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Abstract

Speech endpoint detection continues to be a challenging
problem particularly for speech recognition in noisy
environments. In this paper, we address this problem
from the point of view of fractals and chaos. By studying
recurrence time statistics for chaotic systems, we find
the nonstationarity and transience in a time series are
due to non-recurrence and lack of fractal structure in the
signal. A Poincaré recurrence metric is designed to
determine the stationarity change for endpoint detection.
We consider the small area of beginning and ending of
an utterance as transient. For nonstationary and transient
time series, we expect the average number of Poincaré
recurrence points for each given small block will be
different for different blocks of data subsets. However,
the average number of recurrence points will stay nearly
constant. The resulting recurrence point variability
algorithm is shown to be well suited for the detection of
state transitions in a time series and is very robust for
different types of noise, especially for low SNR.

1. INTRODUCTION

The detection of the endpoints of an utterance is required
in many speech applications. Accurate endpoint

detection is crucial for good speech recognition accuracy.

The most popular existing detection method is the
simple energy detector which performs adequately for
clean speech. Problems arise in noisy environments for
low energy phonemes (some fricatives and plosives, for
example) at the endpoints. A major source of error in
isolated word speech recognition systems is the
inaccurate detection of the beginning and ending
boundaries of test and training patterns. The
performance of existing endpoint detection severely
degrades in noisy environments. Generally speaking, the
incorrect determination of endpoints for an utterance
results in at least two negative effects [8]:

1. Recognition errors are introduced;
2. Computation increase.
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The types of errors for energy-based detectors
introduced by poor SNR include [7]:

1. Missing the leading or trailing low-energy
sounds such as fricatives;

2. Classifying clicks, pops and other background
noise as part of speech due to their high energy
content;

3. Falsely classifying background noise as speech
while missing the actual speech. This is
particularly true when the background noise
consists of speech from other speakers, such as
in babble noise.

All of the above errors in turn reflect negatively on the
overall performance of the recognition system. To deal
with these problems, many advanced algorithms have
been proposed during the past decades [3, 4, 5, 6, 7, 8, 9].
Some of these algorithms combine several existing
good-merit features [7, 8, 9] while others utilize new
features [3, 4, 5, 6]. Although better results are achieved,
the performance of all these algorithms severely
degrades as the SNR decreases.

In this paper, we propose a new algorithm based on the
theory of fractals and chaos, which is widely used in
linear and nonlinear time series analysis techniques.
Here, the average number of Poincaré recurrence points
(defined in the next section) for each designed sliding
block for the waveform is considered as a new feature [1,
2]. After the characteristic curve is drawn, an adaptive
threshold is set to determine the correct endpoints based
on simple signal modeling.

The proposed algorithm provides several advantages:

1. High accuracy (see results in Section 4);

2. Performance does not degrade too severely with
increasing levels of noise.

3. There is no need to estimate the background
noise as is commonly required for other
endpoint detection algorithms.
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The paper is organized as follows. The new algorithm is
derived in Section 2 and the whole system design is
proposed in Section 3. In Section 4, algorithm
performance is quantified under different levels and
types of noise backgrounds. Finally, our conclusions are
summarized in Section 5.

2. NEW ALGORITHM DESCRIPTION

In dynamics, most methods for detection of non-
stationarity are based on quantifying features of nearest
neighbors. The nearest neighbors are also called
Poincaré recurrence points, and are further divided into
two classes, with two types of recurrence times. Given a
scalar time series {x(i), i = 1, 2, ...}, we first construct
vectors of the form: X; = [{x(i), x(i+L), ..., x(i+(m-1)L)}],
with m being the embedding dimension and L the delay
time. {X;, i = I, 2, .., N} then represents a certain
trajectory in m-dimensional space. In this paper, we shall
always normalize the time series into the unit interval [0,
1] before subsequent analysis. Next, we arbitrarily
choose a reference point X, on the reconstructed
trajectory, and consider recurrences to its neighborhood
of radius 7= B,(Xg) = {X :||X — X;|| <} . The subset of the

trajectory that belongs to B,(Xj) is denoted by S; = {X;;,
Xy .., Xi ...}. The elements of the set S; are the
Poincaré recurrence points. Using S;, we define the
Poincaré recurrence time as the element of {7’(i) = t;+,-t,,
i=1,2,...}. For later convenience, we call the elements
of {7T,(i)} the recurrence times of the first type.
Sometime we may have T;(7) = I (for continuous-time
systems, this means 1 unit of sampling time), for some i.
This corresponds to both X,; and X;.; belonging to S;.
For deterministic continuous-time systems with fixed
sampling time, if the radius r of B,(X}) is not too small,
then we can have a sequence such as Xy, Xy ..., Xk
belonging to S;, with & >>1. Figure (1) shows this
schematically. We call the points Xyiy ..., Xy
(excluding X)) “sojourn points”. When k >>1, each such
sequence of points effectively represents a one-
dimensional (1D) set. For maps or continuous systems
with small 7, the number of sojourn points are negligible.
Hence, sojourn points form a 0D (empty or almost
empty) set. We now remove these points from S; by
Szz{Xt{,Xt%,...,Xt}} , which in turn defines a time

sequence {T,(i) = f;,; —£;,i =12,...} . We call the elements

of S, recurrence points of the second type, and T(i)
recurrence times of the second type.
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Figure 1: A schematic showing the recurrence points of
the second type (solid circles) and the sojourn points
(open circles) in B,(Xy) [1, 2]

For dissipative chaotic systems, we have shown that
with fixed r, the distribution of {7,(7)} is exponential,
due to the memoryless property of chaotic systems, and
the mean of 7;(i) and T,(i) are both related to the
information dimension d; of the attractor by simple
scaling laws:

ﬂ(r) o

;2 (r) < yh

with d;,” = d; for discrete maps and continuous-time
systems with small 7 (when the sojourn points form a 0D
set), and d,” = d;-1 for continuous-time systems with
large r (when the sojourn points form a 1D set). For a
periodic signal, 75(i), this simply provides an estimate of
the periodicity of the signal. Based on an observation
that, due to non-stationarity, successive recurrence times
of the second type will, on average, be changing with
time. So we design the following algorithm to detect
nonstationarity and state transitions.

For the given utterance, partition a long-time series into
overlapping blocks of data sets of short length k, and

compute T2(r) for each data subset. The length of the

subset is chosen to be short enough so that non-
stationarity is not a problem for the subset. At the same

time, the subset is long enough so that T2(r) can be
reliably estimated. Usually, overlapping blocks are
preferred so that bifurcation can be more accurately
located. For nonstationary and transient endpoint area,
we show that Ty(r) is different for different blocks of
data subsets.

3. SYSTEM DESIGN

3.1 Pre-emphasizing the Input Signal

The input signal is first filtered with a bandpass filter
from 250Hz to 3750Hz (FIR filter of order 50). This
band, very similar to the band of telephone lines, is
generally considered to contain the most overall speech
information. Thus this type of fixed filtering is
reasonably effective for improving the signal to noise
ratio of speech to non-speech.




3.2 Calculate the Characteristic Curve of T2(r)

From the beginning of an utterance, it is partitioned into
overlapping blocks. Here, we set each block to contain
1000 sample points with a 100-sample overlap. Based on
the parameter introduction in Section 2, the embedding
dimension m is set to 4 and the delay time L is set to 50
sample points. For each available computational sample
point, we obtain a single T»(r). Then T2(r) for one block
is calculated by taking the average of all the single 7(7)
in that block. It is easier to understand this step by

comparing the standard method of block-based energy
curve.

3.3 Crudely determine the transient area

After we get the characteristic curve, we first set two
hard thresholds Threshl and Thresh2 for the first
beginning and final ending, respectively. Subsequently,
two corresponding windows (Windowl and Window?2)
are defined. Here, we consider the portion of the
utterance after Window1 and before Window2 must be
voiced. Then we average the value of all the windows
from the first to Window1 to get the base line for the
beginning area and similarly for the ending area.

3.4 Final Endpoint Detection

In the beginning area, we search forward to the end from
the first window, if there exists a peak or valley, whose
difference with the base line is greater than a given
Thresh3, we consider it is the beginning window.
Similarly, we search backwards to the beginning from
the last window. Then we will get the ending window by
comparing with Thresh4. Looking back to the original
waveform, we define the center of the located windows
as the true endpoints. Figure (2) shows an explicit
example for the word “zero”.
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Figure 2: Top, the clean speech; Middle, white noise
case at 5dB; Bottom, the recurrence characteristic curve
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4. EXPERIMENTS AND RESULTS
4.1 Database and Noise Addition

The experiments have been run on a total of 600 isolated
English digits (6 men and 6 women) from the TI46
database. Each speaker pronounced digits zero to nine
five times. All of the utterances were manually labeled
before the experiments. The sampling rate of the
database is 12500 Hz. For generating the noisy speech
files, we used different types of noise available from the
Signal Processing Information Base (SPIB) collected by
Rice University [10]. Three sorts of noise are considered
in this paper: white noise, pink noise and babble noise.
The sampling rate of the noise database is 19980 Hz but
was downsampled to 12500 Hz to match the TI46
database. To set up the noisy speech database for testing,
we added the prepared noisy signals to the recorded
speech signals with different SNRs including 5, 10, 15
and 20 dB. The speech waveform and the noise
waveform are each calibrated and the noise segment is
randomly selected from the noise file.

There are two possible ways to evaluate the correctness
of an endpoint detection algorithm: one is to compare
the detected results to hand labeled ones, and the other is
to pass the detected words through a speech recognizer
and compare the recognition rates. Here, we choose the
first option for the most straightforward comparison. We
consider that an endpoint is lost if the error is higher
than 75 ms for the beginning and 100 ms for the end.

4.2 Experimental results

Figures (3), (4) and (5) show the system performance by
providing different noise source of white, pink and
babble and comparing the algorithm performance with
that of the pure energy endpoint detector. The plots show
the accuracy in three components for each algorithm:
beginning, ending and overall performance. We see that
the new algorithm’s performance is significantly better
than the pure energy detector. The new algorithm is also
not sensitive to the degradation of noise, even in the
lower SNR, though the performance degraded much
below 10 dB. For the white noise case, the accuracy
increases from 53.1% to 85.3% at 5 dB, while increasing
from 39.3% to 82.3% and from 36.8% to 77.3% for the
pink noise and babble noise at 5 dB, respectively.

5. CONCLUSIONS

The new algorithm for isolated words endpoint detection
has been proposed in this paper. This algorithm
introduces a new idea from fractal and chaos, to achieve
excellent overall results. In particular this method is able
to reliably detect the onset and offset of speech even for




weak beginnings and endings. The major benefit of the
algorithm is that the endpoint can be detected in the
presence of different kinds of noise that have much
greater energy than the initial and final speech segments.
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Detection Accuracy in %

Figure 3: White noise case in terms of SNR: 5-20dB

Detection Accuracy in %

Figure 4: Pink noise case in term of SNR: 5-20dB
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Figure 5: Babble noise case in term of SNR: 5-20dB
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