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Abstract: Loundness is a function of sound pressure level.
The power law used in approximating the loudness
function has an exponent that depends on the bandwidth
of the sound signal. This exponent decreases from about
0.3 for a narrow band tone to 0.23 for a broadband
uniform-exciting noise. Exploiting this property of
psychoacoustics of hearing, this paper proposes a new
feature extraction method for robust speech recognition
for FFT-based methods. In the method, larger energy
compression is applied to broadband-like high frequency
bands of the power spectrum of each frame, instead of a
fixed compression for all frequency bands as in root
cepstral analysis or perceptually based linear prediction
(PLP). Further to this, those sound segments or frames
having broadband characteristics like those of fricatives
are given larger compression as well. The frame energy is
used as the index to determine the degree of compression.
By using this new scheme of non-uniform spectral
compression, significant improvement in recognition
accuracy is obtained, especidly in very low SNR, under
white noise environment.

1. INTRODUCTION

The well-known mel-frequency cepstral coefficients
(MFCC) provide a very good representation for speech
recognition purpose. However, when the training and
testing conditions differ, say using clean training
templates to recognize noisy patterns, its performance
degrades drastically. This makes researchers strive for
aternative speech representations that are noise-resistant.

Aspects of human speech perception have stimulated
many research efforts in the development of robust
features for speech recognition. The perceptualy based
linear prediction (PLP) is of this type that differs from
standard linear prediction in three aspects. (1) critical
band integration of speech (2) equa loudness
preemphasis, and (3) cubic root amplitude compression to
approximate the intensity-loudness power law [1]. The
compression reduces the spectral-amplitude variation of
the critical-band spectrum. Coincidentally, in root cepstral
analysis (RCA) [2], the optimal root or exponent for
speech recognition in car noise environments was found to
be around 1/3, using LFCC (for Linear Frequency
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Cepstral  Coefficients) or LPCC (for Linear Predictive
Cepstral  Coefficients) as the speech feature. Their
exponents used were very close to the value 0.3, which is
the one used in the power law of hearing [3,4].

However, loudness grows differently for broadband
stimuli and for narrow-band stimuli [5]. In [3], using
loudness doubling and halving method in hearing
experiments, the exponent was found to be 0.23 for
uniform exciting noise, and 0.3 for a tone. According to
these experimental results in psychoacoustics, energy
output from each frequency band in traditiona filterbank
based analysis should have a different exponent for the
intensity to loudness conversion, since the bandwidth of
the filters increases nonlinearly with frequency.

In this paper, we propose a new approach to tackle
the spectral magnitude compression problem using the
knowledge from psychoacoustics mentioned above.
Rather than using a fixed exponent to compress al filter-
band outputs as in PLP and RCA, larger compression (a
smaller exponent) is applied to high frequency bands of
the power spectrum of each frame. In addition, those
sound segments having broadband characteristics, such as
those of fricatives, are given larger compression as well.
For the sake of simplicity, we use frame energy as the
index to decide the frequency characteristic of each frame.
Basically, our method classifies low energy frame to be
broadband type that will receive large degree of
compression, and increases the compression across filter
bands. We call our approach Perceptualy Non-Uniform
Spectral Compression (PNSC).

2. PERCEPTUALLY NON-UNIFORM SPECTRAL
COMPRESSION

2.1. Fixed Root Spectral Compression vs. Non-uniform

Foectral Compression

Fixed root spectral compression like the one
employed in PLP and RCA uses a fixed root (a positive
exponent smaller than one) applied to the speech
spectrum. In this way, the spectrum intensity is converted
to loudness with the same power irrespective of its
frequency characteristics. For a voiced segment, the high
frequency part of the spectrum is sensitive to noise and
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reducing this sensitivity effectively would result in
information loss for formants. The reason is that for a
voiced segment, most speech information is concentrated
in the low frequency region of the spectrum, which has
high energy and can tolerate more noise contamination.
On the other hand, the high frequency part of the spectrum
islow in energy and is highly affected by noise. Using the
same exponent for the whole spectrum may either under-
compress the high frequency components or over-
compress the low frequency components. This situation is
clearly sub-optimal.

In our previous study [6], non-uniform spectra
compression (NSC) was proposed to deal with the above
problem. The compression root or exponent was no longer
a constant but a function of DFT points, and we used an
exponential decaying curve as the compression function.
This enables the spectral compression to be larger for
reducing variations in the noise-sensitive part of spectrum
significantly while retaining the information-rich part by
compressing the low frequency components less. It is
shown in [6] that significant improvement in recognition
rate can be obtained under white noise environment using
the NSC technique.

However the NSC technique suffers when dealing
with unvoiced sound segments, since the high frequency
components play important role in this case and essential
information is lost by the use of a relatively larger
exponent in the high frequency region of the spectrum.
Also, from the knowledge of psychoacoustics, the value of
the compression exponent depends on the bandwidth of
the sound. These motivate our development of the
Perceptually Non-uniform Spectral Compression (PNSC).

2.2. The PNSC Approach

Our PNSC approach is a general method of spectral
compression applicable to FFT-based speech processing.
Figure 1 shows the procedures involved for both
filterbank type feature methods and non-filterbank type.
After obtaining the power spectrum p(k) of the windowed

speech signal, spectral compression is carried out as;

P(k) = [P(k)+1“0 -1 L)
where k represents DFT points. One is added to the power
spectrum P(K) to ensure it is compressed by a(k) , as
P(k) will be expanded by the compression root when it is

smaller than one. A minus one term is appended to
compensate the added value one.

The core part of PNSC lies in the compression
function a(k) , which is defined as:

ay=] P A pskENZ g
AN LA N/241<k<N-1

where 2 is non-negative and referred to as the decay
parameter, and N is the number of DFT points. Thus the
compression function is an exponentially decaying curve
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Figurel. Feature extraction with PNSC

bounded by A+ Ajand A, . For the same k value, alarger

A would produce a smaller exponent « , resulting in a
steeper curve and larger energy compression.
The exponential definition of «(k) provides a

decreasing exponent towards the high frequency DFT
points or bands. The spectral compression step (the PNSC
block in figure 1) could be done before or after the
filterbank, as shown in the figure. Doing the compression
after the filterbank analysis could save computations,
since the number of bands is much smaller than the
number of DFT points. Furthermore, in filterbank based
speech analysis such as MFCC and PLP analysis, the
bandwidth of filters is increased as frequency increases,
and thus using our scheme, which provides a smaller
exponent for compression in high frequency bands, is in
consistent with the knowledge from psychophysics.

To deal with sound segments with broadband
characteristics, we need to further define A and A in
equation (2) by considering the frame energy o:

1
A= (1_ Ao)(1+ e_(a_lu)/o. ) (3)
1
ﬂ':(lu _/1| )(1_ 1+ e_(a_#)/a)+2’| (4)

where ;4 and o are respectively the mean and standard

deviation of frame energy calculated from all of the
frames of an utterance, and 4, and 4 are the upper and

lower bound of the decay parameter. In equation (3) and
(4), frame energy is used as an index to measure the
broadband characteristic of the sound segment, since
broadband sounds like fricatives have energy much lower
than that of narrowband vowel sounds. The larger the
frame energy ¢, the larger is the value of A and at the
same time the smaller 4 would be resulted. Substituting
equations (3) and (4) back into equation (2), the effect is
that a narrow band sound segment (high energy frame)
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would yield a compression curve starting with a value
near one at k=0 and decreasing towards high frequency;
for a broadband sound segment (low energy frame), a less
steep compression curve that starts at a smaller value and
decreases toward high frequency ending with a value
close to A, a k=N/2 would be yielded. Thus our scheme

provides an exponent for compression that is smaller for
broadband sound segments as well as for frequency bands
that have larger bandwidth, which is consistent with the
knowledge from psychoacoustics, though the absolute
value may not be exactly the same.

3. EXPERIMENTAL RESULTS
Two experiments are carried out to test the
robustness of the features derived from PNSC under white
noise environment. The analysis frame is 32ms long
windowed by Hamming weights and the frame rate is
10ms. We use the following PNSC derived speech
features in the experiments:

(@) LPCC - We compute the pseudo-autocorrelations
from the inverse DFT of |5(k) by using equation (1).
The autocorrelations are used to compute the 12
linear prediction (LP) cepstral coefficients.

(b) MFCC - We use 25 filter bands with 6 filter bands
spaced linearly from 150Hz to 500 Hz and 19 filter
bands spaced non-uniformly according to mel-scale
from 500Hz to S5kHz. PNSC is applied to the output
energies of the filter bands. Then we take logarithm
on the compressed filter band outputs and then do
inverse DCT to generate 12 MFCCs.

() PLP —We use 18 Bark filters from 150Hz to 5000Hz
according to the Bark-scale. After PNSC is applied to
the output energies of Bark filters, the equal-loudness
and the intensity-loudness approximation are then
carried out to calculate 10 PLP cepstral coefficients.

3.1. Phoneme Cluster Error

This experiment is to test whether a decaying
exponential compression curve ¢(k) in equation (2) is a
suitable one for vowels and fricatives by comparing the
probability of the feature vector in its own sound cluster
against other clusters. We extract frames of phonemes
from 8 male and 8 femae speakers from the TIDigit
isolated words database which is composed of 10 isolated
digits and 10 simple commands. The phoneme frames are
hand-labeled and classified into two groups for
comparison: vowels (/al, /el /il, lol, Iul) and fricatives (/4,
[f1, 16/, Ihl). For each phoneme, one utterance from each
speaker is mixed with 100 independent white noise
sequences with the segmental SNR defined as,

S\IRsegment =1O|Oglo{§132 h_/lz:lniz} ®)

where s and n; are the clean speech and noise samples
respectively, M is the length of the frame. Thus 100

frames for each speaker for each phoneme are generated,
with the same segmental SNR. As a result, 1600 speech
feature observations are obtained for each phoneme in the
two groups, and we use them to form Gaussian probability
distribution for each phoneme cluster. What we do in our
experiment is that if the probability of an observation
vector for its own cluster is smaller than that of putting the
observation in another phoneme cluster’s distribution in
the same group, an error count is recorded. This error
count in fact is a measure of the degree of cluster
overlapping. Results using MFCC and PLP cepstra
coefficients with different compression function ¢(k) are

shown in Table 1. A and A in equation (2) are setto 1

and 0O respectively.

As shown in Table 1a, the use of exponential
compression curve is evidently beneficial for separating
vowel clusters from each other, especialy in low SNR.
This is attributed to the exponential curve that reduces
variations in noise-sensitive high frequency bands while
retaining formant information in lower frequency bands.
For fricatives, a less steep compression curve (smaller 1)
or afixed power seems to be more appropriate (Table 1b).
These validate the use of equations (3) and (4) to control A
and A, which adjust the shape of the compression curve
such that a low energy broadband signal would have
larger compression (smaller exponent).

3.2. Recognition Experiment

In this experiment, frame energy is used as the
criterion to determine the shape of the compression curve
as in equations (3) and (4). The recognizer is based on
HMM architecture with 6 states and 4 mixture Gaussian
output densities. The feature vector has two streams; one
contains cepstral coefficients with log energy of the frame
and the other contains their first order derivatives. The
database used is same as the one described in section 3.1,
and we use 2 and 16 utterances for training and testing
respectively from each speaker for each word. White noise
is added to each word according to the global SNR of the
utterance:

N-1 N-1
NRyosa :10|0910{232 Zni2:| (6)
i=0 i—0

where N isthe length of the utterance.

The recognition accuracy using representations
obtained by LPCC, MFCC and PLP with the proposed
PNSC is shown in Table 2. Results using 0.33-fixed
exponent compression are aso included for LPCC and
MFCC in the table for comparison. We can easily see that
the improvement resulting from using PNSC is very
substantial for the three types of representation, especially
for LPCC in low SNR. There is about 60% (absolute
percentage) gain for both 10dB and 5dB case for LPCC
when using PNSC, and the accuracy is well above 80%
even in 10dB for all the three representations, and is close

| - 406




to 80% in 5dB for MFCC. Comparing to our PNSC
approach, the accuracy of using exponent 0.33 or 1 (i.e. no
compression) drops much faster as the SNR decreases,
dliding to an accuracy around 40% for LPCC under 15dB
while it is till above 90% after using PNSC. On the other
hand it is worth noting that there is only a little accuracy
drop in high SNR environment for MFCC and PLP, and
for the LPCC case there are actually some gains.

The parameters A , 4, and 2, are used to control the

compression strength and we find that they compromise
information and variations. A large compression exponent
reduces variations of the features generated but at the
same time a significant amount of information is lost. In
our experiment, suitable values of 4 and A, varies but

those A, vaues yielding good results across different

SNRs are consistently around 0.2 for LPCC, MFCC and
PLP. In this case, for low energy frame, the value of the
exponent for the N/2-th DFT point or last frequency band
would be quit close to A, (see equations (2) and (3)).

Surprisingly, the exponent for broadband sound found by
hearing experiments is 0.23 [3], which is comparable to
our optimal A, values.

4. CONCLUSION

A novel method for dealing with the spectral compression
problem for robust speech recognition is proposed, which
exploits  knowledge from  psychophysics.  This
perceptually non-uniform spectral compression (PNSC)
approach deals with broadband signals in high frequency
bands by using a smaller power for larger energy
compression. Further to this, broadband sound segments
are also given a smaller power using frame energy as the
index. Recognition result shows that high performance is
preserved in clean environment and very substantial
improvement is obtained under low SNR of white noise
situation.

Acknowledgment
The work described in this paper was substantialy
supported by a grant from CityU (Project No. 7000742)

REFERENCES

[1] H. Hermansky, “Perceptual linear predictive (PLP) analysis
of speech”, J. Acoust. Soc. Am 87, April 1990, p1738-1752

[2] P. Alexandre and P. Lockwood, “Root Cepstral Analysis: A
Unified View. Application to Speech Processing in Car
Noise Environments’, Speech Communication 12, pp. 277-
288, 1993.

[3] E. Zwicker and H. Fastl, “Psycho-acoustics, Facts and
Models’, Springer-Verlag, 2™ Ed. 1999.

[4] S.S. Stevens, “On the psychological law”, Psychological
Rev., Vol. 64, 1957.

[5] W. M. Hartmann, “ Signals, Sound, and Sensation”, Springer-
Verlag, 1998.

[6] C.S. Yip, SH. Leung and K.K. Chu, “DFT Based Feature
Extraction with Non-Uniform Spectra Compression for
Robust Speech Recognition”, Proc. ICASSP' 2002, May
2002.

Method | a(K) | 30dB | 20dB | 10dB | 0dB |-10dB
MFCC 1 0.278 | 0.688 | 1.791 | 8.806 | 34.90
0.33 | 0.284 | 0.691 | 1.856 | 8.897 | 34.63
e (000K | 5288 | 0.504 | 1.750 | 8.372 | 29.70
e 00Dk | 0159 | 0.375 | 1.469 | 6.791 | 25.42
g (0019 | 0172 | 0.384 | 1.456 | 6597 | 25.32
PLP 1 0.359 | 0.666 | 2.172 | 11.86 | 35.33
033 | 0638 0.622 | 2.204 | 12.08 | 35.19
g (000K | 9578 | 0.653 | 2.084 | 11.08 | 30.06
g (000K | 9322 | 0,503 | 1.850 | 8.175 | 25.60

g (001K | 0300 | 0.447 | 1.925 | 8.425 | 25.90
Table 1a. Cluster error (%) for vowels

Method | (k) | 30dB | 20dB | 10dB | 0dB | -100B
MFCC 1 0.594 | 1.427 | 4.125 | 20.09 | 43.38
0.33 | 0672 | 1.401 | 4073 | 19.92 | 43.56
e (000K | 0506 | 1.375 | 4.198 | 20.05 | 44.02
e 00Dk | 0911 | 1.786 | 5.859 | 22.89 | 41.34
e (005K | 0896 | 1.901 | 6.266 | 22.99 | 41.18
PLP 1 1.214 | 1.240 | 3.370 | 16.26 | 40.97
0.33 | 1432|1927 |3.813 | 16.39 | 41.06
e (000K | 1 005 | 1.146 | 3.667 | 17.56 | 43.84
g 00Dk | 3146 | 5.323 | 10.85 | 26.94 | 41.62

e (009K | 3755 | 6427 | 12.23 | 26.93 | 41.47
Table 1b. Cluster error (%) for fricatives

Method A, A A, |Clean 30dB 15dB 10dB 5dB 0dB

LPCC 0.2 0.005 0.025 [98.80 98.49 93.65 86.67 70.81 44.52
+PNSC 0.2 0.005 0.03 [98.90 98.66 94.19 87.31 71.98 46.69

0.2 0.01 0.015 [99.10 98.72 93.80 87.14 73.81 44.47
L PCC+compression of 0.33 |98.04 95.35 38.97 22.02 11.28 5.63

L PCC no compression 98.33 95.68 4541 24.17 8.99 5.22

MFCC 0.3 0.01 0.03 [98.75 98.33 94.50 89.67 79.30 54.98
+PNSC 0.3 0.015 0.025 [98.63 98.21 94.54 89.96 79.10 57.42

0.3 0.02 0.03 [98.82 98.35 93.97 89.55 78.95 58.44
M FCC+compression of 0.33(99.04 98.57 86.00 64.28 39.37 17.79
MFCC no compression 08.98 98.61 85.54 66.67 44.24 19.14
PLP 0.2 001 0.02 [97.86 97.49 92.90 86.50 72.28 47.62
+PNSC 0.2 0.01 0.025 [97.84 97.35 91.51 84.91 71.98 43.38

0.3 002 0.06 [97.72 96.80 89.80 82.36 68.99 44.96
PLP 98.33 98.19 78.46 50.31 24.85 9.414

Table 2. Recognition accuracy (%)
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