost classifier with
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G.729 features, the AdaBoost classifier with G.729 features
and spectral subtraction, and the AdaBoost classifier with
the new features and spectral subtraction. Fig. 6 shows that
the AdaBoost-based classifier yield the same level of perfor-
mance similar to the manually-optimized classifier. The Ad-
aBoost classifier was systematically designed by multiple
decision stumps, which requires a small number of compu-
tations. For better performance we changed the feature and
improved the performance with minimal increase of com-
putational load.
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Fig. 6. Performance comparison of the G.729 VAD in 10
dB SNR condition: the original G.729 VAD (‘G729’), the
AdaBoost with G.729 features (‘AdaBoost’) the AdaBoost
with G.729 features and spectral subtraction (‘SS + Ad-
aBoost’), and the AdaBoost with the new features and spec-
tral subtraction (‘SS + MFCC + AdaBoost’).

The experimental results, though not given in this pa-
per, showed that the AdaBoost classifier also yields similar
performance in car noise environments. Due to the nature
of the car noise, the false alarm rates were relatively small
compared to the babble noise case.

3.4. Considerations on Computational Complexity

The decision stump-based speech/non-speech classifier re-
quires 1 addition of the bias term, 1 table lookup for tanh(.)
and 1 multiplication by the weight for each base classi-
fier. On the contrary, the speech/non-speech classifier for
the G.729 VAD uses 14 hyperplanes with 2 features in-
volved for each hyperplane and the final decision is made
through the sequential test of the hyperplanes. Each hy-
perplane needs one multiplication, one addition and one
comparison. In both cases, the required computation is lin-
early proportional to the number of base classifiers or hy-
perplanes, which can be tuned for specific applications.

4. CONCLUSIONS

We proposed a new method to design a speech/non-speech
classifier based on the AdaBoost algorithm. Our experi-
mental results indicate that a nearly optimal classifier can
be designed automatically with computational complexity
comparable to the G.729 VAD. The contribution of each
feature and the effects of spectral subtraction were also in-
vestigated. The AdaBoost classifier with spectral subtrac-
tion significantly improved the ROC curves of the G.729
VAD. For speech recognition purposes, we suggested a new
efficient endpoint detection method using different kinds
of features including estimated speech band energies and
MFCC-based spectral distortion. When spectral subtrac-
tion is used, the low-band speech log energy has a rela-
tively large weight and the spectral distortion feature has a
small weight. The proposed method to design a speech/non-
speech classifier is highly practical and the classifier outper-
forms the current industrial VAD algorithm.
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