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ABSTRACT 
                                                   
It was previously proposed to use the Principal Component 
Analysis (PCA) to derive the data-driven temporal filters for 
obtaining robust features in speech recognition, in which the first 
principal components are taken as the filter coefficients [1,2]. In 
this paper, a multi-eigenvector approach is proposed instead, in 
which the first M eigenvectors obtained in PCA are weighted by 
their corresponding eigenvalues and summed to be used as the 
filter coefficients. Experimental results showed that the multi-
eigenvector filters offer significant recognition performance as 
compared to the previously proposed PCA-derived filters under 
all different conditions tested with the AURORA2 database, 
especially when the training and testing environments are highly 
mismatched. 

 
1. INTRODUCTION 

 
Real applications of speech recognition strongly demand the 
recognition performance to be robust with respect to 
environmental changes. However, the recognition accuracy of 
almost all existing recognition systems drops dramatically when 
there is a mismatch between the training and testing conditions. 
Substantial research efforts have been made in this area. One 
category of such approaches, among many others, is focused on 
finding a set of relatively robust feature representation for 
speech signals, so that it is less sensitive to various 
environmental distortions. The Cepstral Mean Subtraction (CMS) 
[3], Cepstral Normalization (CN) [4], and Relative Spectral 
(RASTA) [5] techniques are typical examples of this category. 
All of them can be considered as performing filtering on the time 
trajectories of the speech features in order to alleviate harmful 
effects of various distortions and corruptions. Such approaches 
have been proved to be able to improve the robustness of the 
recognition performance significantly, and the subject of this 
paper is also along this direction. 

The filters used by CMS, CN and RASTA are independent 
of the recognition tasks. Although they are very effective, there 
is no guarantee that these solutions are optimal for a specific 
recognition task or application environment. Therefore, filtering 
coefficients optimized for a specific recognition task or 
application environment via data-driven approaches based on 
some optimization criteria become highly desirable. The 
criterion of Linear Discriminant Analysis (LDA) has been 
widely applied [6,7] in such approaches in the optimization 

process. In recent works, the criteria of both Principal 
Component Analysis (PCA) [1,2] and Minimum Classification 
Error (MCE) [2] were also used as the optimization criteria to 
derive the data-driven temporal filters. It was shown [2] that all 
these data-driven temporal filters, although derived from 
different criteria, can offer reasonable recognition performance 
improvements for recognition tasks with mismatched conditions.  

In this paper, PCA is again used as the optimization 
criterion for deriving temporal filters as well. However, different 
from the previous works [1,2], here we take into consideration 
multi-eigenvectors rather than the first principal component only 
as used previously [1,2], and the resulted temporal filters are the 
properly weighted linear combination of these multi-
eigenvectors. It is shown that these new temporal filters can 
offer significant improvements over the previously obtained 
PCA-derived filters based on the first principal components only.  

The remainder of this paper has 4 sections. The approach to 
obtain the multi-eigenvector temporal filters is first described in 
section 2. The experimental setup and the experimental results 
are then presented and discussed in sections 3 and 4. Section 5 
finally gives the concluding remarks. 

 
2. TEMPORAL FILTER DESIGN USING 

PRINCIPAL COMPONENT ANALYSIS (PCA) 
 

Given an ordered sequence of K-dimensional feature vectors x(n) 
as shown in Figure 1(a), with time index n=1, ……,N, and 
feature index k=1,2,…K,  
x(n)=[x(n,1) x(n,2), …, x(n,k), …, x(n,K)]T, n=1,...,N            (1) 
then the k’th time trajectory of x(n) is the sequence [x(1,k)  
x(2,k) …… x(N,k)], denoted as yk(n), where yk(n)=x(n,k). Now 
we'd like to design an L-sample FIR-filter Wk(z) to be performed 
on the k’th time trajectory yk(n). First, an L-sample rectangular 
window is shifted along the k’th time trajectory to obtain the 
sequences of L-dimensional vectors zk(n), n=1 … N-L+1,  
zk(n)=[ yk(n) yk(n+1) yk(n+2) …… yk(n+L-1)]T .                     (2) 

So zk(n) is the windowed vector of the k’th time trajectory 
started at the time index n, on which the L-sample FIR filter is 
applied, as depicted in Figure 1(b). 
 
2.1 Previously proposed PCA-derived temporal filters [1] 
 
In the previous work [1], the above L-dimensional vectors, zk(n), 
are viewed as the samples of a random vector zk, and hence the 
mean vector and the covariance matrix of zk can be calculated, 
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Figure 1. The representation of the time trajectories of feature sequences: (a) 
the time index n and the feature index k and (b) the windowed vector zk(n) 
moved along a time trajectory 
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Following the procedure of PCA, the components of the first 
eigenvector φk corresponding to the largest eigenvalue of the 
covariance matrix

kzΣ  is then taken as the coefficients of the L-

sample filter, which maps the L-dimensional random vector zk 
into a one-dimensional random variable with maximum variance. 
Such process is carried out for each time trajectory, thus yielding 
a separate FIR filter for each time trajectory.  
 
2.2 The multi-eigenvector temporal filtering approach  
 
Based on the PCA theory [8], assume φi,k, i=1,2,…L are the L 
distinct normalized eigenvectors of the covariance matrix

kz
Σ  

with corresponding decreasing eigenvalues λi,k, i=1,2,…L, i.e., 
λ1,k≥ λ2,k≥…≥ λL,k, and yi,k, i=1,2,…L are the random variables 
representing the projections of the random vector zk on φi,k. It 
can then be shown that the variance of yi,k is equal to λi,k. As a 
result, with the previously proposed PCA-derived temporal 
filters, the filter coefficients used are the components of the 
eigenvector φ1,k, therefore the filter output is the random variable 
y1,k with variance being the largest eigenvalue λ1,k. Therefore y1,k 
can be viewed as the most “expressive” 1-dimensional 
representation of zk, and this is apparently why the recognition 
can be improved.  

However, from the above discussion it is clear that there is 
still some part of information carried by zk which was not used at 
all in the previously proposed PCA-derived filters, i.e., the other 
yi,k’s , i=2,…L, which also carry some information of zk that may 
be helpful in improving the recognition performance. With these 
observations, the new multi-eigenvector temporal filters 
proposed in this paper are   
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where wk is the new coefficients of the L-sample filter for time 
trajectory k, the summation is over the first M eigenvectors with 

larger corresponding eigenvalues, and 1< M ≤ L. Note that the 
length of the temporal filter vector wk is normalized to unity, so 
as to be consistent with the eigenvector used in the previously 
proposed PCA-derived temporal filters. Also, the first M 
eigenvectors are weighted by the corresponding eigenvalues in 
Eq. (5), therefore the outputs of the new temporal filter can be 
viewed as the samples of a new random variable 
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In other words, in addition to y1,k as used previously, with the 
proposed multi-eigenvector filters the several “next expressive” 
but “orthogonal” representations of zk are also included here, 
while weighted by their corresponding variance values. The 
parameter M, or the number of eigenvectors used here, can be 
determined empirically. In the experiments presented below M is 
chosen to be 3. Such a choice can also be verified by the fact 
that λ1,k, λ2,k, and λ3,k are always significantly larger than other 
eigenvalues.  

In the experiments below, it will also be shown that the new 
multi-eigenvector filters obtained with the approach here are 
low-pass filters whose characteristics in speech signals is able to 
enhance the syllabic-rate information (about 4Hz) in speech 
signals. However, with the low-pass characteristics the slowly-
varying channel bias components may also be emphasized. In 
order to handle this problem, in the experiments below the 
original Mel-Frequency Cepstral Coefficients (MFCC) are first 
proposed by Cepstral Normalization (CN) [4] in order to 
properly reduce the low-frequency components. Therefore 
multi-eigenvector temporal filters discussed here are derived 
from, and performed on, the normalized cepstral coefficients. In 
other words, the CN process was first performed on the MFCC’s 
of the training speech database to obtain the multi-eigenvector 
filters. These filters are then applied to the time trajectories of 
the MFCC’s of both the training and testing database to obtain 
the new feature parameters. These new parameters are finally 
used in model training as well as the testing experiments.  
 

3. EXPERIMENTAL SETUP 
 
The AURORA2 database distributed by ETSI committee is used 
for the experiments here. It contains several sets of noisy speech 
with additive noise of different characteristics and levels plus 
some channel effects, as representatives for real-world 
environments. The clean speech data in the AURORA2 database 
consisting of 8440 utterances of English connected digits were 
used to obtain the data-driven temporal filters in the experiments 
here. Each utterance was first converted into 13-dimensional 
Mel-frequency cepstral coefficients (12 MFCCs + log energy 
coefficient) using the AURORA WI007 Front-end, as defined in 
the AURORA2 documentation. The resulted 8440 strings of 
MFCC’s were then processed by the Cepstral Normalization 
(CN) algorithm, such that the mean and variance parameters 
were normalized to 0 and 1 respectively. Then for each time 
trajectory of the feature vectors, two versions of temporal filters 
were constructed, one with the previously proposed PCA-based 
approach with a single eigenvector [1,2], and the other with the 
multi-eigenvector approach proposed here as described in 
section 2. The length L of the temporal filters was empirically 
set to be 15. 
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                (a)                                 (b) 

Figure 2. The frequency responses of (a) the 13 multi-eigenvector temporal 

filters and (b) the 13 previously proposed PCA-derived filters  
 

Figure 2 shows the frequency responses of the obtained temporal 
filters: (a) with the new multi-eigenvector approach proposed 
here in this paper, and (b) with the previously proposed PCA-
based approach with a single eigenvector, both for the 13 time 
trajectories, trained from the clean speech database of 
AURORA2. From these figures we can have some initial 
observations as follows.  
1. Both sets of the temporal filters are low-pass. They don’t 
attenuate the low modulation frequency components, although 
CMS or RASTA does. This is why the Cepstral Normalization 
(CN) process is useful here. 
2. The 13 previously proposed PCA-derived filters for the 13 
temporal trajectories are very close, which the 13 multi-
eigenvector temporal filters are obviously different around 
0~15Hz.  
3. The previously proposed PCA-derived filters have the shape 
of a main-lobe and several side-lobes; but the multi-eigenvector 
filters proposed here have a wider pass-band without apparent 
zeros. 
4. For the new multi-eigenvectors filters proposed here, the 
modulation-frequency components around 0~4.5Hz are specially 
emphasized, therefore they may somehow enhance the syllabic-
rate information (about 4Hz [5]) in the speech signals, which is a 
possible reason for the recognition performance improvements 
as found in the data below.         
                                              

4. EXPERIMENTAL RESULTS 
 

In the recognition experiments, there are two training modes in 
AURORA2: clean speech training and multi-condition training. 
In the multi-condition training, the acoustic models were trained 
with speech data under different noisy conditions, added with 
different types of noise at different levels and so on. For each 
training mode, three sets (Sets A, B and C) of utterances 
artificially contaminated by different types of noise (subway, 
babble, car, etc.) at different SNR levels (ranging from -5dB to 
20dB) were tested. Since the proposed approach here only has to 
do with the front-end feature extraction, all the following-up 
procedures for training and recognition are exactly identical to 
the reference experiments stated in AURORA2 documentation.   
          

In the training process, the 13-dimensional normalized 
MFCC features, i.e., the MFCC features but processed by CN, 
were used to construct both the multi-eigenvector and the 
previously proposed PCA-derived temporal filters, and these  
two sets of temporal filters were then applied on these 13-
dimensional normalized MFCC features. The resulted 13-
dimensional new features plus their delta and delta-delta features 
were the components in the finally used 39-dimensional feature 
vectors. With these new feature vectors the HMM's for each 
digit were trained. Similarly, in the testing phase the clean and 
noise corrupted testing speech data were also first converted to 
MFCC's, processed by CN, and then individually processed by 
the above two sets of temporal filters optimized with the training 
data, to form various sets of feature vectors for testing.  
 

4.1 Recognition results 
Table 1 lists the recognition results respectively for the baseline 
experiment (Baseline), i.e., with the original MFCC features 
without any further processing, and the experiments with the 
features processed by CN only (CN), first by CN and then by the 
previously proposed PCA-derived filters (CN+PCA), first by CN 
and then by the multi-eigenvector filters proposed here (CN+M-
eigen). The results include those for two training modes, clean 
speech training and multi-condition training, and three testing 
sets, sets A, B, and C. The length of the filters, L, for both of the 
two latter cases are set to be 15, and the number of eigenvectors, 
M,  for the multi-eigenvector filters proposed here in eq. (6) is 
set to be 3. The word accuracy listed in Table 1 is the average of 
the recognition rates between 0-20dB. The overall word error 
rate (WER) improvements in Table 1 were calculated with 
respect to the baseline results. Note that with the proposed multi-
eigenvector filters proposed in this paper applied after CN, very 
significant improvements over CN only or CN plus the 
previously proposed PCA-derived filters were obtained in both 
clean speech and multi-condition training modes, and the 
improvements in the clean training mode are specially high. This 
verified that the new multi-eigenvector temporal filters are 
particularly effective when the training and testing environments 
are mismatched. Retailed comparison of the data in Table 1 
indicates that the proposed multi-eigenvector filters performed 
better than the previously proposed PCA-derived filters in every 
case, for all the testing sets in both training modes.  

From the right part of Table 1, we also observe that in the 
multi-condition training mode the new multi-eigenvector filters 
can successfully improve the recognition performance of the 
CN-processed speech features, but this is not always true for the 
previously proposed PCA-derived filters. 
 

4.2 Choice of the parameter M 
We mentioned in section 2.2 that the parameter M, or the 
number of eigenvectors to be included, is chosen to be 3 because 
the eigenvalues λi,k becomes much smaller for i >3. Here some 

Clean speech training                           Multi-condition training 
Approaches 

Set A Set B Set C Overall WER 
improvements Set A Set B Set C Overall WER 

improvements 

Baseline 61.34  55.76  66.14  - 87.82  86.22  83.78  - 
CN 70.18  70.78  66.37  20.62 89.67  88.07  86.10  14.28 

CN+PCA 78.99  79.69  77.47  45.31  87.91  86.90  86.70  8.78 
CN+M-eigen 81.90  82.78 80.83  53.33  90.43 89.22  89.11  25.95 

Table 1. Word accuracy for the three testing sets A,B,C under clean- and multi-condition training modes. The overall word error rate (WER) improvements were 
calculated with respect to the baseline experiments. 
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experimental results for different values of M are presented. The 
results for the same recognition experiments, as in Table 1, i.e., 
for the two training modes and three test sets, but using different 
values of M (M=1,2,3,4,5,6,9,12,15) are depicted in Figure 
3(a)(b). Of course here the case of M=1 is exactly the previously 
proposed PCA-derived filters (CN+PCA in Table 1). It can be 
found clearly from this figure that very sharp improvements in 
performance were obtainable as M was increased from 1 to 3 in 
all cases, but the improvements turned out to be saturated if M 
was further increased from 3. As mentioned above, the 
eigenvalues λ4,k~λ15,k are very small relative to λ1,k~λ3,k; therefore 
the information projected on the first three eigenvectors  
φ1,k~φ3,k are much more important, and actually dominate the 
recognition processes. 
 

                  (a)                               (b) 

Figure 3. Recognition accuracy for multi-eigenvector filters with different M 
values: (a) clean speech training and (b) multi-condition training  
    

4.3 Choice of the filter length L 
When designing the temporal filters including the multi-
eigenvector filters as proposed here, it is well known that if the 
length of the temporal filters L is smaller, the width of the pass-
band of the filters will be larger. This is clear by comparing 
Figure 2(a) for L=15 with Figure 4(a)(b) for multi-eigenvector 
filters with M=3 but L=10 and 20 respectively. From these 
figures we can observe that the 3 dB width of the pass-band are 
around 6~7Hz and 4Hz for the cases of L=10 and 20 respectively, 
while that for L=15 is about 4.5Hz. Since the syllabic-rate of 
human speech is roughly around 4Hz, so the characteristics of 
the filters for the case L=15 may exactly emphasize the syllabic-
rate information and thus the performance roughly saturates at 
L=15, as can be found by the recognition accuracy shown in 
Table2. 
 

 
                (a)                                 (b)   
Figure 4. The frequency responses of the 13 multi-eigenvector filters as L is set 
to (a) 10 (b) 20  

  Clean speech training 
L Set A Set B Set C 
10 79.95  80.22  77.23  
15 81.90  82.78  80.83  
20 81.75 82.64 80.79 

Table 2. Recognition accuracy for multi-eigenvector filters with M=3 and 
different values of L with clean speech training mode 
 

4.4 Further comparison between the two versions of temporal 
filters with some other metric 
In this subsection, we’d like to compare the multi-eigenvector 
filters proposed here with the previously proposed PCA-derived 

filters using a metric different from recognition accuracy. The 
metric used is the average of the normalized distance between 
the corrupted features, x , and the corresponding clean speech 
features,  x,  

  ,d E
 −

=  
  

x x
x

                      (7) 

where the average is taken over all the testing speech. This 
metric is to provide an estimated measure of the robustness of 
the temporal-filtered MFCC features with respect to the 
corruption. Smaller values of d imply that the features are less 
influenced by the corruption. Table 3 compares this distance 
measure d for the three testing sets A,B,C under different SNR 
values. We see that the multi-eigenvector filters proposed here 
gives smaller averaged normalized distance in all cases. This 
offers another explanation why the proposed multi-eigenvector 
filters give better recognition accuracy. 

Table 3. The average normalized distance between clean and corrupted 
speech features under various SNRs and two different temporal filter 
techniques 

 

5. CONCLUSION 
 

In this paper, we proposed a multi-eigenvector approach of 
designing data-driven temporal filters, in which more than one 
eigenvectors are weighted by their corresponding eigenvalues 
and summed to form the filter coefficients. Very encouraging 
experimental results have been obtained and this approach is 
also shown to be particularly effective when the training and 
testing environments are highly mismatched. 
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Approaches 20db 15db 10db 5db 0db -5db
CN+PCA 0.6826 0.7554 0.8281  0.9081  0.9932 1.0855 Set 

A CN+M-eigen 0.6211 0.6940 0.7688  0.8521  0.9473 1.0587 
CN+PCA 0.6693 0.7394 0.8150  0.9053  1.0016 1.1086 Set

B CN+M-eigen 0.6071 0.6778 0.7556  0.8493  0.9559 1.0782 
CN+PCA 0.6836 0.7561 0.8305  0.9123  1.0057 1.1029 Set

C CN+M-eigen 0.6238 0.7002 0.7808  0.8763  0.9902 1.1098 

I - 403

➡ ➠


