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Abstract 

 
Speech endpoint detection continues to be a challenging 
problem particularly for speech recognition in noisy 
environments.  In this paper, we address this problem 
from the point of view of fractals and chaos. By studying 
recurrence time statistics for chaotic systems, we find 
the nonstationarity and transience in a time series are 
due to non-recurrence and lack of fractal structure in the 
signal. A Poincaré recurrence metric is designed to 
determine the stationarity change for endpoint detection. 
We consider the small area of beginning and ending of 
an utterance as transient. For nonstationary and transient 
time series, we expect the average number of Poincaré 
recurrence points for each given small block will be 
different for different blocks of data subsets. However, 
the average number of recurrence points will stay nearly 
constant. The resulting recurrence point variability 
algorithm is shown to be well suited for the detection of 
state transitions in a time series and is very robust for 
different types of noise, especially for low SNR. 
 

1. INTRODUCTION 
 
The detection of the endpoints of an utterance is required 
in many speech applications. Accurate endpoint 
detection is crucial for good speech recognition accuracy. 
The most popular existing detection method is the 
simple energy detector which performs adequately for 
clean speech. Problems arise in noisy environments for 
low energy phonemes (some fricatives and plosives, for 
example) at the endpoints. A major source of error in 
isolated word speech recognition systems is the 
inaccurate detection of the beginning and ending 
boundaries of test and training patterns. The 
performance of existing endpoint detection severely 
degrades in noisy environments. Generally speaking, the 
incorrect determination of endpoints for an utterance 
results in at least two negative effects [8]: 
 

1. Recognition errors are introduced; 
2. Computation increase. 

 

The types of errors for energy-based detectors 
introduced by poor SNR include [7]: 
 

1. Missing the leading or trailing low-energy 
sounds such as fricatives; 

2. Classifying clicks, pops and other background 
noise as part of speech due to their high energy 
content; 

3. Falsely classifying background noise as speech 
while missing the actual speech. This is 
particularly true when the background noise 
consists of speech from other speakers, such as 
in babble noise. 

 
All of the above errors in turn reflect negatively on the 
overall performance of the recognition system. To deal 
with these problems, many advanced algorithms have 
been proposed during the past decades [3, 4, 5, 6, 7, 8, 9]. 
Some of these algorithms combine several existing 
good-merit features [7, 8, 9] while others utilize new 
features [3, 4, 5, 6]. Although better results are achieved, 
the performance of all these algorithms severely 
degrades as the SNR decreases. 
 
In this paper, we propose a new algorithm based on the 
theory of fractals and chaos, which is widely used in 
linear and nonlinear time series analysis techniques. 
Here, the average number of Poincaré recurrence points 
(defined in the next section) for each designed sliding 
block for the waveform is considered as a new feature [1, 
2]. After the characteristic curve is drawn, an adaptive 
threshold is set to determine the correct endpoints based 
on simple signal modeling. 
 
The proposed algorithm provides several advantages:  
 

1. High accuracy (see results in Section 4); 
2. Performance does not degrade too severely with 

increasing levels of noise. 
3. There is no need to estimate the background 

noise as is commonly required for other 
endpoint detection algorithms. 
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The paper is organized as follows. The new algorithm is 
derived in Section 2 and the whole system design is 
proposed in Section 3. In Section 4, algorithm 
performance is quantified under different levels and 
types of noise backgrounds. Finally, our conclusions are 
summarized in Section 5. 
 

2. NEW ALGORITHM DESCRIPTION 
 
In dynamics, most methods for detection of non-
stationarity are based on quantifying features of nearest 
neighbors. The nearest neighbors are also called 
Poincaré recurrence points, and are further divided into 
two classes, with two types of recurrence times. Given a 
scalar time series {x(i), i = 1, 2, …}, we first construct 
vectors of the form: Xi = [{x(i), x(i+L), …, x(i+(m-1)L)}], 
with m being the embedding dimension and L the delay 
time. {Xi, i = 1, 2, .., N} then represents a certain 
trajectory in m-dimensional space. In this paper, we shall 
always normalize the time series into the unit interval [0, 
1] before subsequent analysis. Next, we arbitrarily 
choose a reference point X0 on the reconstructed 
trajectory, and consider recurrences to its neighborhood 
of radius r: }:{)( 00 rXXXXBr ≤−=
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. The subset of the 
trajectory that belongs to Br(X0) is denoted by S1 = {Xt1, 
Xt2, …, Xti, …}. The elements of the set S1 are the 
Poincaré recurrence points. Using S1, we define the 
Poincaré recurrence time as the element of {T1(i) = ti+1-ti, 
i = 1, 2, …}. For later convenience, we call the elements 
of {T1(i)} the recurrence times of the first type.  
Sometime we may have T1(i) = 1 (for continuous-time 
systems, this means 1 unit of sampling time), for some i. 
This corresponds to both Xti and Xti+1 belonging to S1. 
For deterministic continuous-time systems with fixed 
sampling time, if the radius r of Br(X0) is not too small, 
then we can have a sequence such as Xti, Xti+1, …, Xti+k 
belonging to S1, with k . Figure (1) shows this 
schematically. We call the points Xti+1, …, Xti+k 
(excluding Xti) “sojourn points”. When , each such 
sequence of points effectively represents a one-
dimensional (1D) set. For maps or continuous systems 
with small r, the number of sojourn points are negligible. 
Hence, sojourn points form a 0D (empty or almost 
empty) set. We now remove these points from S
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2 recurrence points of the second type, and T2(i) 
recurrence times of the second type. 
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Figure 1: A schematic showing the recurrence points of 

the second type (solid circles) and the sojourn points 
(open circles) in Br(X0) [1, 2] 

 
For dissipative chaotic systems, we have shown that 
with fixed r, the distribution of {T2(i)} is exponential, 
due to the memoryless property of chaotic systems, and 
the mean of T1(i) and T2(i) are both related to the 
information dimension d1 of the attractor by simple 
scaling laws:  

1)(1
drrT −∝  

'
1)(2

drrT −∝  
with d1’ = d1 for discrete maps and continuous-time 
systems with small r (when the sojourn points form a 0D 
set), and d1’ = d1-1 for continuous-time systems with 
large r (when the sojourn points form a 1D set). For a 
periodic signal, T2(i), this simply provides an estimate of 
the periodicity of the signal. Based on an observation 
that, due to non-stationarity, successive recurrence times 
of the second type will, on average, be changing with 
time. So we design the following algorithm to detect 
nonstationarity and state transitions. 
 
For the given utterance, partition a long-time series into 
overlapping blocks of data sets of short length k, and 
compute )(2 rT  for each data subset. The length of the 
subset is chosen to be short enough so that non-
stationarity is not a problem for the subset. At the same 
time, the subset is long enough so that )(2 rT  can be 
reliably estimated. Usually, overlapping blocks are 
preferred so that bifurcation can be more accurately 
located. For nonstationary and transient endpoint area, 
we show that T2(r) is different for different blocks of 
data subsets. 
 

3. SYSTEM DESIGN 
 
 

3.1 Pre-emphasizing the Input Signal 
 
The input signal is first filtered with a bandpass filter 
from 250Hz to 3750Hz  (FIR filter of order 50).   This 
band, very similar to the band of telephone lines, is 
generally considered to contain the most overall speech 
information. Thus this type of fixed filtering is 
reasonably effective for improving the signal to noise 
ratio of speech to non-speech.    
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3.2 Calculate the Characteristic Curve of )(2 rT  

 
From the beginning of an utterance, it is partitioned into 
overlapping blocks. Here, we set each block to contain 
1000 sample points with a 100-sample overlap. Based on 
the parameter introduction in Section 2, the embedding 
dimension m is set to 4 and the delay time L is set to 50 
sample points. For each available computational sample 
point, we obtain a single T2(r). Then )(2 rT for one block 
is calculated by taking the average of all the single T2(r) 
in that block. It is easier to understand this step by 
comparing the standard method of block-based energy 
curve. 
 

3.3 Crudely determine the transient area 
 
After we get the characteristic curve, we first set two 
hard thresholds Thresh1 and Thresh2 for the first 
beginning and final ending, respectively. Subsequently, 
two corresponding windows (Window1 and Window2) 
are defined. Here, we consider the portion of the 
utterance after Window1 and before Window2 must be 
voiced. Then we average the value of all the windows 
from the first to Window1 to get the base line for the 
beginning area and similarly for the ending area. 
 

3.4 Final Endpoint Detection 
 
In the beginning area, we search forward to the end from 
the first window, if there exists a peak or valley, whose 
difference with the base line is greater than a given 
Thresh3, we consider it is the beginning window. 
Similarly, we search backwards to the beginning from 
the last window. Then we will get the ending window by 
comparing with Thresh4. Looking back to the original 
waveform, we define the center of the located windows 
as the true endpoints. Figure (2) shows an explicit 

Figure 2: Top, the clean spee

example for the word “zero”. 

ch; Middle, white noise 
c  

4. EXPERIMENTS AND RESULTS 
 

4.1 Database and Noise Addition 
 

he experiments have been run on a total of 600 isolated 

here are two possible ways to evaluate the correctness 

4.2 Experimental results 
 

igures (3), (4) and (5) show the system performance by 

5. CONCLUSIONS 
 

he new algorithm for isolated words endpoint detection 

ase at 5dB; Bottom, the recurrence characteristic curve
 

T
English digits (6 men and 6 women) from the TI46 
database. Each speaker pronounced digits zero to nine 
five times. All of the utterances were manually labeled 
before the experiments. The sampling rate of the 
database is 12500 Hz. For generating the noisy speech 
files, we used different types of noise available from the 
Signal Processing Information Base (SPIB) collected by 
Rice University [10]. Three sorts of noise are considered 
in this paper: white noise, pink noise and babble noise. 
The sampling rate of the noise database is 19980 Hz but 
was downsampled to 12500 Hz to match the TI46 
database. To set up the noisy speech database for testing, 
we added the prepared noisy signals to the recorded 
speech signals with different SNRs including 5, 10, 15 
and 20 dB. The speech waveform and the noise 
waveform are each calibrated and the noise segment is 
randomly selected from the noise file. 
 
T
of an endpoint detection algorithm: one is to compare 
the detected results to hand labeled ones, and the other is 
to pass the detected words through a speech recognizer 
and compare the recognition rates. Here, we choose the 
first option for the most straightforward comparison. We 
consider that an endpoint is lost if the error is higher 
than 75 ms for the beginning and 100 ms for the end. 
 

F
providing different noise source of white, pink and 
babble and comparing the algorithm performance with 
that of the pure energy endpoint detector. The plots show 
the accuracy in three components for each algorithm: 
beginning, ending and overall performance. We see that 
the new algorithm’s performance is significantly better 
than the pure energy detector. The new algorithm is also 
not sensitive to the degradation of noise, even in the 
lower SNR, though the performance degraded much 
below 10 dB. For the white noise case, the accuracy 
increases from 53.1% to 85.3% at 5 dB, while increasing 
from 39.3% to 82.3% and from 36.8% to 77.3% for the 
pink noise and babble noise at 5 dB, respectively. 
 

T
has been proposed in this paper. This algorithm 
introduces a new idea from fractal and chaos, to achieve 
excellent overall results. In particular this method is able 
to reliably detect the onset and offset of speech even for 
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weak beginnings and endings. The major benefit of the 
algorithm is that the endpoint can be detected in the 
presence of different kinds of noise that have much 
greater energy than the initial and final speech segments. 
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gure 3: White noise case in terms of SNR: 5-20dB 
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gure 4: Pink noise case in term of SNR: 5-20dB 
 

gure 5: Babble noise case in term of SNR: 5-20dB 
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