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ABSTRACT not available. Various methods were studied to identify the cor-
rupted features, for example, in a multi-band recognition system,

. . . . . explicitly measuring the local signal-to-noise ratio (SNR), e.g. [4].
This paper is concerned with the multi-stream approach in Recently, several studies have attempted to release the need
speech recognition. In a given set of feature streams, there may, Y, P

be some features corrupted by noise. Ideally, these features shouléor;'Clieemt';'gaftlﬁncgggﬁgggﬁ%%%;?aguri‘:‘]'eT:C%SueSL?CdggfkiI‘Or gé'
be excluded from recognition. To achieve this, a-priori knowledge pie, . - : [5], 'g-0
about the identity, including both the number and location, of the m9d8| [6], and the probab|l|st|c union model [7]. The probablllstu.:.
noisy features is required. In this paper, we present a method forunion model com_blnes the feature streamg based on the probability
estimating the number of noisy feature streams. This method as_theory for the union of random events. Thls approach assumes no
sumes no knowledge about the noise. It is based on CalcuIationknowledge about the location of the noisy feature streams. How-

of the reliability of each feature stream and then evaluation of the ever, a parameter within this model that is callednitxdel-order

joint maximal reliability. Since this method decreases the uncer- |s.r.elated to theﬂumbe;r. of noisy feature streams,.and its choice is
tainty about the noisy features and is statistical in nature, it can critical tq the recognition performance of the unlmon.model.

also be used to increase robustness of other classification systems. In_ this paper, we presgnt a method for estimating the ”“mb"tf
We present an application of this method to model-order selec-Of NOISY feature streams in a given set of feature streams. This
tion in the union models. We performed tests on the TIDIGITS method_assumes _no_l_<now|edge about the noise. It is based on
database, corrupted by noises affecting various numbers of featur&/culating the reliability of each feature stream and then eval-

streams. The experimental results show that this model achieveé’?:Lng the Jomg me;xlgjﬁl rgllablgty. Yr\]/e dptresen:j aln eorlnploylmetm
recognition performance similar to the one obtained with a-priori otthe proposed refiability-based method to model-order selection
knowledge about the identity of the corrupted features. in the union models. This model was tested using the TIDIGITS

database, corrupted by frequency-localized noises affecting vari-
ous numbers of feature streams. The results achieved indicate that
1. INTRODUCTION the union model employed with the reliability-based model-order

. . selection achieved recognition performance similar to the one ob-
Speech signal may be represented by multiple feature streamsyyineq with full a-priori knowledge about the identity of the noisy
which may be obtained in general by using different sources of in- to ot e streams.

formation or different processing technigues on a specific source.
A specific case is the sub-band approach [1] [2], in which the full
speech frequency-band is divided into several sub-bands, each sub-2. RELIABILITY-BASED METHOD FOR ESTIMATING
band being represented by an individual feature stream. THE NUMBER OF NOISY FEATURE STREAMSIN A

The multiple feature stream approach will usually tend to im- FEATURE SET
prove a speech recognition system, if the individual streams pro-
vide complementary information. Equally importantly, since in a We consider that data is characterized by a sé{ é¢ature streams
given feature set some feature streams may be more robust than = (01,02, ... ,on); for instance, each individual feature stream
the others to a specific type of noise, the multi-stream approacho. may characterize a different sub-band of the entire speech fre-
can lead to a robust framework. quency band. In recognition, in a given a set of featusethere

The key issue of the multi-stream approach is the formula- may be some of the,'s noisy, e.g. due to some unknown frequency-
tion of the combination of feature streams. Ideally, those featureslocalized noise. We assume no knowledge about the noise. Firstly,
that are unaffected or only slightly affected by noise should be we define the reliability of a feature stream. Then, the algorithm
selected, as they provide correct information about the utterancefor estimating the number of noisy feature streams is presented.
whilst the features dominated by noise should be excluded as they
can l_)e detrimental to the recogni_tion accuracy. This s j[he idea of5 1 Dpefinition of reliability of a feature stream
missing feature theory. If a-priori knowledge about which of the
features are affected by noise is available, this method may sig-Denote byf (z.|s) the probability distribution (or probability den-
nificantly improve the robustness of a speech recognition systemsity function) associated with class(e.g. an HMM state) that
[3]. However, in real world situations, this information is usually models feature stream,. For a given feature stream,, we de-
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note byr(o,|s) areliability of feature stream,, at classs, which produce a value that is similar to the one obtained on the training

we define as (clean) data.
F(onl Ld Based on the abov_e discussion, given a set of featu_re streams,
r(onls) = (07"5)) (1) the method for estimating the number of noisy (i.e. unreliable) fea-
maxy,, f(Tnls) ture streamsyn ™, may be based on simple comparison of the value

of each order-reliability?,,, and some thresholg. The threshold
value corresponds to a reliability level below which we consider
the data as unreliable and can be determined experimentally based
on the training data. Algorithmic description of this method is de-
picted in Figure 1.

whered is dimension of feature streams, and the exponent
serves as a hormalizing factor. The reliabiliy,, |s) as defined in

Eq. 1 expresses how different is the probability of a given feature
streamo,, from the maximum possible probability. It produces,
for each feature stream,, a reliability score within the interval

(0; 1], allowing the scores to be consistent across different feature

streams. calculater(o,|s) V feature streams,,, V classes
The value of a feature stream reliability close to 1 reflects form=0.. N-1

a close similarity between the data and model; while reliability Vs, compute the order-reliabilitR,,,

values approaching 0 mean little similarity between the data and if 3s such that its associate®},, > v

model. As such, it is reasonable to assume that clean data on the m*=m:

correct model should produce reliability values which tend to be break: '

close to 1. On the other side, reliabilities of noisy feature streams, endif ’

may become very small (i.e. approaching zero) on the correct
model, because of the mismatch between the model and data; how
ever, they may accidentally become high (i.e. close to one) on an
incorrect model.

endfor

Fig. 1. An algorithmic description of the proposed method for
estimating the number of unreliable feature streams.

2.2. Algorithm description
g P The following section discuss an application of this algorithm

Given a set ofV feature streams, we calculate the reliabitify,, | s) to the model-order selection in the union models.
of each feature stream, at each class. This results in a set of

I’eliabilities {7’(01 |S)7 . 7”'(ON|S)} aSSOCiated W|th each Class 3 APPLICATION TO MODEL_ORDER SEL ECTION IN

Consider that the estimated number of corrupted feature streams, THE UNION MODELS

which we denote by a variable, can be from) to N — 1. For

eachm, we define a variabl&,, which we call araverage order- e consider a conditional probability(o|s) of feature seb =
reliability, as the geometric average of the maximal joint reliabil- (,, 4, ... oy) associated with class Assume that in the fea-

ity of (V. — m) feature streams out of the entire set'6ffeature  tyre seto there areM feature streams corrupted by noise. Then
streams. Assuming independence between the feature streams, th@e know that there exists one subse{ df — M) features which

Ry, can be expressed as are unaffected by noise. Combining these features by using the
. “and” (i.e. conjunction) operator derives a joint probability of the
R, = [ max (0, A... AOny_, |s)] N-m clean features, which should provide more discrimination than any
M1y SN —m of the marginal probabilities. Without knowing the location of the
N—m 1 noisy features, the clean feature stream subset may be any of the
= [ H r(o(n)|s)] e (2 subsets of V — M) feature streams. This uncertainty about the
n=1 location of the noisy feature streams can be dealt with by using

, N . . . the“or” operator. As such, the useful information within the given
wherer (o) |s)'s are the reliabilities, defined in Eq. 1, arranged in - feature set can be represented by combining the feature streams by

non-increasing order of magnitude, so th@;)[s) > 7(o(2)|s) > the “and” and “or” operators. Then, the probability for the feature
cozrlomnls). seto may be written as

Assume a situation when there arfeature streams corrupted
by noise. Firstly, consider the case < c. In this case, the av- P(ols) = p( \/ OnyOns ** Onn_ns |S) (3)

erage order-reliabilityR,,, produced on the correct model will be
much smaller than the average reliability obtained on the training
(clean) data, because of including at least one noisy-feature strearmvhereo,, on, - - - 0n 5 _,, 1S @ Subset il containing(lN — M) fea-
reliability in the product operation. It is also reasonable to assumeture streams which are combined with the “and” operator (for sim-
that as long as the test data do not resemble closely to an incorplicity, the symbolA between the,,’s has been omitted), and the
rect model, as a result of the product operation,Rheproduced “or” operatorV is applied between all possible subset§§f— 1)

on any incorrect model should also be smaller than the reliability out of V feature streams, giving a total 6fCx—ar combina-
obtained on the training data. For the case= ¢, the average  tions. Eq. 3 is called therobabilistic union model of order M
order-reliability R,,, on the correct model eliminatessmallest [7], where the order of the model/, takes a value in the range
reliabilities. Since the small feature-stream reliabilities on the cor- 0 < M < N—1. As can be seen from the above discussion, to ob-
rect model are considered to be the reliabilities of the noisy featuretain optimal results, the model in Eq. 3 requires knowledge about
streams, it is reasonable to assume that in this situdigns the the number of noisy feature streams. For example, in a simple
multiplication of only the reliabilities of V. — ¢) uncorrupted fea- case with three feature streams, Eqg. 3 can take one of the follow-
ture streams. As such, it is reasonable to assume that this shoulihg three possible forms, corresponding to order M=0, 1, and 2,
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respectively: generated by passing the Gaussian white noise through a band-
pass filter. The 3dB cut-off bandwidth of the noise was fixed at

(M =0) P(o|s) = P(oi0203]s) 100 Hz and the central frequency of the noise varied. In particular,
(M =1) P(ols) = P(0102V 0103V 0203]s) five different central frequencies were chosen, which are 600 Hz,
(M=2) Plols) = P(o1VosVosls) 1000 Hz, 1500 Hz, 2100 Hz and 2800 Hz. The calculation of the

SNR was based on the averaged energy of all the test speech ut-
The form (M=0) is best suited to the situations in which all the terances; so the noise in each utterance is _of a constant loudness,
feature streams are reliable (i.e. no corruption). Forms (M=1) regardless_ _of the actual energy of speech in that utterance. Two
and (M=2) are best suited to the situations in which there is one SNR conditions were considered, i.e. SNR=10dB and SNR=0dB.
and two noisy feature streams, respectively. For example, in form

(M=1) assuming one noisy feature stream, the union of the three4.1. Determining thethreshold ~

conjunctions will include one conjunction providing the joint prob-
ability of the remaining two clean feature streams; the other two
conjunctions each contain a noisy feature stream, with a corre-
spondingly low probability on the correct model, and therefore
make only a small contribution to the union probability associated
with the correct model.

Without any knowledge about the noise, we face the problem
of selecting the model-order of the union model, in order to obtain
optimal recognition performance. In [8], an algorithm for model-
order selection in the union models based on state-duration pattern SNR=10B SNR=0dB
has been proposed. Since this method is based on a duration prin- 1% 9

ciple, the model-order can only be selected on an utterance level. ﬁ

Firstly, in order to determine the threshold vatyewe performed
experiments on the training set corrupted by various frequency-
localized noises. We tested different threshold values within a
range(0.45, 0.75). Figure 2 shows the recognition results achieved.
As can be seen from Figure 2, the recognition performance shows
similar behaviour for different SNR and different number of fea-
ture streams being corrupted. Based on these results, we set the
thresholdy = 0.63 for all the experiments presented below.

©
@

Here, we employed the reliability-based method described in Sec-
tion 2 for selecting the model-order. At each frame time, given
a set of features, the reliability method is applied to estimate the
number of noisy features; this determines the order of the union
model that is used for combining the features. The advantage
of using the proposed reliability method over the state-duration
method is that the model-order can be selected on a frame level.
As such, when using the reliability method we should be capable
of dealing more effectively with noises that cause that the number
of noisy feature streams varies over time.
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Fig. 2. Recognition accuracy results on the training set corrupted
by various frequency-localized noises as a function of threshold
value v. Number of noisy features depicted as: o-1,0-2, A - 3.

4. EXPERIMENTSAND RESULTS

Experiments have been carried out using the isolated-digit part ofi;/%r E);qp:rlmentswnh thenumbersof corrupted featuresfixed

the TIDIGITS database. This database includes eleven isolated-

digit words: “one” to “nine”, “zero”, and “oh”, each digit sur- In this section, we present experiments with noises that corrupt the
rounded by silence parts. same number of feature streams over the entire utterance.

The speech signal, sampled at 8 kHz, is divided into frames The frequency-localized noise components mentioned above
of 30 ms, with an overlap of 10 ms between frames. Both pre- were chosen to create an effect that there were one sub-band, two
emphasis and Hamming window are applied to each frame. Forsub-bands, and three sub-bands corrupted. Specifically, the noises
each frame, a multi-channel, Mel-scaled filter bank analysis with with central frequencies 600 Hz, 1000 Hz, 2100 Hz and 2800 Hz
35 channels is used to estimate the log-amplitude spectra of thavere located within sub-band 2, 3, 4 and 5, respectively, and each
speech. These filter channels are then grouped uniformly into 5thus caused only corruption of one sub-band (i.e. one feature
sub-bands, each sub-band consisting of information from 7 chan-stream). The noise with central frequency 1500 Hz was located
nels. ADCT is applied within each sub-band and the first 4 MFCCs around the border of sub-bands 3 and 4, and thus causing the cor-
coefficients form the sub-band feature vector. In order to include ruption of two feature streams. The noises corrupting two feature
dynamic spectral information, the first-order delta parameters werestreams were also created by combination of two noise compo-
calculated and added to each sub-band feature vector. The probaents with different central frequencies, in particular, 600 Hz and
abilities of these five individual feature streams are merged at the1000 Hz, 600 Hz and 2100 Hz, 600 Hz and 2800 Hz, 1000 Hz and
frame level using the probabilistic union model equipped with the 1500 Hz, 1000 Hz and 2100 Hz, 1000 Hz and 2800 Hz, 1500 Hz
reliability-based method for estimating the model-order. A 12- and 2100 Hz, 2100 Hz and 2800 Hz. The noises consisting of
state HMM is estimated for each word, with the first and last states components 600 Hz and 1500 Hz, 1500 Hz and 2800 Hz caused
being tied among all the vocabulary words to account for the si- corruption of three feature streams.
lence parts of the utterances. The training of HMMs was per- Table 1 presents the recognition results obtained by the union
formed on clean utterances from the training set. For recognition, model with all the model-orders (i.e\/ = 0, ... ,4) within our
the testing set was corrupted by various types of noises, which confive-band system. The results are shown for both the clean and
sisted of frequency-localized noise component(s). The noise wasoisy speech, as a function of the SNR and the number of cor-
added to the speech signal. The frequency-localized noise wasupted feature streams (nC). From Table 1 it can be seen that the
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Table 1. Recognition accuracy results in the recognition system Noise 1 Noise 2 Noise 3

with five feature streams by the union model with all model-orders B e
and with the order selected by using the reliability-based method. £ R TR 0 Zh
Yy using y : e S
SNR Union model e
(dB) nC with order M rel-based e T g PO
0 1 2 3 4 | order sel. 00 R ——p—— | 00 &0 =23
clean 0 992 991 984 96.1 8315 99.1 0 0 0
1 883 974 965 913 756 967 0 o FramefTZ\?ne o 0 1 Framef%(r!ne o 0 1 Framef%?ne o
10 2 756 89.6 936 88.3 72.0 92.9 . . . .
3 723 790 831 839 691 86.7 Flg. 3. The time-frequency characteristics of the non-stationary
1 677 917 894 822 672 900 noises used.
0 2 50.7 69.9 830 774 622 81.9
3

522 63.0 701 778 62.8 76.3

5. CONCLUSION

. . . . . In this paper, we presented a reliability-based method for estimat-
union model obtained optimal recognition performance_(shown N ing the number of corrupted feature streams in a given set of fea-
bold) when the model-order equals the number of noisy featurey, o gireams. This method assumes no knowledge about the noise.
streams. Qn the right side In Ta_ble 1are ShOWF‘ the recognition "®\We presented an application of this method to model-order selec-
sults obtaln_ed when the r_ellablllty-based algorithm was empl_oyed tion in the union models. The experiments were performed on the
for automatic order selection. We can see that these recognition ré-| | 75 gatabase corrupted by noises affecting various numbers
sults are similar to the results obtained by assuming that the NUM-y¢ e atyre streams. Significantly improved results in comparison

ber of noisy features is known a-priori. to the baseline HMM and the previous union model equipped with
state-duration method for order selection were obtained. Indeed, in

4.3. Experimentswith the numbersof corrupted featuresvar- many cases, the proposed model obtained recognition performance

ied over time similar to model with full a-priori knowledge about the noisy fea-

. ture streams. The proposed reliability-based method for estimating
Next, we performed experiments when the number of corrupted ihe number of noisy feature streams is general and thus can be used
feature streams varies throughout the utterance. Specifically, threg, improve the robustness of other classification systems.

different noises with frequency-characteristics depicted in Figure 3 This work was supported by UK EPSRC grant GR/M93734.
were used.

The recognition results are presented in Table 2. The first
model we compared was a missing-feature model, which assumed
full a-priori knowledge of the corrupted feature streams (i.e. theo[l] S. Tibrewala and H. Hermansky, “Sub-band based recognition

number and location of corrupted fe_a_ture streams) and remove of noisy speech,1CASSP, Munich, pp. 1255—1258, 1997.
those features manually from recognition. The second model be-

ing compared was the baseline HMM, which combines the feature[2] H. Bourlard and S. Dupont, “A new ASR approach based
streams only by the “and” operator. The third model being com- ~ ©n independent processing and recombination of partial fre-
pared was the union model with state-duration method for model- ~ duency bands,1CSLP, Philadelphia, USA, 1996.

order selection [8]. As can be seen from Table 2 the union model[3] R.P. Lippmann and B.A. Carlson, “Using missing feature the-
equipped with the reliability-based order selection method signif- ory to actively select features for robust speech recognition
icantly outperformed over both the baseline HMM, and also the with interruptions, filtering and noise,Eurospeech, Rhodes,
union model equipped with the state-duration method for selecting Greece, pp. 3740, 1997.

the order. As discussed earlier, this is because the r_eliabil?ty-t_)ase 4] A. Drygajlo and M. EI-Maliki, “Speaker verification in noisy
method can estimate the order on each frame basis, which is not * ¢\ironment with combined spectral subtraction and missing

possible when using the state-duration method. data theory,"l CASSP, Seattle, WA, vol. I, pp. 121124, 1998.

[5] A. Morris, A. Hagen, and H. Bourlard, “The full combintion
sub-bands approach to noise robust HMM/ANN based ASR,”
Eurospeech, Budapest, Hungary, pp. 599—602, 1999.
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