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ABSTRACT

This paper provides a solution for robust speech detection that can
be applied across a variety of tasks. The solution is based on an
algorithm that performs non-parametric estimation of the back-
ground noise spectrum using minimum statistics of the smoothed
short-time Fourier transform (STFT). It will be shown that the new
algorithm can operate effectively under varying signal-to-noise ra-
tios. Results are reported on two tasks – HMIHY1 and SPINE2,
which differ in their speaking style, background noise type and
bandwidth. With a computational cost of less than 2% real-time
on a 1GHz P-3 machine and a latency of 400ms, it is suitable for
real-time ASR applications.

1. INTRODUCTION

The goal of the work described in this paper is to develop a speech
detection method that can be applied over a range of conditions
and applications without adjustments. The difficulty of the task is
compounded by the fact that the objectives for speech detection
are different for different applications.

In applications involving human-human interaction, the input
may contain multiple sentences. In such cases, the system designer
must weigh the effect of sending intervals of environment noise to
the decoder against the effects of breaking contiguous utterances
into multiple phrases. The SPINE corpus is an example of such
a domain where robust segmentation algorithms have been shown
to improve ASR performance, particularly in certain difficult noise
conditions [2, 3].

On the other hand, in applications where a machine prompts
a human, the input speech is naturally segmented into specific re-
sponses from the user. By removing long non-speech intervals
from the ASR input, a good segmentation algorithm can save con-
siderable load on a server that is processing multiple clients. In ad-
dition, a general-purpose segmentation algorithm should be capa-
ble of operating in conditions where the signal-to-noise ratio varies
considerably and the input is corrupted by noise such as telephone
tones and background hum.

The rest of the paper is organized as follows. Section 2 pro-
vides a brief background and a few examples of current techniques.
It also includes a short discussion on the choice of evaluation cri-
terion. Although the paper aims at providing speech segments to
the ASR, to assess the difficulty of the task, frame-level classifi-
cations were performed initially. These exploratory experiments
are briefly described in section 3. Section 4 delves into the solu-
tion based on extreme statistics, and explains the motivation and
details of the approach. Experiments and results on two different

1“How May I Help You”, a task that routes telephone calls from cus-
tomers in an AT&T customer service application [1].

2Speech in Noisy Environments, a task designed by Naval Research
Laboratory for research in robust ASR.

tasks are reported in section 5 which is followed by conclusions in
section 6.

2. BACKGROUND

2.1. Current Approaches

In the last few years, a variety of segmentation algorithms have
been proposed and shown to work on specific tasks. Yet, a robust
and general-purpose solution for real-time ASR is lacking.

Typically, a segmentation scheme for real-time application con-
sists of three parts, as shown in figure 1. Frames are extracted (typ-
ically 10ms long), then a core module decides whether a particular
frame is speech or non-speech. The sequence of frame-level de-
cisions are converted into utterance or segment boundaries using
a simple state machine which pads the boundaries to account for
low-energy components of speech such as fricatives, voice onsets
or short pause between words.

Frame−level
Speech Detection

State Machine
(Utterance Bdry)

Feature/Frame
Extraction

Fig. 1. An illustration of a typical segmentation algorithm.

A number of current segmentation algorithms for real-time
ASR are based on techniques developed in the speech coding com-
munity where voice activity detection (VADs) are popularly used
for identifying non-speech segments that need not be transmitted
(e.g. [4]). The VADs were originally designed to meet strict la-
tency requirements and constraints of low computational power.
Typically, in a VAD-based segmentation algorithm, the first few
frames are assumed to be noise and a threshold is computed from
it. Any frame with more energy than the threshold is marked as
speech. The threshold is continually updated using the energy
level of the non-speech frames. Segmentation of the input wave-
form has also been treated as an edge-detection problem (e.g. [5]).
Instead of relying on a threshold, the onset of speech is detected by
a matched filter with a pre-determined slope which locates sudden
change in signal energy. These methods are not inherently robust
to noise bursts, telephone tones, and varying noise powers, and
require additional heuristics in real applications.

In ASR, model-based segmentation such as [3] and [2], use
hidden Markov model (HMMs) to model the dynamic nature of
speech. The input feature could be standard cepstral vectors (e.g. [2]),
or special features such as normalized cross correlations (e.g. [3]).
The segmentations are produced by a Viterbi algorithm over the
complete sequence of input vectors. This makes them unsuitable
for real time ASR applications. In certain real-time ASR tasks
such as close captioning of broadcast news, it is possible to avoid
explicit segmentation at the front-end. Instead, the complete in-
put sequence is sent to the decoder, and the decoder uses partial
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back-trace of continuous recognition to put out recognized word
sequences or segments [6, 7]. When the input contains background
noise that are not seen in the training data, this method could po-
tentially increase ASR errors. Moreover, the need to operate a de-
coder continuously on each input makes this approach infeasible
for a number of applications.

2.2. Evaluation Criterion

Unfortunately, there is no standard criterion to evaluate a segmen-
tation algorithm. The difficulty arises largely from the lack of a
clear definition for a segment. It is not clear whether linguistic
criteria should be used in defining segment boundaries or whether
elimination of long inter-word silence should be the sole criterion.
In either case, the notion of a “true” segmentation is ill-defined,
since humans themselves are inconsistent in identifying certain
word boundaries. Taking a practical approach for this work, seg-
ments are assumed to be a run of words surrounded by non-speech
intervals approaching several hundred milliseconds in duration.

Even if a reference were provided, there is no standard met-
ric to compare segmentation algorithms. In previous work, per-
formance has been reported in terms of a number of criteria –
frame-level classification error, frame detection and false alarm
rates, mean squared error in locating the edges of segments, and
ASR word error rate. Usually, a combination of these measures
are used to compare segmentations. Since this paper addresses
segmentation for ASR applications, word error rate (WER) mea-
sured on the resulting segments will be used as a metric for all
experiments in section 5. Additionally, since segmentation algo-
rithm aims to reduce computational load by removing non-speech
intervals from the input stream, the total number of frames passed
to the ASR decoder will also be used as a metric.

3. FRAME-LEVEL CLASSIFICATION

To investigate the problem of classifying speech at a frame-level,
a few exploratory experiments were conducted. A set of popular
machine learning methods were applied. All of these methods as-
sume the input features to be independent identically distributed
processes. Although these methods have a few deficiencies, which
are mentioned later in the section, they provide complex non-linear
classification boundaries for separating speech from non-speech.

To encompass a variety of noise conditions, a 2.6 hour subset
of the SPINE corpus was used for the task. For creating a refer-
ence, word-level segmentations were generated automatically us-
ing a state-of-the-art ASR system and then hand-corrected at word-
boundaries. After excluding three transitional frames before and
after a word boundary, the data was divided into 322K frames for
training, 278K frames for validation, and 270K frames for testing.

A set of classifiers were trained using the training and the val-
idation sets. The classifiers included – (a) Bayes classifier with
Gaussian Mixture Models (GMM), (b) Multi-layer perception (MLP),
(c) Bagging with MLPs, (d) Boosting with MLPs, (e) Mixture
of Experts with MLPs, and (f) SVM [8]. These classifiers were
trained and tested using “Torch”, a software that is widely used in
machine learning community.

Mel-warped cepstral coefficients (MFCC) were used as fea-
ture vectors, since they are popular for ASR applications. The raw
MFCC features were used in the form available at the ASR front-
end, i.e., without applying any batch processing such as cepstral
variance normalization and vocal tract length normalization. Cep-
stral mean subtraction was also not performed.

The classification results are shown in the table 1. The test set
contained 26% speech, and “–” in the table denotes performance

below chance. The parameters of the classifiers were tuned using
the validation set, and the optimal settings are reported under the
corresponding frame error rate. The number of hidden units are
denoted by “nhu”, the number of mixtures in GMM by “ng”, the
number of MLP classifiers in bagging by “nb”. The second col-
umn in the table shows the results of using static cepstral features.
The third column reports the results when input cepstral features
were appended with their first and second order difference. The
best results of 4.2% frame error rate was obtained using delta cep-
strum by bagging with MLPs. Adaboost did not perform above
chance and the optimization routine in SVM could not handle the
amount of data in the test set. Appending larger number of neigh-
boring frames to the features, or applying ASR-trained linear dis-
criminant analysis did not yield any further improvements in the
classification performance.

Classifier Features Features
w/o deltas w/ deltas

Bayes with GMM 14.9% 7.3%
(ng=16) (ng=20)

MLP 7.3% –
(nhu=4)

Bagging+MLP 6.4% 4.2%
(nhu=6,nb=14) (nhu=6,nb=16)

MixOfExperts+MLP 15.5% –

Table 1. Frame error rate for classifying frames into speech and
non-speech.

These static classifiers do not outperform algorithms based on
signal processing techniques in [9] (4.9% FER) by a margin wide
enough to warrant their use despite their deficiencies. One of the
significant disadvantages that restricts their portability is the need
for training samples of a variety of noise types. Moreover, they are
inherently not capable of utilizing the temporal properties of the
input sequence.

4. SEGMENTATION WITH MINIMUM STATISTICS IN
STFT DOMAIN

4.1. Motivation

Segmentation methods such as the VAD-based methods described
in Section 2.1 use heuristics to estimate the noise floor to decide
the presence of speech. In place of applying heuristics, we take
advantage of more rigorous techniques developed in the speech
enhancement community where noise estimation has been studied
for a number of years. However, the application of background
noise estimation to ASR differs from that of speech enhancement
in a number of ways. Most significantly, unlike speech enhance-
ment, the reconstructed waveform is not required in ASR and la-
tency requirements are on the order of hundreds of milliseconds.

Among the various techniques that are currently available, we
chose a non-parametric estimation of noise spectrum which uses
minimum statistics. The motivation for this technique comes from
the following considerations. Speech and noise can be assumed
to be statistically independent. Focusing only on additive noise,
both speech and noise are positive and additive in power spectrum
domain. Due to the highly non-stationary nature of speech, the
speech energy in a given frequency bin is likely to fall to zero at
sometime over an interval of a second or more. When the speech
energy falls to zero, the signal energy is solely from the back-
ground noise. Hence, by tracking the minimas in each spectral
bin over a sufficiently long interval, one can obtain statistics of the
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noise spectrum. From these statistics, the mean noise spectrum
can be computed. To deal with non-stationary noise, the estimate
can be updated continually after each input frame. In practice, the
time-varying power spectrum of the input signal can be approxi-
mated by a smoothed short-time Fourier transform (STFT).

4.2. Estimation of Noise Spectrum

The utterance segmentation algorithm has three major components.
These include estimation of the background noise spectrum, clas-
sification of frames into speech or non-speech, and determination
of utterance boundary. This section focuses mainly on the back-
ground noise estimation algorithm which is performed in three
steps. First, a smoothed estimate of the STFT magnitude is com-
puted. Second, the spectral minimum statistics are tracked over a
block of STFT frames corresponding to approximately a second
of speech. Third, the average background noise statistics are esti-
mated from the spectral minima using order statistics.

For each 10ms frame, the magnitude STFT,Y (k, t) is com-
puted where the indicesk andt denote frequency and time respec-
tively. The variations in the STFT are smoothed using a leaky inte-
grator to obtainYs(k, t). The coefficients of the integratorα(k, t)
are continually updated for each frequency with the aim of reduc-
ing the average error between smoothed STFT and the raw STFT.
This allows the smoothed STFT to quickly rise to the level of input
speech signal.

Ys(k, t) = α(k, t)Ys(k, t− 1) + (1− α(k, t))Y (k, t) (1)

The spectral minimumM(k, t) is computed over a set of previous
D smoothed STFT frames.

M(k, t) = min
t̃=t−D:t

Ys(k, t̃) (2)

This spectral minimum is an example of extreme statistics, and it is
lower than the mean of the noise,N̂(k, t). Fortunately, this can be
corrected by applying a bias factor,̂N(k, t) = Bc(k, t)M(k, t),
where the biasBc(k, t) can be computed using asymptotic ap-
proximations [10, 11]. As it turns out, the bias for each spectral
bin can be approximated as function of its “equivalent degrees
of freedom”, Q̃(k, t) andD [12], asBc(k, t) ≈ 1 + 2(D −
1)/Q̃(k, t). The quantity,Q̃(k, t), depends on the variance of
current estimate of the noisêN(k, t) and the smoothed STFT,
Q̃(k, t) = 2var2{N̂(k, t)}/var{Ys(k, t)}. The variance of the
smoothed STFT is computed using a leaky integrator and updated
after each input frame is received.

The original algorithm applies the bias equally to the speech
and non-speech signal. Since the bias is computed as a function
of the input variance over an interval, it is likely to have a higher
value when speech is present. This causes an overshoot of the bias
on steep spectral minimas which are buried in speech. This can
be reduced significantly by modifying the bias toBcs(k, t) using
a sigmoid function of short-term “a posteriori” SNR,R, as given
below.

Bcs(k, t) = Bc(k, t)(1 + exp3(R−3))−1 + (1 + exp3(3−R))−1 (3)

This function does not effect low SNR noise, but clamps the bias
to unity when speech is present, thus improves the ability of the
algorithm to track the minima present among speech frames.

4.3. Parameters

In the minimum statistics based approach, the computational load
is impacted most by the resolution of STFT and the interval over

which the minimum is computed. Experiments reported in sec-
tion 5 uses STFTs with a frequency resolution of 256 bins at a
frame rate of 10ms. The minimum statistics are searched over an
interval of 1.4 seconds of past speech. Our implementation took
advantage of an efficient search algorithm described in [12], where
the search interval is broken into sub-intervals (12 sub-intervals in
our case) each of which is represented by its local minimum. The
complete implementation runs in less than 2% real-time on a 1GHz
Linux P-III machine. In addition to these parameters, the parame-
ters for smoothing STFT and computing variances are identical to
those used in [12].

4.4. Determination of Utterance Boundary

Once the background noise spectrum,N̂(k, t), is estimated, each
input frame is classified as speech or non-speech. If the input,
Y (k, t), is higher thanγN̂(k, t) in at least one fifth of the spec-
tral bins, it is classified as speech. To avoid triggering the speech
detector due to noise perturbations, the constant is set toγ =

√
2.

Finally, a simple state machine decides the utterance boundaries.
Arrival of at least four consecutive speech frames marks the be-
ginning of an utterance in the state machine. If no speech frame
is present for the next 40 frames, the state machine transitions to
mark the end of utterance. These utterance markers are expanded
by padding six additional frames, before and after the utterance.

The latency of the algorithm largely depends on how the end
of a segment is defined. Here, a segment is considered to have
ended if it is followed by 400ms of non-speech. By reducing the
lookahead buffer for determining the end of segment, the latency
can be reduced proportionally. It may be possible to use certain
spectral cues to determine the end of an utterance or a segment.
Further, the degrees of freedom provided by the STFT domain can
be used more effectively to remove new noise types that can be
localized in STFT domain.

5. EXPERIMENTS & RESULTS

The new segmentation algorithm based on minimum statistics was
tested on two significantly different tasks – (a) SPINE-2 test set,
and (b) a subset of HMIHY task, an internal database of real cus-
tomer interactions [1].

The SPINE task is a collection of speech from pairs of speak-
ers participating in a cooperative task. Participants were placed
in separate sound booths and subjected to one of the many back-
ground noise types, which included noise from F16, E3A AWACS,
helicopter, armored vehicle such as bradley and hummer. The
SPINE-2 tests contain about an hour and three hours of speech
in development (SPINE-2 Dev) and evaluation (SPINE-2 Eval) set
respectively. The evaluation test set has eight different background
noise conditions, four of which are absent in the training data.
The input consists of a continuous signal from a conversation-
side. A state-of-the-art system was developed for testing on the
SPINE task. It uses PLP input features, class-based trigram lan-
guage model and applies a variety of compensations used in re-
search systems – cepstral mean normalization, cepstral variance
normalization, vocal tract normalization, constrained model-space
adaptation, speaker-adapted training, and maximum likelihood lin-
ear regression based speaker adaptation. In addition, the input fea-
tures were transformed using linear discriminant analysis and the
transformation associated with semi-tied covariance approxima-
tion.

The HMIHY task contains response from customer to the open-
ended prompt, “This is AT&T, how may I help you?”. Compared
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to the SPINE task, the HMIHY subset has lower amounts of back-
ground noise, but has larger variations in signal power. The subset
was chosen to have at least 4s long response from users, and to
contain at least one non-speech event as marked by transcribers. It
contained noise from typical home environments as well as tele-
phone tones. This subset was tested using currently deployed Wat-
son system for the HMIHY task [1].

Table 2 shows comparison of three kinds of segmentations
on both the domains. On the SPINE task, it includes the hu-
man labeled segmentation provided by the Linguistic Data Con-
sortium (LDC-seg), output of a batch mode algorithm (Batch-seg,
described in [9]), and the newly developed extreme statistics based
algorithm (XStats-seg). On the HMIHY task, three segmentations
include no segmentation of user response (No-seg), segmentation
using an existing segmenter in the Watson system (Watson-seg,
based on [13]), and the new segmentation.

SPINE-2 Dev Mts. of Speech WER
LDC-seg 77 24.3%
Batch-seg 76 27.5%
XStats-seg 73 24.9%

SPINE-2 Eval Mts. of Speech WER
LDC-seg 167 32.7%
Batch-seg 155 36.3%
XStats-seg 153 34.7%

HMIHY Task Mts. of Speech WER
No-seg 261 32.8%
Watson-seg 183 33.5%
XStats-seg 174 32.8%

Table 2. Performance comparison of segmentation algorithms.

As shown in table 2, on the SPINE-2 development test set, the
new algorithm does almost as well as the LDC segments. On the
evaluation test set, it does better than the current batch-mode algo-
rithm and the LDC segments give the best results. In the HMIHY
task, the new algorithm does significantly better than the currently
deployed Watson segmentation algorithm, and the WER in this
low noise task is almost the same as having no segmentation of the
user responses. One advantage of making the speech / non-speech
decision in the STFT domain is that the events such as telephone
tones are highly localized and are easily filtered using a simple
measure of its spectral spread. In all the tasks listed in table 2, the
new algorithm appears to have reduced the number of unnecessary
frames sent to the ASR system while providing lower WER than
the current task-specific segmentation algorithms.

6. CONCLUSIONS & DISCUSSION

In this paper, we provide a solution for robust speech detection
which can be applied across tasks without requiring task-specific
tuning. We have demonstrated its effectiveness with tests on two
tasks that differ in speaking style, noise type and bandwidth. On
the SPINE-2 test set, which contains a variety of background noise,
the new algorithm obtains lower WER than our current batch mode
algorithm by about 2% WER, while sending fewer frames to the
ASR decoder. On the SPINE-2 development set, the WER is al-
most equivalent to that using the human-derived segmentations
from the LDC. On the HMIHY task, where the noise power is
lower than the SPINE task, the new algorithm reduces WER by
0.7% over the currently deployed segmentation algorithm. The
major advantage of the new algorithm in this task was that it re-
duced computational load associated with ASR decoding by send-

ing 34% fewer frames to the decoder for processing.
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