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ABSTRACT 

In this paper, the environment mismatch due to additive noise is 
assumed as an additive bias in power spectral domain. It is viable 
to introduce some constraints on the values that the bias can take 
due to the internal relation between bias and noise power 
spectrum. We propose to introduce the noise priori knowledge 
into bias estimation process by using maximum a posteriori 
(MAP) criterion. Moreover, the mismatch is usually non-
stationary in real application and sequential algorithm can be 
used to track time varying environment within a test utterance. 
This paper proposes to use the sequential techniques to estimate 
the bias in the MAP framework and update the parameters of 
noise priori adaptively. Speech recognition experiments 
demonstrated that the proposed algorithm outperformed 
sequential ML estimation method and was obviously better than 
the batch mode under non-stationary noise environment. 

1. INTRODUCTION 

In recent years, there has been much interest in the problem of 
robustness of automatic speech recognition. When there is a 
mismatch between the training and testing environment, the 
performance of ASR deteriorates. These sources of mismatch 
include additive noise, channel and transducer mismatch, 
speaker mismatch, etc. [1]. Recently, many methods have been 
proposed to deal with the mismatch, which can be classified as 
signal-space, feature-space and model-space compensation.  
   Stochastic matching method [1] may reduce the mismatch by 
mapping the distorted features to an estimate of the original 
features or mapping the original models to the transformed 
models. No addition adaptation data is required for the 
estimation of the mismatch except the given test utterance and 
the given speech models. In [2], the mismatch due to additive 
noise is modeled by an affine transformation and a bias in the 
cepstral domain and applied stochastic matching method to 
estimate these parameters. However, it is not accurate enough 
because of the nonlinearity relationship between clean speech 
cepstrum and corrupted speech cepstrum. Contrary to the 
nonlinearity in cepstral domain, there exist a linear relation 
between clean speech power spectra and corrupted speech power 
spectra. Considering the linearity, we model the mismatch as an 
additive bias and extend the stochastic matching method in 
spectral domain to avoid the nonlinear function mapping and the 
focus is feature enhancement. 

Maximum likelihood (ML) criterion is usually chosen to 
estimate parameters such as additive bias in classic stochastic 
matching algorithm [1,2]. However, maximum likelihood 
criterion does not introduce any constraints on the possible 

values of additive bias and relies only on the test utterance and 
the original speech models. In this paper, based on the physical 
consideration regarding the additive bias in spectral domain, the 
noise distribution is viewed as a constraint for bias estimation 
and this constraint is incorporated into bias estimation process 
acting as priori knowledge by using MAP criterion. 

In implementation, the batch mode is relatively valid when 
dealing with stationary noise environment, which assume the 
bias to be constant during the whole utterance. However, the 
parameters of interest are sometimes subject to changes and they 
are time varying frequently in real noise environment. In such 
cases, a sequential algorithm [3,4] can be designed to adaptively 
track the varying parameters. The algorithm proposed in this 
paper applies such techniques to sequentially estimate the time 
varying spectral bias. The non-stationary noise environment also 
results in the requirement of updating the parameters of noise 
priori distribution sequentially. Thus in this paper, two sequential 
estimation processes are implemented in turn. Furthermore, 
sequential techniques are helpful in computational efficiency and 
storage requirements.  
    The remainder of this paper is organized as follows. In next 
part, we will formulate the problem. The proposed algorithm is 
described in the third part, which includes the sequential MAP 
estimation for spectral bias and the sequential estimation for 
parameters of noise distribution. The experiments and results are 
presented in the fourth part. Finally, we will draw a conclusion. 

2. PROBLEM FORMULATION 

In situations where there is additive noise, the corrupted speech 
is described by the mismatch function 

                               )()()( kNkXkY ttt +≅    (1) 
where the additive component, Nt(k), is the noise power 
spectrum. Xt(k) and Yt(k) represent the power spectra of clean 
speech and corrupted speech, respectively.  

In the feature space, inverse distortion function fb(Y) maps the 
corrupted speech features Y into original speech features X where 
b is the parameter of the function. From (1), the inverse 
distortion function in power spectral domain becomes 

                               tttbt bYYfX −== )(                      (2) 
Thus the mismatch is modeled by the above additive spectral 
bias b. Compared with that in cepstral domain, the compensation 
algorithm in spectral domain possesses the simpler and more 
accurate inverse distortion function like (2). 

The bias b is usually estimated by using ML criterion because 
its simplicity: 
                                ),|(maxarg' X

b
bYpb Λ=        (3) 
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where Y is adaptation data, ΛX is the set of speech models. 
According to (1) and (2), the bias can be interpreted as a noise 

power spectrum. However, (3) does not consider any priori 
knowledge introduced by the noise power spectrum. In order to 
overcome such shortcoming, we assume that the bias is random 
rather than fixed for each utterance. Then it can be describe by 
its probability density function (pdf) p(b), called noise priori 
distribution. This pdf represents the constraint about the value 
that the bias can take. The priori knowledge of noise spectra is 
then incorporated in the estimation process using MAP criterion: 

),|(maxarg X
b

Ybpb Λ=  

)(),|(maxarg bpbYp X
b

⋅Λ∝    (4) 

However, the batch mode described by (4) is not adequate for 
tracking the non-stationary noise environment. Thus, we assume 
the bias b to be time varying and be sequentially estimated. In 
this paper, the noise priori information are integrated into 
maximum a posteriori (MAP) framework in which the sequential 
techniques are used to estimate the spectral bias. Moreover, 
besides estimating the bias sequentially, the parameters of noise 
priori are updated upon the presentation of the latest data from 
test utterance. The proposed algorithm is described in detail in 
the next part. 

3. SEQUENTIAL MAP ESTIMATION FOR SPECTRAL 
FEATURE ENHANCEMENT 

The whole process includes two optimization processes shown in 
Fig. I. Firstly, given the estimated parameters of noise priori at 
the previous time, estimate the parameters of noise priori at the 
present time. Then based on the estimated parameters of noise 
priori at the present time and the estimated bias at the previous 
time, estimate the spectral bias at the present time. Repeat the 
steps until the end of the test utterance.  
 
 
 

 
Figure I. The framework of the proposed algorithm 

In what follows, due to the assumed diagonal form of 
covariance matrix, we present algorithms in scalar form and drop 
the dependence on the dimension, without loss of generality. 

Next, we will firstly introduce the bias estimation algorithm and 
then the noise priori updating algorithm. 

3.1. Sequential estimation for spectral bias in MAP criterion 

The noise priori can be formally inserted into the estimation 
process by using MAP criterion to derive bias b sequentially as 
follows 

                      ),,,|(maxarg 111
b
ttXt

b
t BYbpb +++ Λ= λ   

                             )|(),,|(maxarg 11
b
ttXt

b
bpBbYp ++ ⋅Λ∝ λ      (5) 

where Yt represents the sequences of observation {y1,y2,…yt}, Bt 
denotes the sequence of estimated bias {b1,b2,…bt} and b

t 1+λ is the 
parameters of noise priori updated at time t+1. The objective 
function above is optimized indirectly using the EM algorithm. 
In the E-step, the MAP auxiliary function can be simplified as 

},,|)|(log),|,,({log)|( 111111, ++++++ Λ⋅+Λ= tXt
b
tXtttttMAP YBbpbCSYpEBbQ λη

                    )|(log)|( 11,
b
tttML bpBbQ ++ ⋅+= λη        (6) 

where St+1={s1,s2,…st+1} be the sequence of state indices, 
Ct+1={c1,c2,…ct+1} be the sequence of indices of mixture 
components, η is a weight to control the importance of the noise 
priori knowledge, and 
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In (7), ξ is the forgetting factor, which is to reduce the effect 
of past data to the new input data, and γτ|t+1,B(n,m) = p(sτ=n, 
cτ=m|Yt+1,Bτ-1, Λ X). The maximization of QML,t+1(b|Bt) with 
respect to b can result in the sequential estimation of the spectral 
bias under ML rule.  

To carry out the M-step, we can use second-order Taylor 
series expansion and the Newton-Raphson technique [3] to 
sequentially estimate the bias via the following recursive form 
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where 
tbbttMAPtt bBbQbI =++ ∂−∂= |/)|()( 2

1,
2

1
.    

3.2. Noise priori selection 

An important element in the maximization of MAP auxiliary 
function in (6) is the choice of the noise priori. Care must be 
taken to see that the priori reflects the variability in the spectral 
bias.  The form of priori can be properly chosen based on some 
physical considerations or on some mathematical attractiveness. 
According to (8), the different assumption of noise priori will 
lead to different estimation form.  

If it is assumed that the noise is to be normally distributed in 
the log-power spectral domain with mean M and variance S2 , e.g. 

b
t 1+λ ={M, S2}, the distribution of noise is modeled by log-normal 

distribution in power spectral domain [5], expressed as 
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Take (6) and (9) into (8) and thus the corresponding 
estimation form is as follows 
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   The St+1 and Ft+1 can be obtained by recursive computation 
based on their previous values at time t. 
   Alternatively, if we assume that the Fourier expansion 
coefficients of noise are Gaussian distribution, the power 
spectrum of noise can be considered as exponential distribution 
[6] as follows 
                                       )exp(1)( bb

bbp
νν

−=     (13) 

   The corresponding estimation form is 
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where the computation of St+1 and Ft+1 is the same as in (11-12). 
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3.3. Noise priori updating 

The parameters of noise priori are commonly subject to changes 
especially in non-stationary noise environment. We proposed to 
update the mean and variance of noise power spectrum in turn by 
using stochastic approximations algorithm proposed in [3,4]. 

After obtaining the statistics of noise power spectrum at the 
preset time, we can update the parameters of noise priori by 
using these statistics. Then the updated noise priori is used to 
estimate the spectral bias at the present time.  

3.3.1. Noise mean updating 

Let µo
b be the initial estimate of noise mean and 

Λt
b={µ1

b,µ2
b,…µt

b} be the sequence of the estimate of noise 
mean up to time t. Then µt+1

b is sought by 
                            ),|(maxarg 11

b
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b
t

b
t Q ΛΛ= ++ µµ
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    In the E-step, the objective function in (16) is simplified to 
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Due to the Gaussian distribution assumption of the power 
spectra of original speech and the corrupted speech and the 
relation shown in (1), the probability of corrupted speech given 
the state n and mixture component m in (17) is  
           ),;(),,|( ,,
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    In the M-step, using the stochastic approximate algorithm [3], 
sequential mean estimation can be obtained by 
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where b
t 1+Σ , which is estimated later, is replaced by b

tΣ  and It+1 
can be obtained by recursive computation based on its previous 
values at time t. 

3.3.2. Noise variance updating 

Applying the similar derivations to the mean updating of noise 
above, we can obtain the sequential estimate of noise variance at 
time t+1 given the estimated µb

t+1. 
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   It is also desirable to introduce forgetting factor into the above 
updating processes like in (7) to de-emphasize the contribution 
of the history data. 

3.4. Implementation issues 

3.4.1. Initial estimate of noise priori parameters 

The sample mean and sample variance of noise power spectra at 
the beginning segment of each test utterance, which is normally 
assumed to be free of any speech data, is used to obtain the 
initial estimate of the parameters of noise priori. 

3.4.2. Representation of clean speech distribution 

The computation of γτ|t+1,B(n,m) in (7) is difficult and need making 
some approximations. Forward-backward algorithm and Viterbi 
approximation can be used to compute the probability. However, it 
is time consuming and not suitable for sequential computation. In 
this paper, we assume that the power spectral space of clean 
speech is represented by N Gaussian mixture models, e.g. ΛX, and 
each model has M components with mixture coefficients, means 
and diagonal covariance matrices {wn,m, µn,m, Σn,m|1≤n≤N, 1≤m≤M}. 
It is assumed the speech frame to be independent and identically 
distributed. Then the probability is approximated by 
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The other probabilities in (20), (21), (23) and (24) can also be 
obtained easily under the representation of speech space. 

3.4.3. Post-processing 

To ensure that the power spectra are non-negative, same 
techniques in spectral subtraction are applied as postprocessing [7]. 
The obtained estimate of original speech spectrum is as follows 
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where α represents over-subtraction coefficient, β represents floor 
coefficient. 

4. EXPERIMENTS AND RESULTS 

The sequential MAP estimation for spectral feature enhancement 
described in this paper has been evaluated in large vocabulary 
continuous speech recognition. One triphone model set for 
recognition was trained by clean speech. A trigram language 
model was used in all the tests with a 40000 words vocabulary. 
Other settings, including acoustic front-end, HMM topology, 
were the same as described in [8].  

The output energies of Mel-scaled filterbank were used to 
replace the power spectrum due to its lower dimension and the 
still kept linear relationship denoted in (1).  

The clean-speech model set described in Section 3.4.2 
includes 184 G corresponding to 61 Mandarin base phones with 
three outputs plus a silence unit. In the process to generate the 
models, the classification information of cepstral features is used 
to guild the clustering process of corresponding spectral features 
in order to keep consistency with recognition system and to take 
advantage of reduced correlation within a cepstral feature. 

The test sets are generated by adding noise to a clean speech 
set which includes 400 sentences spoken by 10 male and 10 
female speakers. The lengths of utterances range from 5 seconds 
to 9 seconds. The recognition correction rate for the clean speech 
set is 76.9%. In the following experiments about sequential MAP 
algorithm, the Log-normal distribution was chosen as the noise 
priori. 

4.1. Evaluation on stationary noise 
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The main objective of these experiments is to compare the 
proposed algorithm with methods in ML criterion. Moreover, the 
batch method [1] is implemented in order to compare it with 
sequential estimation techniques. In this set of experiments, the 
proposed algorithm is evaluated on white noise source from 
NOISEX92 database. The white noise source is added to clean 
speech by varying the signal-to-noise ratio (SNR) from 0db to 
20db.  

Recognition results are shown in Table I. Within this table, 
No_Comp represents no noise compensation. Batch_ML, 
Seq_ML denote batch and sequential estimation techniques in 
ML rule. Seq_MAP denotes the proposed sequential estimation 
method in MAP rule, respectively. In Seq_MAP, no noise priori 
updating process was adopted due to the stationarity of white 
noise. All the methods are implemented in Mel-power spectral 
domain.  

SNR(db) 0 5 10 15 20 

No_Comp 3.56 14.37 33.43 49.18 61.46

Batch_ML 10.34 28.52 45.97 60.20 65.28

Seq_ML 10.42 27.81 43.93 58.25 66.07

Seq_MAP 10.45 28.30 45.45 60.32 66.72

Table I. Recognition correction rates (%) with additive white 
noise (The forgetting factor ξ=0.95 and weightη=1.0) 

From Table I, it has shown the validity of the compensation 
methods in power spectral domain. The sequential MAP method 
performed better than sequential ML method especially at 
middle SNR. Compared with batch method, sequential methods 
cannot guarantee to be better when the background noise is 
rather stationary. However, the performance of sequential MAP 
method can be comparable to batch method over all the SNR 
ranges for the sake of the introduction of noise priori knowledge.  

4.3. Evaluation on non-stationary noise 

In order to study further the performance of the proposed 
algorithm under non-stationary environment, the experiments 
were evaluated on artificial time-varying noise. White and 
babble noise sources that have equal energy were linearly mixed 
by making the mixing weight from one to zero for white noise 
and conversely for babble noise within each utterance. The noise 
priori updating was adopted in order to track the time varying 
environment. The recognition results are shown in Table II. 

From Table II, we can find out that sequential methods 
outperformed the batch method almost over all the SNR ranges 
under the non-stationary noise environment. The sequential 
MAP method with noise priori updating process was the best 
among these compensation methods.  

SNR(db) 0 5 10 15 20 

No_Comp 2.47 11.75 34.45 54.82 66.11 

Batch_ML 5.26 19.58 41.46 59.10 65.84 

Seq_ML 4.87 21.43 43.08 60.46 66.50 

Seq_MAP 6.11 21.81 44.10 62.21 67.02 

Table II. Recognition correction rates (%) with additive time 
varying noise (The forgetting factor ξ=0.6~0.9 for low SNR to 
high SNR and weightη=0.8) 

The above experimental results also demonstrated the 
effectivity of the chosen log-normal distribution. 

5. CONCLUSIONS 

The classic stochastic matching algorithm did not consider any 
priori information and usually implemented in batch mode in 
cepstral domain. The proposed algorithm accurately models the 
environment mismatch as an additive bias in power spectral 
domain. A new framework based on MAP criterion is proposed, 
which incorporates the noise priori knowledge. Sequential 
techniques are adopted into the MAP framework to adaptively 
estimate the spectral bias. In order to track time varying noise 
environment, the parameters of noise priori are also sequentially 
updated. The preliminary results reported on continuous speech 
recognition demonstrated the validity of the proposed algorithm 
not only under stationary but also non-stationary environment. 

To further improve the proposed algorithm, the choice of 
noise priori, how to select the forgetting factor and weight and 
the application of other Bayesian methods are under 
investigation. 
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