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ABSTRACT

In this paper, the environment mismatch due to additive noise is
assumed as an additive bias in power spectral domain. It is viable
to introduce some constraints on the values that the bias can take
due to the internal relation between bias and noise power
spectrum. We propose to introduce the noise priori knowledge
into bias estimation process by using maximum a posteriori
(MAP) criterion. Moreover, the mismatch is usually non-
stationary in real application and sequential algorithm can be
used to track time varying environment within a test utterance.
This paper proposes to use the sequential techniques to estimate
the bias in the MAP framework and update the parameters of
noise priori adaptively. Speech recognition experiments
demonstrated that the proposed algorithm outperformed
sequential ML estimation method and was obviously better than
the batch mode under non-stationary noise environment.

1. INTRODUCTION

In recent years, there has been much interest in the problem of
robustness of automatic speech recognition. When there is a
mismatch between the training and testing environment, the
performance of ASR deteriorates. These sources of mismatch
include additive noise, channel and transducer mismatch,
speaker mismatch, etc. [1]. Recently, many methods have been
proposed to deal with the mismatch, which can be classified as
signal-space, feature-space and model-space compensation.

Stochastic matching method [1] may reduce the mismatch by
mapping the distorted features to an estimate of the original
features or mapping the original models to the transformed
models. No addition adaptation data is required for the
estimation of the mismatch except the given test utterance and
the given speech models. In [2], the mismatch due to additive
noise is modeled by an affine transformation and a bias in the
cepstral domain and applied stochastic matching method to
estimate these parameters. However, it is not accurate enough
because of the nonlinearity relationship between clean speech
cepstrum and corrupted speech cepstrum. Contrary to the
nonlinearity in cepstral domain, there exist a linear relation
between clean speech power spectra and corrupted speech power
spectra. Considering the linearity, we model the mismatch as an
additive bias and extend the stochastic matching method in
spectral domain to avoid the nonlinear function mapping and the
focus is feature enhancement.

Maximum likelihood (ML) criterion is usually chosen to
estimate parameters such as additive bias in classic stochastic
matching algorithm [1,2]. However, maximum likelihood
criterion does not introduce any constraints on the possible
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values of additive bias and relies only on the test utterance and
the original speech models. In this paper, based on the physical
consideration regarding the additive bias in spectral domain, the
noise distribution is viewed as a constraint for bias estimation
and this constraint is incorporated into bias estimation process
acting as priori knowledge by using MAP criterion.

In implementation, the batch mode is relatively valid when
dealing with stationary noise environment, which assume the
bias to be constant during the whole utterance. However, the
parameters of interest are sometimes subject to changes and they
are time varying frequently in real noise environment. In such
cases, a sequential algorithm [3,4] can be designed to adaptively
track the varying parameters. The algorithm proposed in this
paper applies such techniques to sequentially estimate the time
varying spectral bias. The non-stationary noise environment also
results in the requirement of updating the parameters of noise
priori distribution sequentially. Thus in this paper, two sequential
estimation processes are implemented in turn. Furthermore,
sequential techniques are helpful in computational efficiency and
storage requirements.

The remainder of this paper is organized as follows. In next
part, we will formulate the problem. The proposed algorithm is
described in the third part, which includes the sequential MAP
estimation for spectral bias and the sequential estimation for
parameters of noise distribution. The experiments and results are
presented in the fourth part. Finally, we will draw a conclusion.

2. PROBLEM FORMULATION

In situations where there is additive noise, the corrupted speech
is described by the mismatch function

Y (k)= X, (k)+ N, (k) M
where the additive component, N/(k), is the noise power
spectrum. X (k) and Y,(k) represent the power spectra of clean
speech and corrupted speech, respectively.

In the feature space, inverse distortion function f;(Y) maps the
corrupted speech features Y into original speech features X where
b is the parameter of the function. From (1), the inverse
distortion function in power spectral domain becomes

Xz=<fh(Yz)=Yt_bz @
Thus the mismatch is modeled by the above additive spectral
bias b. Compared with that in cepstral domain, the compensation
algorithm in spectral domain possesses the simpler and more
accurate inverse distortion function like (2).

The bias b is usually estimated by using ML criterion because
its simplicity:

b'=argmax p(Y | b,A ) 3)
b
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where Y is adaptation data, Ay is the set of speech models.
According to (1) and (2), the bias can be interpreted as a noise
power spectrum. However, (3) does not consider any priori
knowledge introduced by the noise power spectrum. In order to
overcome such shortcoming, we assume that the bias is random
rather than fixed for each utterance. Then it can be describe by
its probability density function (pdf) p(b), called noise priori
distribution. This pdf represents the constraint about the value
that the bias can take. The priori knowledge of noise spectra is
then incorporated in the estimation process using MAP criterion:

b=argmax p(b|Y,A,)
b
o argmax p(Y |b,A )+ p(b) “)
b

However, the batch mode described by (4) is not adequate for
tracking the non-stationary noise environment. Thus, we assume
the bias b to be time varying and be sequentially estimated. In
this paper, the noise priori information are integrated into
maximum a posteriori (MAP) framework in which the sequential
techniques are used to estimate the spectral bias. Moreover,
besides estimating the bias sequentially, the parameters of noise
priori are updated upon the presentation of the latest data from
test utterance. The proposed algorithm is described in detail in
the next part.

3. SEQUENTIAL MAP ESTIMATION FOR SPECTRAL
FEATURE ENHANCEMENT

The whole process includes two optimization processes shown in
Fig. L. Firstly, given the estimated parameters of noise priori at
the previous time, estimate the parameters of noise priori at the
present time. Then based on the estimated parameters of noise
priori at the present time and the estimated bias at the previous
time, estimate the spectral bias at the present time. Repeat the
steps until the end of the test utterance.

b
b,.
0 D1 b,

b . . .
A Noise Priori . . o
» Bias estimation >

A updating

Figure 1. The framework of the proposed algorithm

In what follows, due to the assumed diagonal form of
covariance matrix, we present algorithms in scalar form and drop

the dependence on the dimension, without loss of generality.

Next, we will firstly introduce the bias estimation algorithm and

then the noise priori updating algorithm.
3.1. Sequential estimation for spectral bias in MAP criterion

The noise priori can be formally inserted into the estimation
process by using MAP criterion to derive bias b sequentially as
follows

A)(?Bﬁﬂ’fﬂ)

t+ t+12

=argmax p(b|Y,
b

ccargmax p(Y,., |b.A ,B)-p(0| 2,) O
b

where Y, represents the sequences of observation {y,y,,...:}, B;

denotes the sequence of estimated bias {b,,b,,...b;} and 2, is the

parameters of noise priori updated at time #+1. The objective
function above is optimized indirectly using the EM algorithm.
In the E-step, the MAP auxiliary function can be simplified as

QMAI,‘/+1 (bIBy ) :E{IOg)(YHl ’Sz+l>q+l ‘b’AX) +77. 1°gp(b|/17+1) ‘ BNAX’YHI}
:QML,Hl(b‘B;)+77‘10gp(b|/1f+l) (©)

where S.1={s1,52,...5,+1} be the sequence of state indices,
Ci1={c1,C25...c;+1} be the sequence of indices of mixture
components, 77 is a weight to control the importance of the noise
priori knowledge, and

R 0, ~b-u’,)’
Ousa®1B) =28 Y3 i (o) (D
=1 n=1 m=1

In (7), & is the forgetting factor, which is to reduce the effect
of past data to the new input data, and vy, g(n,m) = p(s=n,
c=m|Yu1,B;, A x). The maximization of Oy 1(b|B,) with
respect to b can result in the sequential estimation of the spectral
bias under ML rule.

To carry out the M-step, we can use second-order Taylor
series expansion and the Newton-Raphson technique [3] to
sequentially estimate the bias via the following recursive form
aQMAP‘H»l (b ‘ Br) ‘

ob o
where [,,(b,)==0"Qyyp,. (0] B)/0b" .,

b[+l :br+11111(b[)' (8)

3.2. Noise priori selection

An important element in the maximization of MAP auxiliary
function in (6) is the choice of the noise priori. Care must be
taken to see that the priori reflects the variability in the spectral
bias. The form of priori can be properly chosen based on some
physical considerations or on some mathematical attractiveness.
According to (8), the different assumption of noise priori will
lead to different estimation form.

If it is assumed that the noise is to be normally distributed in
the log-power spectral domain with mean M and variance $?, e.g.
/11b+]:{M, §%1, the distribution of noise is modeled by log-normal

distribution in power spectral domain [5], expressed as

1 (Inb-M)? )
pbIA) = exp{- t
Y 2zsp 287

Take (6) and (9) into (8) and thus the corresponding
estimation form is as follows

1-2(Inb, - M)

, S +1-4 e =2}/, (10)
T 1-(Inb, - M
R ==y
where
+1 s N M (yr_ﬂ;m)
S, =Z§l : Zzyr\m,s,,, B ; an
=1 n=l m=1 n,m
d 1+1 . N M 1 12
t+l-7
an EH = 25 Zzyr\wl,l},,l Zx ( )
=1 n=1 m=1 n,m

The S, and F,4y can be obtained by recursive computation
based on their previous values at time ¢.

Alternatively, if we assume that the Fourier expansion
coefficients of noise are Gaussian distribution, the power
spectrum of noise can be considered as exponential distribution
[6] as follows

p(0) =L exp(-2) (13)
1% 14

The corresponding estimation form is
Sr+l _77'(1/Vb)
b == (14)

t+1

where the computation of S,.; and F,, is the same as in (11-12).
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3.3. Noise priori updating

The parameters of noise priori are commonly subject to changes
especially in non-stationary noise environment. We proposed to
update the mean and variance of noise power spectrum in turn by
using stochastic approximations algorithm proposed in [3,4].

After obtaining the statistics of noise power spectrum at the
preset time, we can update the parameters of noise priori by
using these statistics. Then the updated noise priori is used to
estimate the spectral bias at the present time.

3.3.1. Noise mean updating

Let u be the initial estimate of noise mean and
AP={" 1%, "} be the sequence of the estimate of noise
mean up to time ¢. Then z,,,” is sought by

pyy = argmax 0, (4" | Ay A7) {13)
u
where
O (U | Ay, A)) = E{logp(Y,.,,8,,1,Cray | A ) A Y, A3 (16)
In the E-step, the objective function in (16) is simplified to

+l N M
Qut [AGK) =D D pls, =nc, =mlY,, A K. ) logi(y, [mml) (1)
=1 n=l m=1

Due to the Gaussian distribution assumption of the power
spectra of original speech and the corrupted speech and the
relation shown in (1), the probability of corrupted speech given
the state #» and mixture component m in (17) is

P, [nm, "y = N(ypy, +p 25, +20) (18)
In the M-step, using the stochastic approximate algorithm [3],
sequential mean estimation can be obtained by

i = 1)+ 1)) -S4 v ) (19)
where the Fisher information item ; (") and the score item

S(u!,y,,)are given as follows

p t+1 N M b » (20)
lr+1 (ﬂ;) = ZZZp(n,m | yrsAr—])'(zf:,m +zr)
=1 n=1 m=1
Y ! | 1)
SW’yH-I) zmmm|%+lil\;)'(2;m +3+])_ '(ym-] _/’é,m —,Lf)
n=lm=1

where Zﬁ’ﬂ, which is estimated later, is replaced by Zf’ and I,

can be obtained by recursive computation based on its previous
values at time ¢.

3.3.2. Noise variance updating

Applying the similar derivations to the mean updating of noise
above, we can obtain the sequential estimate of noise variance at
time #+1 given the estimated £/, .

20 =2+ L (E))SEL ) (22)
where

1 N M

1t+1 (Zf) = Zzzp(nﬂm ‘ yrazlr)—l)'

=1 n=1 m=1

Ll O, i) (23)

2T @z,

b _ Ny N -1 L(ywl 7/“["{,»1 7/“411 )2
S(Z ’yM) ;;p(nam‘ym 921 ) lz(z'{, +2';_m) ' 2(2'{, +2;'m)2
It is also desirable to introduce forgetting factor into the above
updating processes like in (7) to de-emphasize the contribution
of the history data.

24

}

3.4. Implementation issues

3.4.1. Initial estimate of noise priori parameters

The sample mean and sample variance of noise power spectra at
the beginning segment of each test utterance, which is normally
assumed to be free of any speech data, is used to obtain the
initial estimate of the parameters of noise priori.

3.4.2. Representation of clean speech distribution

The computation of y 4. g(n,m) in (7) is difficult and need making
some approximations. Forward-backward algorithm and Viterbi
approximation can be used to compute the probability. However, it
is time consuming and not suitable for sequential computation. In
this paper, we assume that the power spectral space of clean
speech is represented by N Gaussian mixture models, e.g. Ay, and
each model has M components with mixture coefficients, means
and diagonal covariance matrices {W, u, fym> 2nm|1<HEN, 1<Sm<M}.
It is assumed the speech frame to be independent and identically
distributed. Then the probability is approximated by

Vs (m)=p(s. =n,c. =m|y. B, ,Ay)
W N s, B (25)

T N

DX w N, (.28

i=l j=1
The other probabilities in (20), (21), (23) and (24) can also be
obtained easily under the representation of speech space.

3.4.3. Post-processing

To ensure that the power spectra are non-negative, same
techniques in spectral subtraction are applied as postprocessing [7].
The obtained estimate of original speech spectrum is as follows

X = yt_a'bn l.f yt_a'bt>ﬂ.bt (26)
! B-b,, otherwise

where a represents over-subtraction coefficient, § represents floor
coefficient.

4. EXPERIMENTS AND RESULTS

The sequential MAP estimation for spectral feature enhancement
described in this paper has been evaluated in large vocabulary
continuous speech recognition. One triphone model set for
recognition was trained by clean speech. A trigram language
model was used in all the tests with a 40000 words vocabulary.
Other settings, including acoustic front-end, HMM topology,
were the same as described in [8].

The output energies of Mel-scaled filterbank were used to
replace the power spectrum due to its lower dimension and the
still kept linear relationship denoted in (1).

The clean-speech model set described in Section 3.4.2
includes 184 G corresponding to 61 Mandarin base phones with
three outputs plus a silence unit. In the process to generate the
models, the classification information of cepstral features is used
to guild the clustering process of corresponding spectral features
in order to keep consistency with recognition system and to take
advantage of reduced correlation within a cepstral feature.

The test sets are generated by adding noise to a clean speech
set which includes 400 sentences spoken by 10 male and 10
female speakers. The lengths of utterances range from 5 seconds
to 9 seconds. The recognition correction rate for the clean speech
set is 76.9%. In the following experiments about sequential MAP
algorithm, the Log-normal distribution was chosen as the noise
priori.

4.1. Evaluation on stationary noise
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The main objective of these experiments is to compare the
proposed algorithm with methods in ML criterion. Moreover, the
batch method [1] is implemented in order to compare it with
sequential estimation techniques. In this set of experiments, the
proposed algorithm is evaluated on white noise source from
NOISEX92 database. The white noise source is added to clean
speech by varying the signal-to-noise ratio (SNR) from 0db to
20db.

Recognition results are shown in Table I. Within this table,
No_Comp represents no noise compensation. Batch ML,
Seq ML denote batch and sequential estimation techniques in
ML rule. Seq MAP denotes the proposed sequential estimation
method in MAP rule, respectively. In Seq MAP, no noise priori
updating process was adopted due to the stationarity of white
noise. All the methods are implemented in Mel-power spectral
domain.

SNR(db) 0 5 10 15 20
No_Comp 3.56 14.37 33.43 49.18 61.46
Batch_ML 10.34 28.52 45.97 60.20 65.28

Seq_ML 10.42 27.81 43.93 58.25 66.07
Seq_MAP 10.45 28.30 45.45 60.32 66.72

Table 1. Recognition correction rates (%) with additive white
noise (The forgetting factor £=0.95 and weight n=1.0)

From Table I, it has shown the validity of the compensation
methods in power spectral domain. The sequential MAP method
performed better than sequential ML method especially at
middle SNR. Compared with batch method, sequential methods
cannot guarantee to be better when the background noise is
rather stationary. However, the performance of sequential MAP
method can be comparable to batch method over all the SNR
ranges for the sake of the introduction of noise priori knowledge.

4.3. Evaluation on non-stationary noise

In order to study further the performance of the proposed
algorithm under non-stationary environment, the experiments
were evaluated on artificial time-varying noise. White and
babble noise sources that have equal energy were linearly mixed
by making the mixing weight from one to zero for white noise
and conversely for babble noise within each utterance. The noise
priori updating was adopted in order to track the time varying
environment. The recognition results are shown in Table II.

From Table II, we can find out that sequential methods
outperformed the batch method almost over all the SNR ranges
under the non-stationary noise environment. The sequential
MAP method with noise priori updating process was the best
among these compensation methods.

SNR(db) 0 5 10 15 20

No_Comp 2.47 11.75 34.45 54.82 66.11
Batch_ML 5.26 19.58 41.46 59.10 65.84
Seq_ML 4.87 2143 43.08 60.46 66.50
Seq_MAP 6.11 21.81 44.10 62.21 67.02

Table II. Recognition correction rates (%) with additive time
varying noise (The forgetting factor £&=0.6~0.9 for low SNR to
high SNR and weight n=0.8)

The above experimental results also demonstrated the
effectivity of the chosen log-normal distribution.

5. CONCLUSIONS

The classic stochastic matching algorithm did not consider any
priori information and usually implemented in batch mode in
cepstral domain. The proposed algorithm accurately models the
environment mismatch as an additive bias in power spectral
domain. A new framework based on MAP criterion is proposed,
which incorporates the noise priori knowledge. Sequential
techniques are adopted into the MAP framework to adaptively
estimate the spectral bias. In order to track time varying noise
environment, the parameters of noise priori are also sequentially
updated. The preliminary results reported on continuous speech
recognition demonstrated the validity of the proposed algorithm
not only under stationary but also non-stationary environment.

To further improve the proposed algorithm, the choice of
noise priori, how to select the forgetting factor and weight and
the application of other Bayesian methods are under
investigation.
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