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ABSTRACT

This paper is concerned with the multi-stream approach in
speech recognition. In a given set of feature streams, there may
be some features corrupted by noise. Ideally, these features should
be excluded from recognition. To achieve this, a-priori knowledge
about the identity, including both the number and location, of the
noisy features is required. In this paper, we present a method for
estimating the number of noisy feature streams. This method as-
sumes no knowledge about the noise. It is based on calculation
of the reliability of each feature stream and then evaluation of the
joint maximal reliability. Since this method decreases the uncer-
tainty about the noisy features and is statistical in nature, it can
also be used to increase robustness of other classification systems.
We present an application of this method to model-order selec-
tion in the union models. We performed tests on the TIDIGITS
database, corrupted by noises affecting various numbers of feature
streams. The experimental results show that this model achieves
recognition performance similar to the one obtained with a-priori
knowledge about the identity of the corrupted features.

1. INTRODUCTION

Speech signal may be represented by multiple feature streams,
which may be obtained in general by using different sources of in-
formation or different processing techniques on a specific source.
A specific case is the sub-band approach [1] [2], in which the full
speech frequency-band is divided into several sub-bands, each sub-
band being represented by an individual feature stream.

The multiple feature stream approach will usually tend to im-
prove a speech recognition system, if the individual streams pro-
vide complementary information. Equally importantly, since in a
given feature set some feature streams may be more robust than
the others to a specific type of noise, the multi-stream approach
can lead to a robust framework.

The key issue of the multi-stream approach is the formula-
tion of the combination of feature streams. Ideally, those features
that are unaffected or only slightly affected by noise should be
selected, as they provide correct information about the utterance,
whilst the features dominated by noise should be excluded as they
can be detrimental to the recognition accuracy. This is the idea of
missing feature theory. If a-priori knowledge about which of the
features are affected by noise is available, this method may sig-
nificantly improve the robustness of a speech recognition system
[3]. However, in real world situations, this information is usually

not available. Various methods were studied to identify the cor-
rupted features, for example, in a multi-band recognition system,
explicitly measuring the local signal-to-noise ratio (SNR), e.g. [4].

Recently, several studies have attempted to release the need
for identification of the corrupted features. These include, for ex-
ample, the full-combination model [5], the acoustic backing-off
model [6], and the probabilistic union model [7]. The probabilistic
union model combines the feature streams based on the probability
theory for the union of random events. This approach assumes no
knowledge about the location of the noisy feature streams. How-
ever, a parameter within this model that is called itsmodel-order
is related to thenumber of noisy feature streams, and its choice is
critical to the recognition performance of the union model.

In this paper, we present a method for estimating the number
of noisy feature streams in a given set of feature streams. This
method assumes no knowledge about the noise. It is based on
calculating the reliability of each feature stream and then eval-
uating the joint maximal reliability. We present an employment
of the proposed reliability-based method to model-order selection
in the union models. This model was tested using the TIDIGITS
database, corrupted by frequency-localized noises affecting vari-
ous numbers of feature streams. The results achieved indicate that
the union model employed with the reliability-based model-order
selection achieved recognition performance similar to the one ob-
tained with full a-priori knowledge about the identity of the noisy
feature streams.

2. RELIABILITY-BASED METHOD FOR ESTIMATING
THE NUMBER OF NOISY FEATURE STREAMS IN A

FEATURE SET

We consider that data is characterized by a set of� feature streams
� � ���� ��� � � � � �� �; for instance, each individual feature stream
�� may characterize a different sub-band of the entire speech fre-
quency band. In recognition, in a given a set of features,�, there
may be some of the�� ’s noisy, e.g. due to some unknown frequency-
localized noise. We assume no knowledge about the noise. Firstly,
we define the reliability of a feature stream. Then, the algorithm
for estimating the number of noisy feature streams is presented.

2.1. Definition of reliability of a feature stream

Denote by������� the probability distribution (or probability den-
sity function) associated with class� (e.g. an HMM state) that
models feature stream��. For a given feature stream��, we de-
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note by������� a reliability of feature stream�� at class�, which
we define as

������� �
� �������

����� �������

����
(1)

where	 is dimension of feature streams��, and the exponent
serves as a normalizing factor. The reliability������� as defined in
Eq. 1 expresses how different is the probability of a given feature
stream�� from the maximum possible probability. It produces,
for each feature stream��, a reliability score within the interval
��� 	
, allowing the scores to be consistent across different feature
streams.

The value of a feature stream reliability close to 1 reflects
a close similarity between the data and model; while reliability
values approaching 0 mean little similarity between the data and
model. As such, it is reasonable to assume that clean data on the
correct model should produce reliability values which tend to be
close to 1. On the other side, reliabilities of noisy feature streams,
may become very small (i.e. approaching zero) on the correct
model, because of the mismatch between the model and data; how-
ever, they may accidentally become high (i.e. close to one) on an
incorrect model.

2.2. Algorithm description

Given a set of� feature streams, we calculate the reliability�������
of each feature stream�� at each class�. This results in a set of
reliabilities��������� � � � � ���� ���� associated with each class�.
Consider that the estimated number of corrupted feature streams,
which we denote by a variable
, can be from� to � � 	. For
each
, we define a variable��, which we call anaverage order-
reliability, as the geometric average of the maximal joint reliabil-
ity of �� �
� feature streams out of the entire set of� feature
streams. Assuming independence between the feature streams, the
�� can be expressed as

�� �
�

���
������ �����

����� � � � � � ����� ���
� �

���

�
�����
���

���������
� �

���

(2)

where���������’s are the reliabilities, defined in Eq. 1, arranged in
non-increasing order of magnitude, so that��������� � ��������� �
� � � � ���������.

Assume a situation when there are� feature streams corrupted
by noise. Firstly, consider the case
 
 �. In this case, the av-
erage order-reliability�� produced on the correct model will be
much smaller than the average reliability obtained on the training
(clean) data, because of including at least one noisy-feature stream
reliability in the product operation. It is also reasonable to assume
that as long as the test data do not resemble closely to an incor-
rect model, as a result of the product operation, the�� produced
on any incorrect model should also be smaller than the reliability
obtained on the training data. For the case
 � �, the average
order-reliability�� on the correct model eliminates� smallest
reliabilities. Since the small feature-stream reliabilities on the cor-
rect model are considered to be the reliabilities of the noisy feature
streams, it is reasonable to assume that in this situation�� is the
multiplication of only the reliabilities of�� � �� uncorrupted fea-
ture streams. As such, it is reasonable to assume that this should

produce a value that is similar to the one obtained on the training
(clean) data.

Based on the above discussion, given a set of feature streams,
the method for estimating the number of noisy (i.e. unreliable) fea-
ture streams,
�, may be based on simple comparison of the value
of each order-reliability�� and some threshold�. The threshold
value corresponds to a reliability level below which we consider
the data as unreliable and can be determined experimentally based
on the training data. Algorithmic description of this method is de-
picted in Figure 1.

calculate������� � feature streams��, � classes�
for m=0 .. N-1

��, compute the order-reliability��
if �� such that its associated�� � �

�� = m;
break;

endif
endfor

Fig. 1. An algorithmic description of the proposed method for
estimating the number of unreliable feature streams.

The following section discuss an application of this algorithm
to the model-order selection in the union models.

3. APPLICATION TO MODEL-ORDER SELECTION IN
THE UNION MODELS

We consider a conditional probability� ����� of feature set� �
���� ��� � � � � �� � associated with class�. Assume that in the fea-
ture set� there are� feature streams corrupted by noise. Then
we know that there exists one subset of�� ��� features which
are unaffected by noise. Combining these features by using the
“and” (i.e. conjunction) operator derives a joint probability of the
clean features, which should provide more discrimination than any
of the marginal probabilities. Without knowing the location of the
noisy features, the clean feature stream subset may be any of the
subsets of�� ��� feature streams. This uncertainty about the
location of the noisy feature streams can be dealt with by using
the “or” operator. As such, the useful information within the given
feature set can be represented by combining the feature streams by
the “and” and “or” operators. Then, the probability for the feature
set� may be written as

� ����� � �
� �
��������� �����

������ � � � ����� ��
�

(3)

where������ � � � ����� is a subset in� containing����� fea-
ture streams which are combined with the “and” operator (for sim-
plicity, the symbol� between the�� ’s has been omitted), and the
“or” operator� is applied between all possible subsets of�����
out of � feature streams, giving a total of����	 combina-
tions. Eq. 3 is called theprobabilistic union model of order M
[7], where the order of the model,� , takes a value in the range
� 	� 	 ��	. As can be seen from the above discussion, to ob-
tain optimal results, the model in Eq. 3 requires knowledge about
the number of noisy feature streams. For example, in a simple
case with three feature streams, Eq. 3 can take one of the follow-
ing three possible forms, corresponding to order M=0, 1, and 2,
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respectively:

�� � �� � ����� � � ����������

�� � 	� � ����� � � ����� � ���� � �������

�� � �� � ����� � � ��� � �� � �����

The form (M=0) is best suited to the situations in which all the
feature streams are reliable (i.e. no corruption). Forms (M=1)
and (M=2) are best suited to the situations in which there is one
and two noisy feature streams, respectively. For example, in form
(M=1) assuming one noisy feature stream, the union of the three
conjunctions will include one conjunction providing the joint prob-
ability of the remaining two clean feature streams; the other two
conjunctions each contain a noisy feature stream, with a corre-
spondingly low probability on the correct model, and therefore
make only a small contribution to the union probability associated
with the correct model.

Without any knowledge about the noise, we face the problem
of selecting the model-order of the union model, in order to obtain
optimal recognition performance. In [8], an algorithm for model-
order selection in the union models based on state-duration pattern
has been proposed. Since this method is based on a duration prin-
ciple, the model-order can only be selected on an utterance level.
Here, we employed the reliability-based method described in Sec-
tion 2 for selecting the model-order. At each frame time, given
a set of features, the reliability method is applied to estimate the
number of noisy features; this determines the order of the union
model that is used for combining the features. The advantage
of using the proposed reliability method over the state-duration
method is that the model-order can be selected on a frame level.
As such, when using the reliability method we should be capable
of dealing more effectively with noises that cause that the number
of noisy feature streams varies over time.

4. EXPERIMENTS AND RESULTS

Experiments have been carried out using the isolated-digit part of
the TIDIGITS database. This database includes eleven isolated-
digit words: “one” to “nine”, “zero”, and “oh”, each digit sur-
rounded by silence parts.

The speech signal, sampled at 8 kHz, is divided into frames
of 30 ms, with an overlap of 10 ms between frames. Both pre-
emphasis and Hamming window are applied to each frame. For
each frame, a multi-channel, Mel-scaled filter bank analysis with
35 channels is used to estimate the log-amplitude spectra of the
speech. These filter channels are then grouped uniformly into 5
sub-bands, each sub-band consisting of information from 7 chan-
nels. A DCT is applied within each sub-band and the first 4 MFCCs
coefficients form the sub-band feature vector. In order to include
dynamic spectral information, the first-order delta parameters were
calculated and added to each sub-band feature vector. The prob-
abilities of these five individual feature streams are merged at the
frame level using the probabilistic union model equipped with the
reliability-based method for estimating the model-order. A 12-
state HMM is estimated for each word, with the first and last states
being tied among all the vocabulary words to account for the si-
lence parts of the utterances. The training of HMMs was per-
formed on clean utterances from the training set. For recognition,
the testing set was corrupted by various types of noises, which con-
sisted of frequency-localized noise component(s). The noise was
added to the speech signal. The frequency-localized noise was

generated by passing the Gaussian white noise through a band-
pass filter. The 3dB cut-off bandwidth of the noise was fixed at
100 Hz and the central frequency of the noise varied. In particular,
five different central frequencies were chosen, which are 600 Hz,
1000 Hz, 1500 Hz, 2100 Hz and 2800 Hz. The calculation of the
SNR was based on the averaged energy of all the test speech ut-
terances; so the noise in each utterance is of a constant loudness,
regardless of the actual energy of speech in that utterance. Two
SNR conditions were considered, i.e. SNR=10dB and SNR=0dB.

4.1. Determining the threshold �

Firstly, in order to determine the threshold value�, we performed
experiments on the training set corrupted by various frequency-
localized noises. We tested different threshold values within a
range����
� ���
�. Figure 2 shows the recognition results achieved.
As can be seen from Figure 2, the recognition performance shows
similar behaviour for different SNR and different number of fea-
ture streams being corrupted. Based on these results, we set the
threshold� � ���� for all the experiments presented below.
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Fig. 2. Recognition accuracy results on the training set corrupted
by various frequency-localized noises as a function of threshold
value �. Number of noisy features depicted as: � - 1, � - 2, 
 - 3.

4.2. Experiments with the numbers of corrupted features fixed
over time

In this section, we present experiments with noises that corrupt the
same number of feature streams over the entire utterance.

The frequency-localized noise components mentioned above
were chosen to create an effect that there were one sub-band, two
sub-bands, and three sub-bands corrupted. Specifically, the noises
with central frequencies 600 Hz, 1000 Hz, 2100 Hz and 2800 Hz
were located within sub-band 2, 3, 4 and 5, respectively, and each
thus caused only corruption of one sub-band (i.e. one feature
stream). The noise with central frequency 1500 Hz was located
around the border of sub-bands 3 and 4, and thus causing the cor-
ruption of two feature streams. The noises corrupting two feature
streams were also created by combination of two noise compo-
nents with different central frequencies, in particular, 600 Hz and
1000 Hz, 600 Hz and 2100 Hz, 600 Hz and 2800 Hz, 1000 Hz and
1500 Hz, 1000 Hz and 2100 Hz, 1000 Hz and 2800 Hz, 1500 Hz
and 2100 Hz, 2100 Hz and 2800 Hz. The noises consisting of
components 600 Hz and 1500 Hz, 1500 Hz and 2800 Hz caused
corruption of three feature streams.

Table 1 presents the recognition results obtained by the union
model with all the model-orders (i.e.� � �� � � � � �) within our
five-band system. The results are shown for both the clean and
noisy speech, as a function of the SNR and the number of cor-
rupted feature streams (nC). From Table 1 it can be seen that the
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Table 1. Recognition accuracy results in the recognition system
with five feature streams by the union model with all model-orders
and with the order selected by using the reliability-based method.

SNR Union model
(dB) nC with order M rel.-based

0 1 2 3 4 order sel.
clean 0 99.2 99.1 98.4 96.1 83.5 99.1

1 88.3 97.4 96.5 91.3 75.6 96.7
10 2 75.6 89.6 93.6 88.3 72.0 92.9

3 72.3 79.0 83.1 83.9 69.1 86.7
1 67.7 91.7 89.4 82.2 67.2 90.0

0 2 50.7 69.9 83.0 77.4 62.2 81.9
3 52.2 63.0 70.1 77.8 62.8 76.3

union model obtained optimal recognition performance (shown in
bold) when the model-order equals the number of noisy feature
streams. On the right side in Table 1 are shown the recognition re-
sults obtained when the reliability-based algorithm was employed
for automatic order selection. We can see that these recognition re-
sults are similar to the results obtained by assuming that the num-
ber of noisy features is known a-priori.

4.3. Experiments with the numbers of corrupted features var-
ied over time

Next, we performed experiments when the number of corrupted
feature streams varies throughout the utterance. Specifically, three
different noises with frequency-characteristics depicted in Figure 3
were used.

The recognition results are presented in Table 2. The first
model we compared was a missing-feature model, which assumed
full a-priori knowledge of the corrupted feature streams (i.e. the
number and location of corrupted feature streams) and removed
those features manually from recognition. The second model be-
ing compared was the baseline HMM, which combines the feature
streams only by the “and” operator. The third model being com-
pared was the union model with state-duration method for model-
order selection [8]. As can be seen from Table 2 the union model
equipped with the reliability-based order selection method signif-
icantly outperformed over both the baseline HMM, and also the
union model equipped with the state-duration method for selecting
the order. As discussed earlier, this is because the reliability-based
method can estimate the order on each frame basis, which is not
possible when using the state-duration method.

Table 2. Recognition accuracy results in the recognition system
with five feature streams by the union model with order selection
based on the state-duration method and reliability method.

SNR Noise Model
(dB) type A-priori Baseline Union with order alg.

knowled. HMM state-dur. rel.-based
N1 95.0 76.3 88.9 93.0

10 N2 95.3 72.4 90.8 93.1
N3 95.2 72.8 90.1 93.6
N1 87.6 53.1 77.3 80.9

0 N2 87.5 50.5 83.2 88.5
N3 90.4 45.1 82.8 90.8
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Fig. 3. The time-frequency characteristics of the non-stationary
noises used.

5. CONCLUSION

In this paper, we presented a reliability-based method for estimat-
ing the number of corrupted feature streams in a given set of fea-
ture streams. This method assumes no knowledge about the noise.
We presented an application of this method to model-order selec-
tion in the union models. The experiments were performed on the
TIDIGITS database corrupted by noises affecting various numbers
of feature streams. Significantly improved results in comparison
to the baseline HMM and the previous union model equipped with
state-duration method for order selection were obtained. Indeed, in
many cases, the proposed model obtained recognition performance
similar to model with full a-priori knowledge about the noisy fea-
ture streams. The proposed reliability-based method for estimating
the number of noisy feature streams is general and thus can be used
to improve the robustness of other classification systems.
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