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Abstract: Loundness is a function of sound pressure level. 
The power law used in approximating the loudness 
function has an exponent that depends on the bandwidth 
of the sound signal. This exponent decreases from about 
0.3 for a narrow band tone to 0.23 for a broadband 
uniform-exciting noise. Exploiting this property of 
psychoacoustics of hearing, this paper proposes a new 
feature extraction method for robust speech recognition 
for FFT-based methods. In the method, larger energy 
compression is applied to broadband-like high frequency 
bands of the power spectrum of each frame, instead of a 
fixed compression for all frequency bands as in root 
cepstral analysis or perceptually based linear prediction 
(PLP). Further to this, those sound segments or frames 
having broadband characteristics like those of fricatives 
are given larger compression as well. The frame energy is 
used as the index to determine the degree of compression. 
By using this new scheme of non-uniform spectral 
compression, significant improvement in recognition 
accuracy is obtained, especially in very low SNR, under 
white noise environment. 
 

1. INTRODUCTION 
The well-known mel-frequency cepstral coefficients 

(MFCC) provide a very good representation for speech 
recognition purpose. However, when the training and 
testing conditions differ, say using clean training 
templates to recognize noisy patterns, its performance 
degrades drastically. This makes researchers strive for 
alternative speech representations that are noise-resistant. 

Aspects of human speech perception have stimulated 
many research efforts in the development of robust 
features for speech recognition. The perceptually based 
linear prediction (PLP) is of this type that differs from 
standard linear prediction in three aspects: (1) critical 
band integration of speech (2) equal loudness 
preemphasis, and (3) cubic root amplitude compression to 
approximate the intensity-loudness power law [1]. The 
compression reduces the spectral-amplitude variation of 
the critical-band spectrum. Coincidentally, in root cepstral 
analysis (RCA) [2], the optimal root or exponent for 
speech recognition in car noise environments was found to 
be around 1/3, using LFCC (for Linear Frequency 

Cepstral Coefficients) or LPCC (for Linear Predictive 
Cepstral Coefficients) as the speech feature. Their 
exponents used were very close to the value 0.3, which is 
the one used in the power law of hearing [3,4].  

However, loudness grows differently for broadband 
stimuli and for narrow-band stimuli [5]. In [3], using 
loudness doubling and halving method in hearing 
experiments, the exponent was found to be 0.23 for 
uniform exciting noise, and 0.3 for a tone. According to 
these experimental results in psychoacoustics, energy 
output from each frequency band in traditional filterbank 
based analysis should have a different exponent for the 
intensity to loudness conversion, since the bandwidth of 
the filters increases nonlinearly with frequency. 

In this paper, we propose a new approach to tackle 
the spectral magnitude compression problem using the 
knowledge from psychoacoustics mentioned above. 
Rather than using a fixed exponent to compress all filter-
band outputs as in PLP and RCA, larger compression (a 
smaller exponent) is applied to high frequency bands of 
the power spectrum of each frame. In addition, those 
sound segments having broadband characteristics, such as 
those of fricatives, are given larger compression as well. 
For the sake of simplicity, we use frame energy as the 
index to decide the frequency characteristic of each frame. 
Basically, our method classifies low energy frame to be 
broadband type that will receive large degree of 
compression, and increases the compression across filter 
bands. We call our approach Perceptually Non-Uniform 
Spectral Compression (PNSC). 
 

2. PERCEPTUALLY NON-UNIFORM SPECTRAL 
COMPRESSION 

 
2.1. Fixed Root Spectral Compression vs. Non-uniform 

Spectral Compression 
Fixed root spectral compression like the one 

employed in PLP and RCA uses a fixed root (a positive 
exponent smaller than one) applied to the speech 
spectrum. In this way, the spectrum intensity is converted 
to loudness with the same power irrespective of its 
frequency characteristics. For a voiced segment, the high 
frequency part of the spectrum is sensitive to noise and 
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reducing this sensitivity effectively would result in 
information loss for formants. The reason is that for a 
voiced segment, most speech information is concentrated 
in the low frequency region of the spectrum, which has 
high energy and can tolerate more noise contamination. 
On the other hand, the high frequency part of the spectrum 
is low in energy and is highly affected by noise. Using the 
same exponent for the whole spectrum may either under-
compress the high frequency components or over-
compress the low frequency components. This situation is 
clearly sub-optimal. 

Windowed speech signal 

FFT 

Spectral magnitude squared 

PNSC Filterbank processing 

PNSC Compressed power spectrum

In our previous study [6], non-uniform spectral 
compression (NSC) was proposed to deal with the above 
problem. The compression root or exponent was no longer 
a constant but a function of DFT points, and we used an 
exponential decaying curve as the compression function. 
This enables the spectral compression to be larger for 
reducing variations in the noise-sensitive part of spectrum 
significantly while retaining the information-rich part by 
compressing the low frequency components less. It is 
shown in [6] that significant improvement in recognition 
rate can be obtained under white noise environment using 
the NSC technique. 

Other feature extraction 
procedures 

Compressed band energies 

Other feature extraction 
procedures 

Figure 1.   Feature extraction with PNSC

However the NSC technique suffers when dealing 
with unvoiced sound segments, since the high frequency 
components play important role in this case and essential 
information is lost by the use of a relatively larger 
exponent in the high frequency region of the spectrum. 
Also, from the knowledge of psychoacoustics, the value of 
the compression exponent depends on the bandwidth of 
the sound. These motivate our development of the 
Perceptually Non-uniform Spectral Compression (PNSC).  
 
2.2. The PNSC Approach 

Our PNSC approach is a general method of spectral 
compression applicable to FFT-based speech processing. 
Figure 1 shows the procedures involved for both 
filterbank type feature methods and non-filterbank type. 
After obtaining the power spectrum P of the windowed 
speech signal, spectral compression is carried out as: 

)(k

 1]1)([)(~ )( −+= kkPkP α  (1) λλ = (
where k represents DFT points. One is added to the power 
spectrum  to ensure it is compressed by)(kP )(kα , as 

will be expanded by the compression root when it is 
smaller than one. A minus one term is appended to 
compensate the added value one. 

)(kP

The core part of PNSC lies in the compression 
function )(kα , which is defined as: 
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where λ is non-negative and referred to as the decay 
parameter, and N is the number of DFT points. Thus the 
compression function is an exponentially decaying curve 

bounded by 0AA+ and . For the same k value, a larger οA
λ  would produce a smaller exponent α , resulting in a 
steeper curve and larger energy compression. 
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The exponential definition of )k  provides a 
decreasing exponent towards the high frequency DFT 
points or bands. The spectral compression step (the PNSC 
block in figure 1) could be done before or after the 
filterbank, as shown in the figure. Doing the compression 
after the filterbank analysis could save computations, 
since the number of bands is much smaller than the 
number of DFT points. Furthermore, in filterbank based 
speech analysis such as MFCC and PLP analysis, the 
bandwidth of filters is increased as frequency increases, 
and thus using our scheme, which provides a smaller 
exponent for compression in high frequency bands, is in 
consistent with the knowledge from psychophysics. 

To deal with sound segments with broadband 
characteristics, we need to further define A and λ in 
equation (2) by considering the frame energy ∂ : 

 )1( /) σ+
=

e
A  (3) 

  σµ +−
−∂−

)11 /)(  (4) 

where µ  and are respectively the mean and standard 
deviation of frame energy calculated from all of the 
frames of an utterance, and uλ and lλ are the upper and 
lower bound of the decay parameter. In equation (3) and 
(4), frame energy is used as an index to measure the 
broadband characteristic of the sound segment, since 
broadband sounds like fricatives have energy much lower 
than that of narrowband vowel sounds. The larger the 
frame energy ∂ , the larger is the value of A and at the 
same time the smaller  would be resulted. Substituting 
equations (3) and (4) back into equation (2), the effect is 
that a narrow band sound segment (high energy frame) 
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would yield a compression curve starting with a value 
near one at k=0 and decreasing towards high frequency; 
for a broadband sound segment (low energy frame), a less 
steep compression curve that starts at a smaller value and 
decreases toward high frequency ending with a value 
close to  at k=N/2 would be yielded. Thus our scheme 
provides an exponent for compression that is smaller for 
broadband sound segments as well as for frequency bands 
that have larger bandwidth, which is consistent with the 
knowledge from psychoacoustics, though the absolute 
value may not be exactly the same. 

οA

segment

 
3. EXPERIMENTAL RESULTS 

 Two experiments are carried out to test the 
robustness of the features derived from PNSC under white 
noise environment. The analysis frame is 32ms long 
windowed by Hamming weights and the frame rate is 
10ms. We use the following PNSC derived speech 
features in the experiments: 
(a) LPCC - We compute the pseudo-autocorrelations 

from the inverse DFT of P  by using equation (1). 
The autocorrelations are used to compute the 12 
linear prediction (LP) cepstral coefficients. 

)(~ k

(b) MFCC - We use 25 filter bands with 6 filter bands 
spaced linearly from 150Hz to 500 Hz and 19 filter 
bands spaced non-uniformly according to mel-scale 
from 500Hz to 5kHz. PNSC is applied to the output 
energies of the filter bands. Then we take logarithm 
on the compressed filter band outputs and then do 
inverse DCT to generate 12 MFCCs. 

(c) PLP – We use 18 Bark filters from 150Hz to 5000Hz 
according to the Bark-scale. After PNSC is applied to 
the output energies of Bark filters, the equal-loudness 
and the intensity-loudness approximation are then 
carried out to calculate 10 PLP cepstral coefficients. 

 
3.1.  Phoneme Cluster Error 
 This experiment is to test whether a decaying 
exponential compression curve )(kα  in equation (2) is a 
suitable one for vowels and fricatives by comparing the 
probability of the feature vector in its own sound cluster 
against other clusters. We extract frames of phonemes 
from 8 male and 8 female speakers from the TIDigit 
isolated words database which is composed of 10 isolated 
digits and 10 simple commands. The phoneme frames are 
hand-labeled and classified into two groups for 
comparison: vowels (/a/, /e/, /i/, /o/, /u/) and fricatives (/s/, 
/f/, /θ/, /h/). For each phoneme, one utterance from each 
speaker is mixed with 100 independent white noise 
sequences with the segmental SNR defined as, 
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where si and ni are the clean speech and noise samples 
respectively, M is the length of the frame. Thus 100 

frames for each speaker for each phoneme are generated, 
with the same segmental SNR. As a result, 1600 speech 
feature observations are obtained for each phoneme in the 
two groups, and we use them to form Gaussian probability 
distribution for each phoneme cluster. What we do in our 
experiment is that if the probability of an observation 
vector for its own cluster is smaller than that of putting the 
observation in another phoneme cluster’s distribution in 
the same group, an error count is recorded. This error 
count in fact is a measure of the degree of cluster 
overlapping. Results using MFCC and PLP cepstral 
coefficients with different compression function )(kα are 
shown in Table 1. A   and A  in equation (2) are set to 1 
and 0 respectively. 

ο

 As shown in Table 1a, the use of exponential 
compression curve is evidently beneficial for separating 
vowel clusters from each other, especially in low SNR. 
This is attributed to the exponential curve that reduces 
variations in noise-sensitive high frequency bands while 
retaining formant information in lower frequency bands. 
For fricatives, a less steep compression curve (smaller λ ) 
or a fixed power seems to be more appropriate (Table 1b). 
These validate the use of equations (3) and (4) to control A 
and λ , which adjust the shape of the compression curve 
such that a low energy broadband signal would have 
larger compression (smaller exponent). 
 
3.2. Recognition Experiment 
 In this experiment, frame energy is used as the 
criterion to determine the shape of the compression curve 
as in equations (3) and (4). The recognizer is based on 
HMM architecture with 6 states and 4 mixture Gaussian 
output densities. The feature vector has two streams: one 
contains cepstral coefficients with log energy of the frame 
and the other contains their first order derivatives. The 
database used is same as the one described in section 3.1, 
and we use 2 and 16 utterances for training and testing 
respectively from each speaker for each word. White noise 
is added to each word according to the global SNR of the 
utterance: 
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where N is the length of the utterance. 
 The recognition accuracy using representations 
obtained by LPCC, MFCC and PLP with the proposed 
PNSC is shown in Table 2. Results using 0.33-fixed 
exponent compression are also included for LPCC and 
MFCC in the table for comparison. We can easily see that 
the improvement resulting from using PNSC is very 
substantial for the three types of representation, especially 
for LPCC in low SNR. There is about 60% (absolute 
percentage) gain for both 10dB and 5dB case for LPCC 
when using PNSC, and the accuracy is well above 80% 
even in 10dB for all the three representations, and is close 
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to 80% in 5dB for MFCC. Comparing to our PNSC 
approach, the accuracy of using exponent 0.33 or 1 (i.e. no 
compression) drops much faster as the SNR decreases, 
sliding to an accuracy around 40% for LPCC under 15dB 
while it is still above 90% after using PNSC. On the other 
hand it is worth noting that there is only a little accuracy 
drop in high SNR environment for MFCC and PLP, and 
for the LPCC case there are actually some gains.  
 The parameters , οA lλ and uλ are used to control the 
compression strength and we find that they compromise 
information and variations. A large compression exponent 
reduces variations of the features generated but at the 
same time a significant amount of information is lost. In 
our experiment, suitable values of lλ and uλ varies but 
those  values yielding good results across different 
SNRs are consistently around 0.2 for LPCC, MFCC and 
PLP. In this case, for low energy frame, the value of the 
exponent for the N/2-th DFT point or last frequency band 
would be quit close to A  (see equations (2) and (3)). 
Surprisingly, the exponent for broadband sound found by 
hearing experiments is 0.23 [3], which is comparable to 
our optimal  values. 

οA

ο

οA
 

4. CONCLUSION 
A novel method for dealing with the spectral compression 
problem for robust speech recognition is proposed, which 
exploits knowledge from psychophysics. This 
perceptually non-uniform spectral compression (PNSC) 
approach deals with broadband signals in high frequency 
bands by using a smaller power for larger energy 
compression.  Further to this, broadband sound segments 
are also given a smaller power using frame energy as the 
index. Recognition result shows that high performance is 
preserved in clean environment and very substantial 
improvement is obtained under low SNR of white noise 
situation. 
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Method )(kα  30dB 20dB 10dB 0dB -10dB

MFCC 1 0.278 0.688 1.791 8.806 34.90 
 0.33 0.284 0.691 1.856 8.897 34.63 
 ke )001.0(− 0.288 0.594 1.750 8.372 29.70 
 ke )01.0(− 0.159 0.375 1.469 6.791 25.42 
 ke )015.0(− 0.172 0.384 1.456 6.597 25.32 

PLP 1 0.359 0.666 2.172 11.86 35.33 
 0.33 0.638 0.622 2.294 12.08 35.19 
 ke )001.0(− 0.578 0.653 2.084 11.08 30.06 
 ke )01.0(− 0.322 0.503 1.850 8.175 25.60 
 ke )015.0(− 0.300 0.447 1.925 8.425 25.90 

Table 1a.  Cluster error (%) for vowels 
 

Method )(kα  30dB 20dB 10dB 0dB -10dB 

MFCC 1 0.594 1.427 4.125 20.09 43.38 
 0.33 0.672 1.401 4.073 19.92 43.56 
 ke )001.0(− 0.526 1.375 4.198 20.05 44.02 
 ke )01.0(− 0.911 1.786 5.859 22.89 41.34 
 ke )015.0(− 0.896 1.901 6.266 22.99 41.18 

PLP 1 1.214 1.240 3.370 16.26 40.97 
 0.33 1.432 1.927 3.813 16.39 41.06 
 ke )001.0(− 1.005 1.146 3.667 17.56 43.84 
 ke )01.0(− 3.146 5.323 10.85 26.94 41.62 
 ke )015.0(− 3.755 6.427 12.23 26.93 41.47 

Table 1b.  Cluster error (%) for fricatives 
 

Method οA lλ  uλ  Clean 30dB 15dB 10dB 5dB 0dB

0.2 0.005 0.025 98.80 98.49 93.65 86.67 70.81 44.52LPCC 
+PNSC 0.2 0.005 0.03 98.90 98.66 94.19 87.31 71.98 46.69
 0.2 0.01 0.015 99.10 98.72 93.80 87.14 73.81 44.47
LPCC+compression of 0.33 98.04 95.35 38.97 22.02 11.28 5.63 
LPCC no compression 98.33 95.68 45.41 24.17 8.99 5.22 

0.3 0.01 0.03 98.75 98.33 94.50 89.67 79.30 54.98MFCC 
+PNSC 0.3 0.015 0.025 98.63 98.21 94.54 89.96 79.10 57.42
 0.3 0.02 0.03 98.82 98.35 93.97 89.55 78.95 58.44
MFCC+compression of 0.33 99.04 98.57 86.00 64.28 39.37 17.79
MFCC no compression 98.98 98.61 85.54 66.67 44.24 19.14

0.2 0.01 0.02 97.86 97.49 92.90 86.50 72.28 47.62PLP 
+PNSC 0.2 0.01 0.025 97.84 97.35 91.51 84.91 71.98 43.38
 0.3 0.02 0.06 97.72 96.80 89.80 82.36 68.99 44.96
PLP 98.33 98.19 78.46 50.31 24.85 9.414

Table 2.   Recognition accuracy (%) 
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