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ABSTRACT

This paper focuses on the recognition of noisy speech. We
show that the decoding of a noisy speech waveform can be facil-
itated if the recognizer has explicit knowledge of where it should
hypothesize speech phones, and where it should map the acoustics
to non-speech phones.

We build a speech/non-speech detector and use its output as
an additional front-end feature. We show that by appropriately
weighting the contribution of this feature in the decoder and by
modifying the acoustic models accordingly, we can penalize speech/
non-speech confusions and consequently reduce the recognition
error rate.

This approach gives a 12% overall error rate reduction on a
wide variety of recognition tasks and noise characteristics without
degrading performance on clean test data. A simple extension of
the approach boosts recognition improvements on noisy test sets
to 14% overall.

1. INTRODUCTION

Recognizing speech in the presence of background noise is a no-
torioudly difficult problem for which many approaches have been
proposed in the literature, see eg. [1]. In this paper, we show
that a surprisingly high percentage of frames aligned to an incor-
rect model by the recognizer are speech frames mapped to non-
speech models or vice-versa, as opposed to speech frames being
mapped to the wrong speech models. This observation prompts us
to build an accurate speech/non-speech (SpNsp) detector, and to
use its output to modify the recognition log-likelihood function in
such away asto penalize SpNsp confusions by the decoder.

This approach is to be contrasted with recent work performed
in the Aurora community, where several groups used a SpNsp de-
tector (“voice activity detector”) to label frames as speech or non-
speech, and drop the non-speech frames during recognition (see
eg. [2, 3, 4]). This has the effect of eliminating speech insertion
errors in long trailing silence and noise segments, and of signifi-
cantly reducing error rates on the Aurora databases.

The test data considered in this work is tightly endpointed,
so we don’t expect frame dropping to help any further. However,
in spite of its endpointing, the data still contains non-speech seg-
ments, for example all the short pauses that occur between words.
For those frames, we influence the recogni zer to correctly hypothe-
size non-speech phones. More importantly, our approach also tries
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to prevent the recognizer from hypothesizing non-speech phones
during segments labeled as speech by the detector, which frame
dropping cannot achieve.

This work also relates to a body of literature concerned with
the devel opement of linguistically motivated front-ends (seee.g. [5,
6, 7]). In these studies, a probability of speech is often part of the
proposed front-end. Our approach differs from these in its use of
the SpNsp detector to directly affect the recognition search.

The SpNsp detector developed in this work consists of a neu-
ra network whose inputs are a series of knowledge-based features
targetted at theidentification of specific speech classes (e.g. voiced
sounds, nasals). These features are combined in adata-driven fash-
ion to estimate the probability that the current frame is speech.
This probability estimate (as opposed to a 0/1 decision in frame
dropping) isthen used to softly penalize the decoder for misalign-
ing frames to the wrong phone classes.

2. WHY FOCUSON SPEECH/NON-SPEECH?

In an error-analysis experiment, we considered a set of waveforms
with their recognition hypotheses (Hyp), word transcriptions (Ref),
and the phone-level segmentations of both. We collected statis-
tics on the frame-level errors, i.e. frames where the Hyp and Ref
phones differ. Therelative importance of each type of error issum-
marized in Table 1.

[Nsp—>Sp[Sp—Nsp [Nsp—Nsp [ Sp— Sp ]
[ 1% | 4% | 5% | 31% |

Table 1. Distribution of Frame Error Typesin a Typical Recogni-
tion Run.
Table 1 shows that

1. Morethan half the frame-level errors are SpnSp confusions
(17 + 47 = 64% of al frame errors)

2. Speech/Speech confusion does not dominate the errors as
we might have expected (31% of all frame errors).

Of course, not al frame errors correspond to recognition errors,
but a majority do, and this indicates that SpNsp distinctions are
not well covered by the baseline recognition system.
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3. SYSTEM ARCHITECTURE

Figure 1 illustrates the proposed architecture. A SpNsp detector
estimates the probability that the current frame is speech. This
probability is scaled by a constant d (we'll discuss the purpose
of this constant shortly), and appended to the baseline front-end
feature vector.

> Std Front-End

= Feat. ExtractorH SpNsp Detector

[
i
Augmented
Ac. Models

Fig. 1. Architecture of the Proposed System.

The augmented feature vector is then fed into a standard 3-
state triphone hidden Markov models recognizer, with a Genone-
based state clustering mechanism [8], and diagonal covariance ma-
trices.

3.1. Modification of the Acoustic Models

Clearly, the acoustic models used for recognition must be modified
to account for the additional SpNsp feature. A straightforward
solution would be to retrain the models with the augmented front-
end. Instead, we chose to modify existing V-dimensional models
by artificially adding an (N 4+ 1)t* dimension to al the Gaussians
in the models.

We realize this by tying along the (IV 4 1)** dimension all the
Gaussians that model speech phones, and all the Gaussians that
model non-speech phones. The non-speech Gaussians's parame-
tersare set to (unsp, o) = (0,1), and the speech Gaussians's
parameters are set to (usp, 0%,) = (d, 1), i.e. the speech and non-
speech models are placed at a distance d from each other along the
new dimension.

The use of fixed “binary” models for the (IV + 1)%* featureis
motivated by two reasons. Firgt, it simplifies our experimentation
with the SpNsp detector: we can modify it any time without hav-
ing to retrain the acoustic models. Second, it is compatible with
the discriminative training of the detector (see Section 4.2) whose
output is a posterior probability comprised between 0 and 1 (or 0
and d after rescaling).

3.2. Effect of the Additional Feature on the Log-Likelihood
Function

The adjunction of an (N + 1) feature in the front-end modifies
the decoding log-likelihood function according to

LogLik(NN + 1) = LogLik(NN) + AdditionalCost @

Assuming a perfect SpNsp detector whose output, Ps,, is0
or 1 (or 0/d after scaling), a speech frame scored against a speech
model has an Additional Cost equal to (Ps, — psp)? /0%, = (d —
d)?/1 = 0. The same speech frame scored against a non-speech
model has an AdditionalCost of (Ps, — pnsp)®/oke, = (d —
0)2/1 = d*. Likewise a non-speech frame has a cost of 0 when
scored against a non-speech model, and a cost of d® when scored
against a speech model. The adjunction of the Additional Cost ef-
fectively penalizes SpNsp confusions during the decoding process.

The value of d can be optimized to balance the contribution
of SpNsp to other phone confusions: with d = 0, there is no Sp-
Nsp penalty, but as d increases, SpNsp errors start dominating the
overall cost function. By performing a sweep over d and tracking
the recognition performance, one can choose the optimal weight,
d, for agiven SpNsp detector, again without any model retraining.

This explicit scaling of the SpNsp feature prevents it from be-
ing overwhelmed by the other N features in the log-likelihood
function, a property that isnot shared by a Karhunen-L oeve decor-
relation of the feature vector [6, 7].

4. SPEECH/NON-SPEECH DETECTION

The previous section described how a SpNsp detector can be used
to impose a soft SpNsp segmentation of the waveform on the de-
coder. This section instead describes how we build the detector.
The general approach isthat of defining knowledge-based features,
and assembling them in an automatic data-driven fashion. For ex-
ample, we derive features targetted at the identification of voiced
or fricative sounds, but rather than explicitely trying to mark each
frame as voiced or fricative (and therefore speech as opposed to
non-speech), we combine these features with a neural network
which we optimize to distinguish between speech and non-speech,
ignoring the original intended purpose of each feature. This gives
more flexibility to the feature combiner to use multiple cuesto de-
riveitsfinal estimate.

4.1. Speech/Non-Speech Features
The SpNsp features used in this work include:

e Distance to \oicing:

A standard pitch tracker estimates the voicing level pro-
file of the waveform. Regions above a given threshold are
marked as voiced. The distance to voicing is defined as the
distance between the current frame and the closest voiced
frame. A distance of zero indicates that the frameis voiced,
and thus speech. A large distance hints that the frame is
probably non-speech since human speech typically doesn’t
contain long segments with no voicing.

e Frame Energy:

The energy of aframeisarough indicator of its SpNsp sta-
tus (waveforms are amplitude-normalized prior to feature
extraction).

e \oicing Level
This helps identifying as speech voiced frames whose voic-
ing level may have been too low to exceed the voicing thresh-
old.

e Spectral Tilt
The spectral tilt is defined as the ratio of high- to low-
frequency energies. Fricatives typically display a larger
spectra tilt than steady-state noises such as car noise.

e Various combinations of the above features and their refer-
encing w.r.t. the background noise level.

4.2. Neural Network Feature Combiner

For each frame of data, the above features are evaluated and in-
putted in a 3-layer feed-forward neural network with 400 hidden
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nodes. The neura network is trained on a database of 13K sen-
tences that have no overlap with the test data, but that display
roughly the same distribution of acoustic characteristics (noisetypes
and levels, communication channels, etc). The network is trained
to minimize the cross-entropy between its outputs and the known
status of the training frames: speech or non-speech.

5. RECOGNITION EXPERIMENTS

The baseline system used in these experiments is a general pur-
pose triphone-state HMM recognizer, with a 27-dimensiona mel-
filterbank cepstral coefficient front-end, cepstral mean subtraction
and standard noise reduction. The baseline acoustic models are
trained with alarge amount of phonetically rich, acousticaly var-
ied, telephone speech.

We use awide variety of test setsto exemplify different acous-
tic conditions, grammars, and applications. For conciseness, we
group these into four databases as described below.

e CarNoisy

This database contains speech collected handsfree in a car,
over the cellular network. It is generally very noisy. It con-
tains about 4K utterances from 300 speakers, and spans 2
grammars. universal commands and digit or alphadigit ID
numbers.

e CarNoiseSup

This database also consists of handsfree in the car cellular
speech, but an aggressive noise suppression processing has
been applied by the handsfree kit. As aresult, thereis lit-
tle perceivable background noise, but the speech segments
remain noisy. The data also displays short, loud, mechani-
cal noises. The database contains 9K utterances from 100
speakers, and combines 3 grammars. name and number di-
aing, stock quotes, and travel arrangements with dates and
city/state destinations.

e CarMultiMic

This data was collected handsfree in the car, with different
microphones and microphone placements. The background
noise variesin level and is essentially steady. The database
contains 15K utterances. The grammar allowsfor name and
number dialing, and traffic and weather report querries.

e CleanHandH

This database contains a collection of clean landline and
cellular telephone test sets assembled from a large number
of spesakers. It combines many test sets spanning a variety
of small and large vocabulary grammars. It was used to
control the performance of the approach on data that is not
affected by noise.

All the error rates reported below are natural language error
rates (NLERR), and are thus measured at the string level as op-
posed to the word level.

5.1. Perfect Knowledge Experiments

The experiments reported in this section aim at answering the ques-
tion: “What recognition gain can we expect with the proposed ap-
proach, assuming we had a perfect SpNsp detector?’.

To answer this question, we performed a set of recognition
experiments where the SpNsp feature was obtained for each frame

of test data by looking up the forced alignment of the waveform to
itsreference word string, and defining the SpNsp feature as 0 if the
frame was aligned to a non-speech phone, and d otherwise. The
experiment was repeated for different values of d. The average
recognition error rate over the three noisy test databases is shown
inFig. 2.
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Fig. 2. Average NLERR over al the noisy test sets as a function
of the model distance d, assuming perfect SpNsp knowledge.

Fig. 2 shows that the error rate significantly decreases as the
distance between the speech and non-speech models, d, increases
(i.e. ahigher penalty is imposed on the decoder for SpNsp con-
fusions), up to an optimal value at d = 8. Passed that value, the
error rate starts increasing slowly, probably because of search er-
rors. The best NLERR improvement isroughly 30%.

Table 2 shows the breakdown of error rates for the different
databases. The improvements are roughly similar for all condi-
tions, including the clean test sets.

Baseline | w/ Perfect | Rel. NLERR
SpNsp Improv.
CarNoisy 18.3 10.2 44
CarNoiseSup 25.3 17.2 32
CarMultiMic 30.1 21.7 28
CleanHandH 9.4 7.1 26

Table 2. NLERR with the baseline and SpNsp augmented recog-
nition systems, assuming perfect SpNsp detection.

Though these numbers are encouraging, it should be antici-
pated that the gainsreported in Table 2 are significantly higher than
what we may obtain with areal SpNsp detector: the detector will
not be perfect, and its output will take the form of a probability to
model the uncertainty we have in the SpNsp estimate. Moreover,
the “truth” in these experiments comes from forced alignments,
which essentially “do what the recognizer wantsto see”, i.e. match
its modeling and alignment idiosyncrasies.

5.2. Recognition Experimentswith the SpNsp Detector

This section summarizes the results we obtained with the neural
net SpNsp detector.

Figure 3 showsthe average error rate over the noisy test sets, as
afunction of the free parameter, d. The overall NLERR improve-
ment is 12%, compared to 30% in the perfect SpNsp experiments.

| - 426




Also, the optimal value of d decreased from 8 to 2.5, indicating
that the recognizer can trust the neura net detector significantly
less that the perfect detector.
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Fig. 3. Average NLERR over al the noisy test sets as a function
of the model distance d, using the neural net SpNsp detector.

Results for individual databases are summarized in Table 3.
The NLERR gains are uniform under the different noisy condi-
tions, but we observe no improvement on the clean data. Thisis
somewhat unexpected given the significant gain on this data with
the perfect SpNsp detection assumption. A possible explanation
is that in order to improve clean performance with this approach,
one would need atighter SpNsp detection than what is necessary
to improve on the noisy conditions, and that we haven’t reached
that level of accuracy with our current SpNsp detector.

Baseline | w/ SpNsp | Rel. NLERR
+ Voicing Improv.
CarNoisy 18.3 15.0 18
CarNoiseSup 25.3 21.2 16
CarMultiMic 30.1 26.3 13
CleanHandH 9.4 9.2 3

Baseline | w/ NNet | Rel. NLERR
SpNsp Improv.
CarNoisy 18.3 15.8 14
CarNoiseSup 253 220 13
CarMultiMic 30.1 26.8 11
CleanHandH 9.4 9.3 2

Table 3. NLERR with the baseline and SpNsp augmented recog-
nition systems.

5.3. Recognition Experiments with SpNsp and Voicing Detec-
tors

We saw in Section 4.1 that a major component of the SpNsp dec-
tector is a voicing detector. Since this detector is available, we
can aso use it directly to provide an (N + 2)t* feature. Again,
the acoustic models are augmented in a manner similar to that de-
scribed in Section 3.1, setting the model means to 0 for unvoiced
phones, and to d’ for voiced phones. Recognition experiments with
both features showed that a distance d = 2 was an appropriate
choice. Results with both features are summarized in Table 4. The
overall NLERR improvement on noisy test sets increases from 12
to 14%, improvements on the clean test sets remain negligeable.

6. CONCLUSIONS

In this paper, we proposed to use a SpNsp detector to impose a
soft SpNsp segmentation of the waveform to the decoder, thereby

Table 4. NLERR with the baseline and (SpNsp + Voicing) aug-
mented recognition systems.

easing itstask of “filling in” the speech segments. We showed that:

1. The SpNsp detector output can be used as an additional
front-end feature, provided that it is scaled appropriately
to control the impact of the additional feature on the search.

2. The baseline acoustic models can easily be modified to ac-
count for the new feature while conveniently avoiding any
model retraining during the SpNsp detector optimization.

3. A reasonably accurate SpNsp detector can be obtained by
combining acoustic features aimed at the identification of
specific linguistic classes into aneural network that is opti-
mized for SpNsp detection.

This approach brings a consistent 12% relative NLERR im-
provement w.r.t. astate-of-the-art recognition baseline system over
awide variety of stationary and non-stationary background noises
and recognition tasks. The NLERR gain can be boosted to 14% by
adding in voicing as a second additional feature.
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