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ABSTRACT

This paper investigates speech recognition with partial feature cor-
ruption, assuming unknown, time-varying noise characteristics. We
extend our previous probabilistic union model from a conditional-
probability formulation to a posterior-probability formulation. The
new formulation allows the order of the model to be optimized for
every single frame, and therefore greatly enhances the capability
of the model for dealing with nonstationary noise corruption. Ex-
periments have been conducted on two databases: TIDigits with
noise corruption and Aurora 2, to demonstrate the improved ro-
bustness for the new model. Examples are presented showing that
the new model can co-exist with existing noise-reduction tech-
niques to provide improved noise robustness.

1. INTRODUCTION

A speech recognition system needs to be robust against unknown
partial corruption of the acoustic features, where some of the fea-
ture components may be corrupted by noise, but knowledge about
the corruption, including the number and identities of the cor-
rupted components and the characteristics of the corrupting noise,
is not available. This problem has been addressed recently by the
missing feature method (see, for example, [1]–[8]), and by the
probabilistic union model [9], [10]. The missing feature method
proposes a solution to the problem by identifying and ignoring the
feature components that are strongly affected by the noise and thus
carry no reliable information about the utterance. The key prob-
lem is how to determine which components are corrupt when no
knowledge about the noise is assumed. A number of methods have
been suggested for identifying the corruption, for example, based
on an estimate of the noise characteristics obtained during speech
pauses [3]–[6], or based on a knowledge of the speech such as
the harmonicity from auditory scene analysis [7], [8]. The proba-
bilistic union model represents an alternative, aiming to lift the re-
quirement for identifying the noisy feature components. Assuming
a feature set comprisingN components,M of which are corrupt,
the union model deals with the uncertainty of the corrupted com-
ponents by performing a disjunction to combine every(N − M)
sized subset of the components, assuming that any one of the sub-
sets may be the set which contains all the clean components and
no others, giving reliable information about the utterance. This ef-
fectively reduces the problem of identifying the noisy components
to a problem of estimating the number of the noisy components,
i.e.,M . This number defines the order of the union model.

Previously we studied the formulation of the union model with
conditional probabilities. A major drawback of this formulation
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is the difficulty in estimating the order, particularly for corrup-
tions with a nonstationary nature. In an application of the model
for combining the short-term subband features for speech recog-
nition, a heuristic method was studied for estimating the order
based on the state-duration counts from a hidden Markov model
(HMM) [11], [12]. This method assumed a constant order for a
whole utterance and thus gave only a suboptimal performance in
nonstationary noise conditions.

In this paper, we extend the union model from the conditional
probability formulation to a posterior probability formulation, to
overcome the above problem. The new formulation allows the or-
der to be optimized for every single frame based on the maximum
a posteriori(MAP) rule, thereby greatly enhancing the capability
of the model for dealing with nonstationary noise corruption.

2. PROBLEM FORMULATION

Let X = (x1, x2, ..., xN ) be a feature set consisting ofN compo-
nents, wherexn represents thenth feature component. In speech
recognition, for example,X may be a frame feature vector con-
sisting ofN components from different feature streams. A recog-
nizer’s job is to correctly classify eachX into one of theK classes,
C1, C2, ..., CK , representing different speech units. The classifi-
cation may be based on the conditional probabilityP (X | Ck) or
on thea posterioriprobabilityP (Ck | X). Assume that some of
the feature componentsxn in X are noisy, but without knowledge
about their identity. We term this unknown partial feature cor-
ruption. A partial feature corruption may be caused by the noise
that affects only some of the feature streams, for example, a band-
limited noise affecting only certain parts of the speech frequency
band, and a convolutional noise (i.e. channel effect) affecting the
static cepstra more adversely than the delta cepstra. In addition,
a partial feature corruption may also be the result of inaccurate
noise-reduction processing, which leaves some of the components
distorted due to insufficient knowledge of the noise.

Assume that inX there areM noisy components with an un-
known identity. Denote byXN−M the subset inX which contains
the (N − M) clean components. The probabilistic union model
deals with the uncertainty ofXN−M by using the “or” (i.e. dis-
junction) operator to combine every(N −M) sized subset of the
components, assuming thatanyone of the subsets may beXN−M .
The conditional probability ofXN−M based on a union model can
be written as [9], [10]

P (XN−M | Ck) = P (
∨

n1n2···nN−M

xn1xn2 · · ·xnN−M | Ck)

(1)
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where∨ denotes the “or” operator,xn1xn2 · · ·xnN−M is a subset
in X containing(N−M) components as a probable candidate for
XN−M , and the “or” operator∨ is applied between all possible
subsets of(N − M) components inX. The parameterM in (1)
defines the order of the model, which corresponds to the number
of corrupted components inX. For partial corruption,M assumes
a value within the range0 ≤ M ≤ N − 1, accommodating from
no component corruption up toN−1 component corruption inX.

We call (1) the conditional-probability union model. The ex-
pression forP (XN−M | Ck) is readily derived using the rules of
probability for the union of random events. Assuming indepen-
dence between the feature components,P (XN−M | Ck) can be
written as [9], [10]

P (XN−M | Ck)

'
∑

n1n2···nN−M

P (xn1 | Ck)P (xn2 | Ck) · · ·P (xnN−M | Ck)

(2)

whereP (xn | Ck) is the conditional probability of the component
xn, and the summation is over all possible subsets of(N − M)
components taken fromX. Since (2) is the sum of the individual
subset probabilities, its value is dominated by the subset proba-
bilities with large values. Therefore, if we can assume that the
clean-component subset produces a large probability for the cor-
rect class, then selecting the maximum value ofP (XN−M | Ck)
with respect toCk has a chance to get the correct classCk for X
without requiring the identity of theM noisy components. How-
ever, when the value ofM is unknown, the classification can not
be performed based on the maximum value ofP (XN−M | Ck)
with respect toM andCk. This is because, for a specificCk, the
values ofP (XN−M | Ck) for differentM are of a different order
of magnitude and are thus not directly comparable. For unknown
or time-varying noisy environments, estimating the orderM for
(2) can be a difficult task. In the following we present a new for-
mulation for the union model which overcomes this problem.

3. THE POSTERIOR UNION MODEL

3.1. The model

Consider the problem of classifying anN -component feature set
X = (x1, x2, ..., xN ) into one of theK classesC1, C2, ..., CK ,
assuming that there areM (0 ≤ M < N ) components inX being
corrupted by noise, but neither the value ofM nor the identity of
the corrupted components are knowna priori. We deal with this
problem based on thea posterioriunion probability. LetXN−M

denote the subset inX containing the(N − M) clean compo-
nents, thea posterioriunion probability of classCk givenXN−M

is defined as

P (Ck | XN−M ) =
P (XN−M | Ck)P (Ck)∑K
j=1 P (XN−M | Cj)P (Cj)

(3)

whereP (XN−M | Ck) is the conditional union probability of
orderM as defined in (1) and (2), andP (Ck) is the class prior
which is assumed not to be a function of the orderM .

With a constant class prior, (3) is similar to (2) in that it is
dominated by the subset probabilities with large values. Therefore,
if we assume that the clean subset produces a large probability for
the correct class, selecting the maximumP (Ck | XN−M ) is likely
to get the correct classCk for X without requiring the identity of

the M noisy components. A major difference between (3) and
(2) is that thea posterioriunion probabilityP (Ck | XN−M ) is
normalized for the orders. Therefore we can obtain an optimal
estimate for the unknown orderM for each class based on the
maximuma posteriori(MAP) rule, i.e.

M̂ = arg max
M

P (Ck | XN−M ) (4)

This leads to an optimal classifier that implements a joint MAP
decision for order estimation and feature classification:

X ∈ Ck if P (Ck | XN−M̂ ) = max
j

max
M

P (Cj | XN−M ) (5)

This classifier requires neither the identity nor the number of the
noisy components.

3.2. Incorporation into a hidden Markov model (HMM)

The above posterior union model has been incorporated into an
HMM for combining the short-term subband features with un-
known band-limited corruption. LetX(t) = (x1(t), x2(t), ...,
xN (t)) be a short-time measurement (i.e. frame) at timet consist-
ing of N independent subband feature streams, withxn(t) being
the feature stream from thenth subband. Consider the classifica-
tion of each frameX(t) into an HMM statest, st ∈ {1, 2, ..., K},
based on thea posterioriunion probabilityP (st | XN−Mt(t)) of
orderMt, which is defined, based on (3), as

P (st | XN−Mt(t)) =
P (XN−Mt(t) | st)P (st)∑K

νt=1 P (XN−Mt(t) | νt)P (νt)
(6)

whereP (st) is the state prior andP (XN−Mt(t) | st) is the con-
ditional union probability of orderMt in statest, which can be
written, based on (2), as

P (XN−Mt(t) | st)

'
∑

n1···nN−Mt

P (xn1(t) | st) · · ·P (xnN−Mt
(t) | st) (7)

whereP (xn | i) is the emission probability for subband feature
streamxn in statei, and the summation is over all possible subsets
of (N −Mt) subband streams taken fromX(t).

To apply (6) to an HMM, we first express the traditional HMM
in terms of thea posterioriprobabilities of the states. Denote by
XT

1 = (X(1), X(2), ..., X(T )) a speech utterance ofT frames
and byST

1 = (s1, s2, ..., sT ) a state sequence forXT
1 . The joint

probability ofXT
1 andST

1 based on an HMM is defined as

P (XT
1 , ST

1 | λ) = πs0

T∏
t=1

ast−1stP (X(t) | st)

= πs0

T∏
t=1

ast−1st

P (X(t) | st)

P (X(t))
P (X(t))

= πs0

T∏
t=1

ast−1st

P (st)
P (st | X(t))

T∏
t=1

P (X(t)) (8)

whereP (st | X(t)) is thea posterioriprobability of statest given
X(t), andP (st) is the state prior. The last product,

∏T
t=1 P (X(t)),

is not a function of the state index and, thus, has no effect in recog-
nition. ReplacingP (st | X(t)) in (8) with thea posterioriunion
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probabilityP (st | XN−Mt(t)) defined in (6), we thus have a new
model for the joint probability ofXT

1 andST
1 :

P (XT
1 , ST

1 | λ, MT
1 ) ∝ πs0

T∏
t=1

ast−1stP (st | XN−Mt(t)) (9)

In (9), we have assumed a constant state prior,P (st), for simplic-
ity; MT

1 = (M1, M2, ..., MT ) is the sequence of the orders for the
individual frames inXT

1 . Recognition is performed with the fol-
lowing modified Viterbi algorithm that includes the MAP decision
for optimizing the order for each frame:

δt(j) = max
i

[δt−1(i)aij ] max
Mt

P (st = j | XN−Mt(t)) (10)

whereδt(i) represents the probability of the best state path up to
time t that ends in statei.

4. EXPERIMENTAL RESULTS

4.1. Experiments on TIDigits

The database contained 6196 test utterances for connected-digit
recognition. For comparison, we used the same feature vector as
used in [12] for each frame. The speech was sampled at 8 kHz and
segmented into frames of 256 samples. Each frame was divided
into five subbands, and each subband was modeled by three static
MFCCs plus three delta MFCCs. So we had a total of 10 features
streams (five for MFCCs and five for∆MFCCs) for each frame.
Each digit was modeled by a left-to-right HMM with ten states,
and each state consisted of eight Gaussian mixtures with diago-
nal covariance matrices. This paper is focused on the comparison
between the new posterior union model and the conditional union
model, described in [12] and above. For a comparison between the
conditional union model and other methods for subband combina-
tion, see [12]. The conditional union model assumed a constant
order for a whole utterance and selected the order by comparing
the HMM state sequences associated with different orders.

Fig. 1 shows the real-world noises used in the test, includ-
ing a telephone ring, a whistle, and the sounds of ”contact” and
”connect”, extracted from an Internet tool. These noises each
had a dominant band-selective nature, and the noises ”contact”
and ”connect” were particularly nonstationary. These noises were
added, respectively, to each of the test utterances with different
levels of signal-to-noise ratio (SNR). Table I shows the average
digit-string accuracy over the four noise conditions, obtained by
the new posterior union model, by the conditional union model,
and by a baseline HMM using ten full-band MFCCs plus delta
MFCCs for each frame. The posterior union model improved upon
the conditional union model throughout all test conditions. These
improvements are due to the frame-level optimization for the order
selection implemented in the new model. The conditional union
model used a constant order for all frames, and its performance
was thus compromised by the time-varying noise characteristics.

Improved performance was also obtained for the new model in
stationary band-limited noise. Table II shows the results averaged
over eight different stationary noise conditions, including three
cases with one subband corruption, three cases with two subband
corruption, and two cases with three subband corruption, within
the five subbands of the system [12]. The frame-level order opti-
mization enables the new model to extract an optimal number of
feature components from each frame (this number may be varying

(a) Phone ring (b) Whistle

(c) Contact (d) Connect

Fig. 1. Real-world noises used in the experiments

Table I. Average digit string accuracy in real-world noise, for the
new posterior union model, compared to the conditional union

model and a baseline HMM

SNR Posterior Conditional Baseline
(dB) Union Union HMM
Clean 96.42 96.21 97.53

10 87.96 85.07 51.47
5 81.13 78.43 26.74
0 71.05 68.63 11.20

from frame to frame due to the varying frame-level SNR), thereby
obtaining more information for correct recognition than the condi-
tional union model.

4.2. Experiments on Aurora 2

To increase the band resolution for the Aurora noise, we increased
the number of subbands from five to twelve, by using 12 decorre-
lated filter-bank energies [13], with a decorrelation filterH(z) =
1−z−1, plus the delta and delta-delta parameters, as the feature set
for each frame. The feature set for each frame thus contained 36
parameters, representing 36 different feature streams. We present
the results for Test Set A based on clean-condition training.

Table III presents the word accuracy obtained by the new pos-
terior union model, including the relative improvement in word
error rate when compared to the ETSI baseline system using a
full-band MFCC front-end [14]. The new model improved over
the baseline system throughout all noise conditions.

The union model can be added onto other noise-reduction tech-
niques to provide improved robustness against the inaccuracy in
noise reduction. To achieve best performance, the conventional

Table II. Average digit string accuracy in stationary
band-limited noise

SNR Posterior Conditional Baseline
(dB) Union Union HMM
10 92.45 89.90 52.99
5 89.33 86.33 29.97
0 83.47 80.91 13.93
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noise-reduction techniques require certain knowledge such as the
spectral or cepstral characteristics of the noise. An accurate esti-
mation of these characteristics can be difficult if the noise is un-
predictable and/or nonstationary. The residual noises introduced
by an inaccurate noise-reduction processing may be modeled as
partial, unknown, time-varying corruption and can be dealt with
by the union model. This combination reduces the dependence
of the system on the accuracy of the noise estimation. Tables IV
and V show an example, in which a Wiener-filtering front-end
was employed to enhance the speech utterances before recogni-
tion. The noise spectrum used to build the Wiener filter for each
utterance was simply estimated using the first ten frames of each
utterance without any further adaptation. Table IV shows the re-
sults with the use of Wiener filtering alone without the use of the
union model, and Table V shows the results when Wiener filtering
and the union model were combined. Comparing Table IV with
Table III shows that the Wiener filtering operation caused a degra-
dation for the “babble” noise condition. This degradation was ef-
fectively avoided by the inclusion of the union model, as shown
in Table V. In addition, Table V indicates that the inclusion of the
union model improved the accuracy for most noise conditions.

5. CONCLUSIONS

This paper described a new statistical method – the posterior union
model, for speech recognition involving partial feature corruption
assuming no knowledge about the noise. The new model is an ex-
tension of our previous union model from a conditional-probability
formulation to a posterior-probability formulation. The experi-
mental results based on the TIDigits and Aurora 2 databases in-
dicate that the new formulation improves the performance of the
union model and enhances its capability for modeling nonstation-
ary noise corruption. Examples were presented which show that
the new model can be effectively combined with other noise ro-
bust techniques to provide improved performance.

Table III. Word accuracy and error reduction (ER) by the
posterior union model on test set A, clean training,

relative to the ETSI baseline system

SNR Sub. Bab. Car Exhib. Ave. %ER
Clean 98.31 98.52 98.64 98.85 98.58 -30.98
10 dB 78.97 83.56 80.79 75.16 79.62 36.90
5 dB 59.07 63.66 59.35 51.34 58.36 31.20
0 dB 31.19 32.93 29.02 22.89 29.01 14.52
Ave. 66.89 69.67 66.95 62.06 66.39
%ER 8.16 43.70 28.73 6.48 23.99

Table IV. Results obtained by the use of a Wiener-filtering
front-end without the use of the union model

SNR Sub. Bab. Car Exhib. Ave. %ER
Clean 97.97 98.55 98.33 98.24 98.27 -43.35
10 dB 80.01 71.40 87.77 77.48 79.17 35.51
5 dB 68.22 52.96 71.61 56.49 62.32 37.75
0 dB 40.19 26.31 39.96 29.10 33.89 20.39
Ave. 71.60 62.31 74.42 65.33 68.41
%ER 21.22 30.03 44.84 14.54 28.56

Table V. Results obtained by the combination of Wiener-filtering
and the posterior union model

SNR Sub. Bab. Car Exhib. Ave. %ER
Clean 98.22 98.67 98.24 98.77 98.48 -35.52
10 dB 82.84 81.56 87.71 81.24 83.34 48.42
5 dB 68.62 65.27 72.92 60.78 66.89 45.29
0 dB 41.82 35.95 46.53 33.51 39.45 27.09
Ave. 72.88 70.36 76.35 68.58 72.04
%ER 24.77 44.98 48.99 22.55 36.77
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