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ABSTRACT tasks are reported in section 5 which is followed by conclusions in

. ) . . section 6.
This paper provides a solution for robust speech detection that can

be applied across a variety of tasks. The solution is based on an
algorithm that performs non-parametric estimation of the back-
ground noise spectrum using minimum statistics of the smoothed
short-time Fourier transform (STFT). It will be shown that the new
algorithm can operate effectively under varying signal-to-noise ra- In the last few years, a variety of segmentation algorithms have
tios. Results are reported on two tasks — HMMHahd SPINE, been proposed and shown to work on specific tasks. Yet, a robust
which differ in their speaking style, background noise type and and general-purpose solution for real-time ASR is lacking.
bandwidth. With a computational cost of less than 2% real-time Typically, a segmentation scheme for real-time application con-
on a 1GHz P-3 machine and a latency of 400ms, it is suitable for sists of three parts, as shown in figure 1. Frames are extracted (typ-
real-time ASR applications. ically 10ms long), then a core module decides whether a particular
frame is speech or non-speech. The sequence of frame-level de-
cisions are converted into utterance or segment boundaries using
a simple state machine which pads the boundaries to account for
low-energy components of speech such as fricatives, voice onsets
or short pause between words.

2. BACKGROUND

2.1. Current Approaches

1. INTRODUCTION

The goal of the work described in this paper is to develop a speech
detection method that can be applied over a range of conditions
and applications without adjustments. The difficulty of the task is
compounded by the fact that the objectives for speech detection _| Feature/Frame Frame-level State Machine
are different for different applications. Extraction Speech Detection (Utterance Bdry)
In applications involving human-human interaction, the input

may contain multiple sentences. In such cases, the system designer
must weigh the effect of sending intervals of environment noise to
the decoder against the effects of breaking contiguous utterances ) ] ]
into multiple phrases. The SPINE corpus is an example of such A number of current segmentation algorithms for real-time

a domain where robust segmentation algorithms have been showrf*SR are based on techniques developed in the speech coding com-
to improve ASR performance, particularly in certain difficult noise Munity where voice activity detection (VADs) are popularly used
conditions [2, 3]. for identifying non-speech segments that_ need not be tran_smltted

On the other hand, in applications where a machine prompts (€-9- [4])- The VADs were originally designed to meet strict la-

a human, the input speech is naturally segmented into specific releNCy requirements and constraints of low computational power.
sponses from the user. By removing long non-speech intervals Typically, in a VAD-based segmentation algorlthm, the first few
from the ASR input, a good segmentation algorithm can save Con_frames are assu_med to be noise and a threshold is c_:omputed from
siderable load on a server that is processing multiple clients. In ad-it- Any frame with more energy than the threshold is marked as
dition, a general-purpose segmentation algorithm should be capaSPeech. The threshold is continually updated using the energy
ble of operating in conditions where the signal-to-noise ratio varies 'evel of the non-speech frames. Segmentation of the input wave-

considerably and the input is corrupted by noise such as telephond®'™ has also been treated as an edge-detection problem (e.g. [3]).
tones and background hum. Instead of relying on a threshold, the onset of speech is detected by

a matched filter with a pre-determined slope which locates sudden

The rest of the paper is organized as follows. Section 2 pro- o :
vides a brief background and a few examples of current techniques C1@nge in signal energy. These methods are not inherently robust

It also includes a short discussion on the choice of evaluation cri- 1 N0iSe bursts, telephone tones, and varying noise powers, and
terion. Although the paper aims at providing speech segments to'€dUiré additional heuristics in real applications.

the ASR, to assess the difficulty of the task, frame-level classifi- N ASR, model-based segmentation such as [3] and [2], use
cations were performed initially. These exploratory experiments hidden Markov model (HMMs) to model the dynamic nature of

are briefly described in section 3. Section 4 delves into the solu- SPEECh- The input feature could be standard cepstral vectors (e.g. [2]),
tion based on extreme statistics, and explains the motivation and® SPecial features such as normalized cross correlations (e.g. [3]).

details of the approach. Experiments and results on two different | "€ Ségmentations are produced by a Viterbi algorithm over the
complete sequence of input vectors. This makes them unsuitable

for real time ASR applications. In certain real-time ASR tasks

Fig. 1. An illustration of a typical segmentation algorithm.

1“How May | Help You”, a task that routes telephone calls from cus-

tomers in an AT&T customer service application [1]. such as close captioning of broadcast news, it is possible to avoid
2Speech in Noisy Environments, a task designed by Naval Research€Xplicit segmentation at the front-end. Instead, the complete in-
Laboratory for research in robust ASR. put sequence is sent to the decoder, and the decoder uses partial
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back-trace of continuous recognition to put out recognized word below chance. The parameters of the classifiers were tuned using
sequences or segments [6, 7]. When the input contains backgroundhe validation set, and the optimal settings are reported under the
noise that are not seen in the training data, this method could po-corresponding frame error rate. The number of hidden units are
tentially increase ASR errors. Moreover, the need to operate a de-denoted by “nhu”, the number of mixtures in GMM by “ng”, the
coder continuously on each input makes this approach infeasiblenumber of MLP classifiers in bagging by “nb”. The second col-
for a number of applications. umn in the table shows the results of using static cepstral features.
The third column reports the results when input cepstral features
were appended with their first and second order difference. The
best results of 4.2% frame error rate was obtained using delta cep-
Unfortunately, there is no standard criterion to evaluate a segmen-strum by bagging with MLPs. Adaboost did not perform above
tation algorithm. The difficulty arises largely from the lack of a chance and the optimization routine in SVM could not handle the
clear definition for a segment. It is not clear whether linguistic amount of data in the test set. Appending larger number of neigh-
criteria should be used in defining segment boundaries or whethetboring frames to the features, or applying ASR-trained linear dis-
elimination of long inter-word silence should be the sole criterion. criminant analysis did not yield any further improvements in the
In either case, the notion of a “true” segmentation is ill-defined, classification performance.

since humans themselves are inconsistent in identifying certain

2.2. Evaluation Criterion

word boundaries. Taking a practical approach for this work, seg- Classifier Features Features

ments are assumed to be a run of words surrounded by non-speech w/o deltas w/ deltas

intervals approaching several hundred milliseconds in duration. Bayes with GMM 14.9% 7.3%
Even if a reference were provided, there is no standard met- (ng=16) (ng=20)

ric to compare segmentation algorithms. In previous work, per- NP 7 3% —

formance has been reported in terms of a number of criteria — (nhu=4)

frame-level classification error, fra.me detection and false alarm Bagging+MLP 6.4% 2%

rates, mean squared error in locating the edges of segments, and (nhu=6,nb=14)| (nhu=6,nb=16)

ASR word error rate. Usually, a combination of these measures MixOTEXpertstMLP 15_'5% _

are used to compare segmentations. Since this paper addresses
segmentation for ASR applications, word error rate (WER) mea-
sured on the resulting segments will be used as a metric for all
experiments in section 5. Additionally, since segmentation algo-
rithm aims to reduce computational load by removing non-speech
intervals from the input stream, the total number of frames passed
to the ASR decoder will also be used as a metric.

Table 1. Frame error rate for classifying frames into speech and
non-speech.

These static classifiers do not outperform algorithms based on
signal processing techniques in [9] (4.9% FER) by a margin wide
enough to warrant their use despite their deficiencies. One of the
significant disadvantages that restricts their portability is the need
for training samples of a variety of noise types. Moreover, they are

] ) o inherently not capable of utilizing the temporal properties of the
To investigate the problem of classifying speech at a frame-level, jnpyt sequence.

a few exploratory experiments were conducted. A set of popular
machine learning methods were applied. All of these methods as-
sume the input features to be independent identically distributed
processes. Although these methods have a few deficiencies, which
are mentioned later in the section, they provide complex non-linear4 1. Motivati

s . - .1. Motivation
classification boundaries for separating speech from non-speech.

To encompass a variety of noise conditions, a 2.6 hour subsetSegmentation methods such as the VAD-based methods described
of the SPINE corpus was used for the task. For creating a refer-in Section 2.1 use heuristics to estimate the noise floor to decide
ence, word-level segmentations were generated automatically usthe presence of speech. In place of applying heuristics, we take
ing a state-of-the-art ASR system and then hand-corrected at word-advantage of more rigorous techniques developed in the speech
boundaries. After excluding three transitional frames before and enhancement community where noise estimation has been studied
after a word boundary, the data was divided into 322K frames for for a number of years. However, the application of background
training, 278K frames for validation, and 270K frames for testing. noise estimation to ASR differs from that of speech enhancement

A set of classifiers were trained using the training and the val- in a number of ways. Most significantly, unlike speech enhance-
idation sets. The classifiers included — (a) Bayes classifier with ment, the reconstructed waveform is not required in ASR and la-
Gaussian Mixture Models (GMM), (b) Multi-layer perception (MLP),tency requirements are on the order of hundreds of milliseconds.
(c) Bagging with MLPs, (d) Boosting with MLPs, (e) Mixture Among the various techniques that are currently available, we
of Experts with MLPs, and (f) SVM [8]. These classifiers were chose a non-parametric estimation of noise spectrum which uses
trained and tested using “Torch”, a software that is widely used in minimum statistics. The motivation for this technique comes from
machine learning community. the following considerations. Speech and noise can be assumed

Mel-warped cepstral coefficients (MFCC) were used as fea- to be statistically independent. Focusing only on additive noise,
ture vectors, since they are popular for ASR applications. The raw both speech and noise are positive and additive in power spectrum
MFCC features were used in the form available at the ASR front- domain. Due to the highly non-stationary nature of speech, the
end, i.e., without applying any batch processing such as cepstralspeech energy in a given frequency bin is likely to fall to zero at
variance normalization and vocal tract length normalization. Cep- sometime over an interval of a second or more. When the speech
stral mean subtraction was also not performed. energy falls to zero, the signal energy is solely from the back-

The classification results are shown in the table 1. The test setground noise. Hence, by tracking the minimas in each spectral
contained 26% speech, and “~" in the table denotes performancebin over a sufficiently long interval, one can obtain statistics of the

3. FRAME-LEVEL CLASSIFICATION

4. SEGMENTATION WITH MINIMUM STATISTICS IN
STFT DOMAIN
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noise spectrum. From these statistics, the mean noise spectrumvhich the minimum is computed. Experiments reported in sec-
can be computed. To deal with non-stationary noise, the estimatetion 5 uses STFTs with a frequency resolution of 256 bins at a
can be updated continually after each input frame. In practice, theframe rate of 10ms. The minimum statistics are searched over an
time-varying power spectrum of the input signal can be approxi- interval of 1.4 seconds of past speech. Our implementation took

mated by a smoothed short-time Fourier transform (STFT). advantage of an efficient search algorithm described in [12], where
the search interval is broken into sub-intervals (12 sub-intervals in
4.2. Estimation of Noise Spectrum our case) each of which is represented by its local minimum. The

' ' . complete implementation runs in less than 2% real-time on a 1GHz
The utterance segmentation algorithm has three major components.jnux P-11l machine. In addition to these parameters, the parame-

These include estimation of the background noise spectrum, clas+ers for smoothing STFT and computing variances are identical to
sification of frames into speech or non-speech, and determinationthose used in [12].

of utterance boundary. This section focuses mainly on the back-

ground noise estimation algorithm which is performed in three

steps. First, a smoothed estimate of the STFT magnitude is com-4-4. Determination of Utterance Boundary
puted. Second, the spectral minimum statistics are tracked over o
block of STFT frames corresponding to approximately a second
of speech. Third, the average background noise statistics are esti
mated from the spectral minima using order statistics.

For each 10ms frame, the magnitude STFTk,t) is com-
puted where the indicdsandt denote frequency and time respec-
tively. The variations in the STFT are smoothed using a leaky inte-
grator to obtairl; (k, t). The coefficients of the integrater(k, t)
are continually updated for each frequency with the aim of redu
ing the average error between smoothed STFT and the raw STF
This allows the smoothed STFT to quickly rise to the level of input
speech signal.

nce the background noise spectruﬁf(,k,t), is estimated, each
input frame is classified as speech or non-speech. If the input,
Y (k,t), is higher thanyN (k, t) in at least one fifth of the spec-
tral bins, it is classified as speech. To avoid triggering the speech
detector due to noise perturbations, the constant is Sﬁt:to\/i.
Finally, a simple state machine decides the utterance boundaries.
Arrival of at least four consecutive speech frames marks the be-
c- ginning of an utterance in the state machine. If no speech frame
1is present for the next 40 frames, the state machine transitions to
mark the end of utterance. These utterance markers are expanded
by padding six additional frames, before and after the utterance.
The latency of the algorithm largely depends on how the end
Ys(k,t) = a(k,t)Ys(k,t — 1) + (1 — ok, t)Y (k,t) (1) of a segment is defined. Here, a segment is considered to have
ended if it is followed by 400ms of non-speech. By reducing the
The spectral minimund/ (k, t) is computed over a set of previous  |ookahead buffer for determining the end of segment, the latency
D smoothed STFT frames. can be reduced proportionally. It may be possible to use certain
. - spectral cues to determine the end of an utterance or a segment.
M(k,t) = min Y.(k?) ) Further, the degrees of freedom provided by the STFT domain can
be used more effectively to remove new noise types that can be
This spectral minimum is an example of extreme statistics, and itis localized in STFT domain.
lower than the mean of the nois®,(k, t). Fortunately, this can be
corrected by applying a bias facta¥,(k,t) = B.(k,t)M(k,t),
where the biasB.(k,t) can be computed using asymptotic ap-

proximations [10, 11]. As it turns out, the bias for each spectral . . . -
bin can be approximated as function of its “equivalent degrees The new segmentation algorithm based on minimum statistics was

= N tested on two significantly different tasks — (a) SPINE-2 test set,
of f[eedom @k, 1) aqd D [12], as Be(k,t) ~ 1+ 2.(D B and (b) a subsetgof HMIH); task, an internal (d;tabase of real cus-
1)/Q(k,t). The quantlty,Q(kA, t), depends on the variance of tomer interactions [1]
current estimate qf the noisk/ (k, ¢) and the smopthed STFT, The SPINE task is a collection of speech from pairs of speak-
Q(k,t) = 2var{N(k,t)}/var{Y:(k,t)}. The variance of the  ors participating in a cooperative task. Participants were placed
smoothed STFT is computed using a leaky integrator and updated, separate sound booths and subjected to one of the many back-
after each input frame is received. ) ground noise types, which included noise from F16, E3A AWACS,
The original algorithm applies the bias equally to the speech pejicopter, armored vehicle such as bradley and hummer. The
and non-speech signal. Since the bias is computed as a functiorsp|NE-2 tests contain about an hour and three hours of speech
of the input variancg over an inter_val, it is likely to have a higher_ in development (SPINE-2 Dev) and evaluation (SPINE-2 Eval) set
value when speech is present. This causes an overshoot of the biggspectively. The evaluation test set has eight different background
on steep spectral minimas which are buried in speech. This canpgise conditions, four of which are absent in the training data.
be reduced significantly by modifying the bias/; (k. t) using The input consists of a continuous signal from a conversation-
a sigmoid function of short-term “a posteriori” SNR, as given  gjde. A state-of-the-art system was developed for testing on the
below. SPINE task. It uses PLP input features, class-based trigram lan-
3(R—3)\—1 3(3—R)\—1 uage model and applies a variety of compensations used in re-
Bes(k;t) = Be(k, t)(1+exp®) 7+ (14 exp®@1) (3) geargch systems — cggstral meant)rqormaliz;tion, cepstral variance
This function does not effect low SNR noise, but clamps the bias Normalization, vocal tract normalization, constrained model-space
to unity when speech is present, thus improves the ability of the @daptation, speaker-adapted training, and maximum likelihood lin-

algorithm to track the minima present among speech frames. ear regression based speaker adaptation. In addition, the input fea-
tures were transformed using linear discriminant analysis and the

transformation associated with semi-tied covariance approxima-
tion.

In the minimum statistics based approach, the computational load  The HMIHY task contains response from customer to the open-
is impacted most by the resolution of STFT and the interval over ended prompt, “This is AT&T, how may | help you?”. Compared

5. EXPERIMENTS & RESULTS

4.3. Parameters
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to the SPINE task, the HMIHY subset has lower amounts of back- ing 34% fewer frames to the decoder for processing.
ground noise, but has larger variations in signal power. The subset

was chosen to have at least 4s long response from users, and to 7. ACKNOWLEDGMENTS
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