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ABSTRACT is the difficulty in estimating the order, particularly for corrup-

This paper investigates speech recognition with partial feature cor-flons W'th a nonstationary nature. In an application of the model
for combining the short-term subband features for speech recog-

ruption, assuming unknown, time-varying noise characteristics. We -, . - . L
extend our previous probabilistic union model from a conditional- hition, a heuristic metho_d was studied for e_stlmatlng the order
probability formulation to a posterior-probability formulation. The based on the state-dl_Jratlon counts from a hidden Markov model
new formulation allows the order of the model to be optimized for (HMM) [11], [12]. This method assumed a cc_)nstant order for a
every single frame, and therefore greatly enhances the capabilityWhOIe u_tterance _and thus_ gave only a suboptimal performance in
of the model for dealing with nonstationary noise corruption. Ex- nonstatlpnary noise conditions. ) -
periments have been conducted on two databases: TIDigits with ' this paper, we extend the union model from the conditional
noise corruption and Aurora 2, to demonstrate the improved ro- probability formulation to a posterior probablllty_formulatlon, to
bustness for the new model. Examples are presented showing tha@vercome the above problem. The new formulation allows the or-
the new model can co-exist with existing noise-reduction tech- der t0 be optimized for every single frame based on the maximum

niques to provide improved noise robustness. a posteriori(MAP) rule, thereby greatly enhancing the capability
of the model for dealing with nonstationary noise corruption.

1. INTRODUCTION

. . 2. PROBLEM FORMULATION
A speech recognition system needs to be robust against unknown
partial corruption of the acoustic features, where some of the fea-| o x — (x1,2, ...,z be a feature set consisting df compo-
ture components may be corrupted by noise, but knowledge aboutyents where:,, represents theth feature component. In speech
the corruption, including the number and identities of the cor- recognition, for exampleX may be a frame feature vector con-
rupted components and the characteristics of the corrupting noiseg;sing of v components from different feature streams. A recog-
|s_no_t available. This problem has been addressed recently by thenizer’sjob is to correctly classify eacti into one of the classes,
missing feature method (see, for example, [1]-[8]), and by the ¢, ", = ‘¢ representing different speech units. The classifi-
probabilistic union model [9], [10]. Th_e missing featL_Jre m_ethod cation may be based on the conditional probabiftX | ) or
proposes a solution to the problem by identifying and ignoring the on thea posterioriprobability P(Cy, | X). Assume that some of
feature com.ponents that are strongly affected by the noise and thushe feature components, in X are noisy, but without knowledge
carry no reliable information about the utterance. The key prob- gt their identity. We term this unknown partial feature cor-
lem is how to determine which components are corrupt when no yniion A partial feature corruption may be caused by the noise
knowledge about the noise is assumed. A number of methods havgp affects only some of the feature streams, for example, a band-
been suggested for identifying the corruption, for example, based|miteq noise affecting only certain parts of the speech frequency
on an estimate of the noise characteristics obtained during speecty,nq and a convolutional noise (i.e. channel effect) affecting the
pauses [3]-6], or based on a knowledge of the speech such agatic cepstra more adversely than the delta cepstra. In addition,
the harmonicity from auditory scene analysis [7], [8]. The proba- 5 patia| feature corruption may also be the result of inaccurate
bilistic union model represents an alternative, aiming to lift the re- 5ise _reduction processing, which leaves some of the components
quirement for |dent|f_y|_ng the noisy feature components. Assuming gistorted due to insufficient knowledge of the noise.
a feature set comprisiny components)M of which are corrupt, Assume that inX there arell noisy components with an un-
the union model deals with the uncertainty of the corrupted com- . identity. Denote by x_ s the subset i which contains
ponents by performing a disjunction to 9°mb'ne evely — M) the (N — M) clean components. The probabilistic union model
sized subset of the components, assuming that any one of the sub eals with the uncertainty ok y_; by using the “or” (i.e. dis-
sets may be the set which contains all the clean components anﬁ%nction) operator to combine evefy — M) sized subset of the
no others, giving reliable information about the utterance. This ef- components, assuming thatyone of the subsets may Béx _ s

fectively reduces th? prc_>b|em of identifying the no_isy components The conditional probability oX x_ s based on a union model can
to a problem of estimating the number of the noisy components, be written as [9], [10]

i.e., M. This number defines the order of the union model.
Previously we studied the formulation of the union model with

conditional probabilities. A major drawback of this formulation P(Xn-w | Cr) = P( \/ TnyTny -+ Ty | Ck)
NN NN M
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whereV denotes the “or” operatok,,, Tn, - - - Tny_,, IS & Subset

in X containing(N — M) components as a probable candidate for
Xn—n, and the “or” operatot/ is applied between all possible
subsets of N — M) components inX. The parameteM in (1)
defines the order of the model, which corresponds to the numbe
of corrupted components iK. For partial corruption}/ assumes

a value within the rangé < M < N — 1, accommodating from
no component corruption up f§ — 1 component corruption ix .

We call (1) the conditional-probability union model. The ex-
pression forP(Xy_ns | Ci) is readily derived using the rules of
probability for the union of random events. Assuming indepen-
dence between the feature componeft6X~_as | Ck) can be
written as [9], [10]

P(XNn_m | Ck)

>

nin2-NMN-—M

~

P(xnl ‘Ck)P(mnz |Ck)'”P(mnN—M |Ck)

)

whereP(xz,, | Ci) is the conditional probability of the component
zn, and the summation is over all possible subset&6f— M)
components taken frof. Since (2) is the sum of the individual

subset probabilities, its value is dominated by the subset proba-

bilities with large values. Therefore, if we can assume that the

clean-component subset produces a large probability for the cor-

rect class, then selecting the maximum value’¢X x s | Ck)
with respect ta”y has a chance to get the correct cl@gsfor X
without requiring the identity of thé/ noisy components. How-
ever, when the value af/ is unknown, the classification can not
be performed based on the maximum value¢X v | Ck)
with respect ta\/ andCy,. This is because, for a specifig,, the
values of P(X n_as | Cy) for different M are of a different order
of magnitude and are thus not directly comparable. For unknown
or time-varying noisy environments, estimating the ordérfor

(2) can be a difficult task. In the following we present a new for-
mulation for the union model which overcomes this problem.

3. THE POSTERIOR UNION MODEL

3.1. The model

Consider the problem of classifying ai-component feature set
X = (z1,®2,...,xn) into one of theK classe<”y, Cs, ..., Ck,
assuming that there afd (0 < M < N) components inX being
corrupted by noise, but neither the valueMfnor the identity of
the corrupted components are knoampriori. We deal with this
problem based on the posterioriunion probability. LetXy_ s
denote the subset iIX containing the(N — M) clean compo-
nents, thea posterioriunion probability of clas€’, given Xy _ s

is defined as

P(Xn-m | Cx)P(Ck)

P(Crx | Xn—m) =
S P(Xn-m | C5)P(C)

©)

where P(Xy_nr | Cy) is the conditional union probability of
order M as defined in (1) and (2), anél(C}) is the class prior
which is assumed not to be a function of the ordiér

With a constant class prior, (3) is similar to (2) in that it is

dominated by the subset probabilities with large values. Therefore,

the M noisy components. A major difference between (3) and
(2) is that thea posterioriunion probability P(Cy | Xn—a) IS
normalized for the orders. Therefore we can obtain an optimal
estimate for the unknown ordev! for each class based on the
rmaximuma posteriori(MAP) rule, i.e.

M= arg max P(Cr | Xn-m) (4)
This leads to an optimal classifier that implements a joint MAP
decision for order estimation and feature classification:

X ey if P(Ck | XN—]CI) = m;%XIIkE}JXP(Cj ‘ XN_]V[) (5)

This classifier requires neither the identity nor the number of the
noisy components.

3.2. Incorporation into a hidden Markov model (HMM)

The above posterior union model has been incorporated into an
HMM for combining the short-term subband features with un-
known band-limited corruption. LeX () (z1(t), x2(t), ..y

zn (t)) be a short-time measurement (i.e. frame) at tiroensist-

ing of N independent subband feature streams, wittt) being

the feature stream from theth subband. Consider the classifica-
tion of each frameX (¢) into an HMM states,, s; € {1,2, ..., K},
based on tha posterioriunion probabilityP(s: | Xn—as, (t)) of
order M, which is defined, based on (3), as

P(XNn-n, (t) | 5t)P(s¢)
e P(XN_ar, (t) | ve)P(1)

ve=1

P(st | Xn-—m, (1) =

6
5 (6)

whereP(s;) is the state prior and®(Xn_az, (t) | s¢) is the con-
ditional union probability of ordeM/; in states:, which can be
written, based on (2), as

P(XN- (1) | st)

Z Pz, (1) | st) - P(I"IN—]Mt (t) | s¢) (7)

nyNN My

~

where P(z,, | ¢) is the emission probability for subband feature
streamz,, in statei, and the summation is over all possible subsets
of (N — M;) subband streams taken frak\(t).

To apply (6) to an HMM, we first express the traditional HMM
in terms of thea posterioriprobabilities of the states. Denote by
X{ = (X(1),X(2),..., X(T)) a speech utterance @f frames
and byS{ = (s1, s2, ..., s7) a state sequence fof{ . The joint
probability of X{ andST based on an HMM is defined as

T
P(XlT,S? [ A) = 75 Hast—lstP(X(t) | 5t)

t=1

T
= Tso | | Asy_1s¢
t=1

T

P(X(t) | st)

PX 1)) P(X(1))

Asy 54

I)(St)

= Tsq
t=1

P(s. | X(1) [] P(X (1)) (8)

whereP(s: | X (t)) is thea posterioriprobability of states; given

if we assume that the clean subset produces a large probability forX (¢), andP(s;) is the state prior. The last produﬂ,;f=1 P(X(t)),

the correct class, selecting the maximétCy. | Xn—ar) is likely
to get the correct clagS, for X without requiring the identity of
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is not a function of the state index and, thus, has no effect in recog-
nition. ReplacingP(s: | X (¢)) in (8) with thea posterioriunion

1




probability P(s: | Xn—n, (t)) defined in (6), we thus have a new
model for the joint probability ofXT and ST :

T
P(XT, ST [\ MT) o< mag [ [ s vse Plse | Xn-nr (£)) (9)

t=1 5] [ FTET WRET

(a) Phone ring (b) Whistle

Freg e s e o S
Cam [ [ Mz

In (9), we have assumed a constant state pfgs, ), for simplic- ‘
ity; M{ = (M, Ma, ..., Mr) is the sequence of the orders for the ™ ‘ |

individual frames inX? . Recognition is performed with the fol- 2 11 e o
lowing modified Viterbi algorithm that includes the MAP decision : =

for optimizing the order for each frame: i ; : i

a0
Tirr

5:(5) = max[8e_1 (i)ai;] max P(s; = j | Xn—nr, (¢ 10 "Sbew  womm o @oww  ea  Bbww  owes  coaw o acom o bom
@) pxloi-a(das] M, ( | () 10 (c) Contact (d) Connect

whered, (i) represents the probability of the best state path up to
time¢ that ends in state Fig. 1. Real-world noises used in the experiments

Table I. Average digit string accuracy in real-world noise, for the
new posterior union model, compared to the conditional union
model and a baseline HMM

4. EXPERIMENTAL RESULTS

4.1. Experiments on TIDigits

. - SNR  Posterior Conditional Baseline
The database contained 6196 test utterances for connected-digit (dB) Union Union HMM

recognition. For comparison, we used the same feature vector as

used in [12] for each frame. The speech was sampled at 8 kHz and Clean 96.42 96.21 97.53
. - 10 87.96 85.07 51.47
segmented into frames of 256 samples. Each frame was divided
into five subbands, and each subband was modeled by three stati 5 8L1s 7843 26.74
o five subbands, and each subbal as modeled by three static 0 71.05 68.63 11.20

MFCCs plus three delta MFCCs. So we had a total of 10 features
streams (five for MFCCs and five fakMFCCs) for each frame.
Each digit was modeled by a left-to-right HMM with ten states,
and each state consisted of eight Gaussian mixtures with diago- i
nal covariance matrices. This paper is focused on the comparisorff®™ frame to frame due to the varying frame-level SNR), thereby
between the new posterior union model and the conditional union qbtalnlng more information for correct recognition than the condi-
model, described in [12] and above. For a comparison between theional union model.
conditional union model and other methods for subband combina-
tion, see [12]. The conditional union model assumed a constant4.2. Experiments on Aurora 2
order for a whole utterance and selected the order by comparing
the HMM state sequences associated with different orders.

Fig. 1 shows the real-world noises used in the test, includ-

ing a telephone ring, a whistle, and the sounds of "contact” and i)
»connect”, extracted from an Internet tool. These noises each 1—2z7", plus the delta and delta-delta parameters, as thefea}ture set
for each frame. The feature set for each frame thus contained 36

had a dominant band-selective nature, and the noises "contact” f :
and "connect” were particularly nonstationary. These noises were parameters, representing 36 different feature gt'reams.. We present
the results for Test Set A based on clean-condition training.

added, respectively, to each of the test utterances with different Table il ts th d btained by th

levels of signal-to-noise ratio (SNR). Table | shows the averaget _‘anle preze?&? legjl\.lor t?ccurlactyo taned by ?pew pc:js-

digit-string accuracy over the four noise conditions, obtained by erior union model, Including the refative improvement in wor
error rate when compared to the ETSI baseline system using a

the new posterior union model, by the conditional union model, .
and by a baseline HMM using ten full-band MFCCs plus delta full-band MFCC front-end [14]. The new model improved over
the baseline system throughout all noise conditions.

MF for hframe. Th rior union m | improv n . ) .
CCs for each frame € posterior union model improved upo The union model can be added onto other noise-reduction tech-

the conditional union model throughout all test conditions. These . t ide i d robust inst the i .
improvements are due to the frame-level optimization for the order niques 1o provide Improved robusiness against the inaccuracy in
noise reduction. To achieve best performance, the conventional

selection implemented in the new model. The conditional union
model used a constant order for all frames, and its performance
was thus compromised by the time-varying noise characteristics. Table II. Average digit string accuracy in stationary
Improved performance was also obtained for the new model in band-limited noise

stationary band-limited noise. Table Il shows the results averaged
over eight different stationary noise conditions, including three h -
cases with one subband corruption, three cases with two subband (dB)  Union Union HMM
corruption, and two cases with three subband corruption, within 10 92.45 89.90 52.99
the five subbands of the system [12]. The frame-level order opti- S 89.33 86.33 29.97
mization enables the new model to extract an optimal number of 0 83.47 80.91 13.93
feature components from each frame (this number may be varying

To increase the band resolution for the Aurora noise, we increased
the number of subbands from five to twelve, by using 12 decorre-
lated filter-bank energies [13], with a decorrelation fillé(z) =

SNR Posterior Conditional Baseline
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noise-reduction techniques require certain knowledge such as the

spectral or cepstral characteristics of the noise. An accurate esti-
mation of these characteristics can be difficult if the noise is un-
predictable and/or nonstationary. The residual noises introduced

by an inaccurate noise-reduction processing may be modeled as

partial, unknown, time-varying corruption and can be dealt with
by the union model. This combination reduces the dependence
of the system on the accuracy of the noise estimation. Tables IV
and V show an example, in which a Wiener-filtering front-end

Table V. Results obtained by the combination of Wiener-filtering
and the posterior union model

SNR Sub. Bab. Car Exhib. Ave. %ER
Clean 98.22 98.67 98.24 98.7[ 98.48 | -35.52
10dB 82.84 8156 87.71 81.2483.34| 48.42
5dB 68.62 65.27 72.92 60.78 66.89| 45.29
0dB 41.82 35.95 46.53 33.51 39.45| 27.09
Ave. 7288 70.36 76.35 68.58 72.04

%WER 24.77 4498 48.99 22.5% 36.77

was employed to enhance the speech utterances before recogni=

tion. The noise spectrum used to build the Wiener filter for each
utterance was simply estimated using the first ten frames of each
utterance without any further adaptation. Table IV shows the re-
sults with the use of Wiener filtering alone without the use of the
union model, and Table V shows the results when Wiener filtering
and the union model were combined. Comparing Table IV with
Table 11l shows that the Wiener filtering operation caused a degra-
dation for the “babble” noise condition. This degradation was ef-
fectively avoided by the inclusion of the union model, as shown
in Table V. In addition, Table V indicates that the inclusion of the
union model improved the accuracy for most noise conditions.

5. CONCLUSIONS

This paper described a new statistical method — the posterior unionl4]

model, for speech recognition involving partial feature corruption
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