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ABSTRACT

It was previously proposed to use the Principal Component
Analysis (PCA) to derive the data-driven temporal filters for
obtaining robust features in speech recognition, in which the first
principal components are taken as the filter coefficients [1,2]. In
this paper, a multi-eigenvector approach is proposed instead, in
which the first M eigenvectors obtained in PCA are weighted by
their corresponding eigenvalues and summed to be used as the
filter coefficients. Experimental results showed that the multi-
eigenvector filters offer significant recognition performance as
compared to the previously proposed PCA-derived filters under
all different conditions tested with the AURORA2 database,
especially when the training and testing environments are highly
mismatched.

1. INTRODUCTION

Real applications of speech recognition strongly demand the
recognition performance to be robust with respect to
environmental changes. However, the recognition accuracy of
almost all existing recognition systems drops dramatically when
there is a mismatch between the training and testing conditions.
Substantial research efforts have been made in this area. One
category of such approaches, among many others, is focused on
finding a set of relatively robust feature representation for
speech signals, so that it is less sensitive to various
environmental distortions. The Cepstral Mean Subtraction (CMS)
[3], Cepstral Normalization (CN) [4], and Relative Spectral
(RASTA) [5] techniques are typical examples of this category.
All of them can be considered as performing filtering on the time
trajectories of the speech features in order to alleviate harmful
effects of various distortions and corruptions. Such approaches
have been proved to be able to improve the robustness of the
recognition performance significantly, and the subject of this
paper is also along this direction.

The filters used by CMS, CN and RASTA are independent
of the recognition tasks. Although they are very effective, there
is no guarantee that these solutions are optimal for a specific
recognition task or application environment. Therefore, filtering
coefficients optimized for a specific recognition task or
application environment via data-driven approaches based on
some optimization criteria become highly desirable. The
criterion of Linear Discriminant Analysis (LDA) has been
widely applied [6,7] in such approaches in the optimization
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process. In recent works, the criteria of both Principal
Component Analysis (PCA) [1,2] and Minimum Classification
Error (MCE) [2] were also used as the optimization criteria to
derive the data-driven temporal filters. It was shown [2] that all
these data-driven temporal filters, although derived from
different criteria, can offer reasonable recognition performance
improvements for recognition tasks with mismatched conditions.

In this paper, PCA is again used as the optimization
criterion for deriving temporal filters as well. However, different
from the previous works [1,2], here we take into consideration
multi-eigenvectors rather than the first principal component only
as used previously [1,2], and the resulted temporal filters are the
properly weighted linear combination of these multi-
eigenvectors. It is shown that these new temporal filters can
offer significant improvements over the previously obtained
PCA-derived filters based on the first principal components only.

The remainder of this paper has 4 sections. The approach to
obtain the multi-eigenvector temporal filters is first described in
section 2. The experimental setup and the experimental results
are then presented and discussed in sections 3 and 4. Section 5
finally gives the concluding remarks.

2. TEMPORAL FILTER DESIGN USING
PRINCIPAL COMPONENT ANALYSIS (PCA)

Given an ordered sequence of K-dimensional feature vectors x(n)

as shown in Figure 1(a), with time index n=1, ......, N, and
feature index k=1,2,...K,
x()=[x(n,1) x(n,2), ..., x(n.k), ..., x(n,K)]*, n=1,...N (€8]

then the k’th time trajectory of x(n) is the sequence [x(1,k)
x(2,k) ...... x(N,k)], denoted as yy(n), where yy(n)=x(nk). Now
we'd like to design an L-sample FIR-filter W(z) to be performed
on the k’th time trajectory yy(n). First, an L-sample rectangular
window is shifted along the k’th time trajectory to obtain the
sequences of L-dimensional vectors zy(n), n=1 ... N-L+1,

() =[ yu(n) y(n+1) y(n+2) ... yin+L-DJ" . @
So zi(n) is the windowed vector of the k'th time trajectory
started at the time index », on which the L-sample FIR filter is
applied, as depicted in Figure 1(b).

2.1 Previously proposed PCA-derived temporal filters [1]

In the previous work [1], the above L-dimensional vectors, zx(n),
are viewed as the samples of a random vector z;, and hence the
mean vector and the covariance matrix of z; can be calculated,
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Figure 1. The representation of the time trajectories of feature sequences: (a)
the time index n and the feature index k and (b) the windowed vector zx(n)
moved along a time trajectory
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Following the procedure of PCA, the components of the first
eigenvector ¢, corresponding to the largest eigenvalue of the
covariance matrix sz is then taken as the coefficients of the L-

sample filter, which maps the L-dimensional random vector z;

into a one-dimensional random variable with maximum variance.

Such process is carried out for each time trajectory, thus yielding
a separate FIR filter for each time trajectory.

2.2 The multi-eigenvector temporal filtering approach

Based on the PCA theory [8], assume ¢;;, i=1,2,...L are the L
distinct normalized eigenvectors of the covariance matrix sz

with corresponding decreasing eigenvalues 4;y, i=1,2,...L, i.e.,
App> 205> . 2> Apg and vy, i=1,2, ... L are the random variables
representing the projections of the random vector z; on @;. It
can then be shown that the variance of y;; is equal to 4;;. As a
result, with the previously proposed PCA-derived temporal
filters, the filter coefficients used are the components of the
eigenvector ¢, , therefore the filter output is the random variable
v, with variance being the largest eigenvalue 4, ;. Therefore y;
can be viewed as the most “expressive” 1-dimensional
representation of z;, and this is apparently why the recognition
can be improved.

However, from the above discussion it is clear that there is
still some part of information carried by z; which was not used at
all in the previously proposed PCA-derived filters, i.e., the other
YiK's , i=2,...L, which also carry some information of z; that may
be helpful in improving the recognition performance. With these
observations, the new multi-eigenvector temporal filters
proposed in this paper are

o -
Wi :Z,‘:1 j’i.k¢i,k s Wy =fk—7wk , (5)

T M

w 2

‘ k ‘ Zi=1/1i,k
where wy, is the new coefficients of the L-sample filter for time
trajectory k, the summation is over the first M eigenvectors with

larger corresponding eigenvalues, and / <M< L. Note that the
length of the temporal filter vector wy is normalized to unity, so
as to be consistent with the eigenvector used in the previously
proposed PCA-derived temporal filters. Also, the first M
eigenvectors are weighted by the corresponding eigenvalues in
Eq. (5), therefore the outputs of the new temporal filter can be
viewed as the samples of a new random variable

1 M
> A - ©)

M o
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In other words, in addition to y;, as used previously, with the
proposed multi-eigenvector filters the several “next expressive”
but “orthogonal” representations of z; are also included here,
while weighted by their corresponding variance values. The
parameter M, or the number of eigenvectors used here, can be
determined empirically. In the experiments presented below M is
chosen to be 3. Such a choice can also be verified by the fact
that A4, 424, and A3, are always significantly larger than other
eigenvalues.

In the experiments below, it will also be shown that the new
multi-eigenvector filters obtained with the approach here are
low-pass filters whose characteristics in speech signals is able to
enhance the syllabic-rate information (about 4Hz) in speech
signals. However, with the low-pass characteristics the slowly-
varying channel bias components may also be emphasized. In
order to handle this problem, in the experiments below the
original Mel-Frequency Cepstral Coefficients (MFCC) are first
proposed by Cepstral Normalization (CN) [4] in order to
properly reduce the low-frequency components. Therefore
multi-eigenvector temporal filters discussed here are derived
from, and performed on, the normalized cepstral coefficients. In
other words, the CN process was first performed on the MFCC’s
of the training speech database to obtain the multi-eigenvector
filters. These filters are then applied to the time trajectories of
the MFCC’s of both the training and testing database to obtain
the new feature parameters. These new parameters are finally
used in model training as well as the testing experiments.
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3. EXPERIMENTAL SETUP

The AURORA2? database distributed by ETSI committee is used
for the experiments here. It contains several sets of noisy speech
with additive noise of different characteristics and levels plus
some channel effects, as representatives for real-world
environments. The clean speech data in the AURORA2 database
consisting of 8440 utterances of English connected digits were
used to obtain the data-driven temporal filters in the experiments
here. Each utterance was first converted into 13-dimensional
Mel-frequency cepstral coefficients (12 MFCCs + log energy
coefficient) using the AURORA WI007 Front-end, as defined in
the AURORA2 documentation. The resulted 8440 strings of
MFCC’s were then processed by the Cepstral Normalization
(CN) algorithm, such that the mean and variance parameters
were normalized to 0 and 1 respectively. Then for each time
trajectory of the feature vectors, two versions of temporal filters
were constructed, one with the previously proposed PCA-based
approach with a single eigenvector [1,2], and the other with the
multi-eigenvector approach proposed here as described in
section 2. The length L of the temporal filters was empirically
set to be 15.
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Figure 2. The frequency responses of (a) the 13 multi-eigenvector temporal
filters and (b) the 13 previously proposed PCA-derived filters
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Figure 2 shows the frequency responses of the obtained temporal
filters: (a) with the new multi-eigenvector approach proposed
here in this paper, and (b) with the previously proposed PCA-
based approach with a single eigenvector, both for the 13 time
trajectories, trained from the clean speech database of
AURORA2. From these figures we can have some initial
observations as follows.

1. Both sets of the temporal filters are low-pass. They don’t
attenuate the low modulation frequency components, although
CMS or RASTA does. This is why the Cepstral Normalization
(CN) process is useful here.

2. The 13 previously proposed PCA-derived filters for the 13
temporal trajectories are very close, which the 13 multi-
eigenvector temporal filters are obviously different around
0~15Hz.

3. The previously proposed PCA-derived filters have the shape
of a main-lobe and several side-lobes; but the multi-eigenvector
filters proposed here have a wider pass-band without apparent
Zeros.

4. For the new multi-eigenvectors filters proposed here, the
modulation-frequency components around 0~4.5Hz are specially
emphasized, therefore they may somehow enhance the syllabic-
rate information (about 4Hz [5]) in the speech signals, which is a
possible reason for the recognition performance improvements
as found in the data below.

4. EXPERIMENTAL RESULTS

In the recognition experiments, there are two training modes in
AURORAZ2: clean speech training and multi-condition training.
In the multi-condition training, the acoustic models were trained
with speech data under different noisy conditions, added with
different types of noise at different levels and so on. For each
training mode, three sets (Sets A, B and C) of utterances
artificially contaminated by different types of noise (subway,
babble, car, etc.) at different SNR levels (ranging from -5dB to
20dB) were tested. Since the proposed approach here only has to
do with the front-end feature extraction, all the following-up
procedures for training and recognition are exactly identical to
the reference experiments stated in AURORA2 documentation.

In the training process, the 13-dimensional normalized
MFCC features, i.e., the MFCC features but processed by CN,
were used to construct both the multi-eigenvector and the
previously proposed PCA-derived temporal filters, and these
two sets of temporal filters were then applied on these 13-
dimensional normalized MFCC features. The resulted 13-
dimensional new features plus their delta and delta-delta features
were the components in the finally used 39-dimensional feature
vectors. With these new feature vectors the HMM's for each
digit were trained. Similarly, in the testing phase the clean and
noise corrupted testing speech data were also first converted to
MFCC's, processed by CN, and then individually processed by
the above two sets of temporal filters optimized with the training
data, to form various sets of feature vectors for testing.

4.1 Recognition results

Table 1 lists the recognition results respectively for the baseline
experiment (Baseline), i.e., with the original MFCC features
without any further processing, and the experiments with the
features processed by CN only (CN), first by CN and then by the
previously proposed PCA-derived filters (CN+PCA), first by CN
and then by the multi-eigenvector filters proposed here (CN+M-
eigen). The results include those for two training modes, clean
speech training and multi-condition training, and three testing
sets, sets A, B, and C. The length of the filters, L, for both of the
two latter cases are set to be 15, and the number of eigenvectors,
M, for the multi-eigenvector filters proposed here in eq. (6) is
set to be 3. The word accuracy listed in Table 1 is the average of
the recognition rates between 0-20dB. The overall word error
rate (WER) improvements in Table 1 were calculated with
respect to the baseline results. Note that with the proposed multi-
eigenvector filters proposed in this paper applied after CN, very
significant improvements over CN only or CN plus the
previously proposed PCA-derived filters were obtained in both
clean speech and multi-condition training modes, and the
improvements in the clean training mode are specially high. This
verified that the new multi-eigenvector temporal filters are
particularly effective when the training and testing environments
are mismatched. Retailed comparison of the data in Table 1
indicates that the proposed multi-eigenvector filters performed
better than the previously proposed PCA-derived filters in every
case, for all the testing sets in both training modes.

From the right part of Table 1, we also observe that in the
multi-condition training mode the new multi-eigenvector filters
can successfully improve the recognition performance of the
CN-processed speech features, but this is not always true for the
previously proposed PCA-derived filters.

4.2 Choice of the parameter M

We mentioned in section 2.2 that the parameter M, or the
number of eigenvectors to be included, is chosen to be 3 because
the eigenvalues 4, ; becomes much smaller for i >3. Here some

A b Clean speech training Multi-condition training
PRrOaches 1 seia Set B seec | Oumiwer SetA Set B Setc | Owsnwer
Baseline 61.34 55.76 66.14 87.82 86.22 83.78 -
CN 70.18 70.78 66.37 20.62 89.67 88.07 86.10 14.28
CN+PCA 78.99 79.69 77.47 45.31 87.91 86.90 86.70 8.78
CN+M-eigen 81.90 82.78 80.83 53.33 90.43 89.22 89.11 25.95

Table 1. Word accuracy for the three testing sets A,B,C under clean- and multi-condition training modes. The overall word error rate (WER) improvements were

calculated with respect to the baseline experiments.
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experimental results for different values of M are presented. The
results for the same recognition experiments, as in Table 1, i.e.,
for the two training modes and three test sets, but using different
values of M (M=1,2,3,4,5,6,9,12,15) are depicted in Figure
3(a)(b). Of course here the case of M=1 is exactly the previously
proposed PCA-derived filters (CN+PCA in Table 1). It can be
found clearly from this figure that very sharp improvements in
performance were obtainable as M was increased from 1 to 3 in
all cases, but the improvements turned out to be saturated if M
was further increased from 3. As mentioned above, the
eigenvalues A,,~4;5 are very small relative to 4, ;~13,; therefore
the information projected on the first three eigenvectors
©1~9s; are much more important, and actually dominate the
recognition processes.

Clean speech training mode. Multi-conditioned training mode.
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Figure 3. Recognition accuracy for multi-eigenvector filters with different M
values: (a) clean speech training and (b) multi-condition training

4.3 Choice of the filter length L

When designing the temporal filters including the multi-
eigenvector filters as proposed here, it is well known that if the
length of the temporal filters L is smaller, the width of the pass-
band of the filters will be larger. This is clear by comparing
Figure 2(a) for L=15 with Figure 4(a)(b) for multi-eigenvector
filters with M=3 but L=10 and 20 respectively. From these
figures we can observe that the 3 dB width of the pass-band are
around 6~7Hz and 4Hz for the cases of L=10 and 20 respectively,
while that for L=15 is about 4.5Hz. Since the syllabic-rate of
human speech is roughly around 4Hz, so the characteristics of
the filters for the case L=15 may exactly emphasize the syllabic-
rate information and thus the performance roughly saturates at
L=15, as can be found by the recognition accuracy shown in
Table2.

magnitude
maghnitude
[

q
)

Hz
(a) (b)
Figure 4. The frequency responses of the 13 multi-eigenvector filters as L is set
to (a) 10 (b) 20

Clean speech training
L Set A Set B Set C
10 79.95 80.22 77.23
15 81.90 82.78 80.83
20 81.75 82.64 80.79

Table 2. Recognition accuracy for multi-eigenvector filters with M=3 and
different values of L with clean speech training mode

4.4 Further comparison between the two versions of temporal
filters with some other metric

In this subsection, we’d like to compare the multi-eigenvector
filters proposed here with the previously proposed PCA-derived

filters using a metric different from recognition accuracy. The
metric used is the average of the normalized distance between
the corrupted features, x , and the corresponding clean speech
features, x,
PR [ u} , ™)
X

where the average is taken over all the testing speech. This
metric is to provide an estimated measure of the robustness of
the temporal-filtered MFCC features with respect to the
corruption. Smaller values of d imply that the features are less
influenced by the corruption. Table 3 compares this distance
measure d for the three testing sets A,B,C under different SNR
values. We see that the multi-eigenvector filters proposed here
gives smaller averaged normalized distance in all cases. This
offers another explanation why the proposed multi-eigenvector
filters give better recognition accuracy.

Approaches | 20db 15db 10db Sdb 0db -Sdb
Set CN+PCA 0.6826 | 0.7554 | 0.8281 | 0.9081 | 0.9932 | 1.0855

A | CN+M-eigen | 0.6211| 0.6940 | 0.7688 | 0.8521 | 0.9473 | 1.0587
Set CN+PCA 0.6693 | 0.7394 | 0.8150 | 0.9053 | 1.0016 | 1.1086
B | CN+M-eigen | 0.6071| 0.6778 | 0.7556 | 0.8493 | 0.9559 | 1.0782
Set CN+PCA 0.6836 | 0.7561 | 0.8305 | 0.9123 | 1.0057 | 1.1029

C | CN+M-eigen |0.6238| 0.7002 | 0.7808 | 0.8763 | 0.9902 | 1.1098
Table 3. The average normalized distance between clean and corrupted
speech features under various SNRs and two different temporal filter
techniques

5. CONCLUSION

In this paper, we proposed a multi-eigenvector approach of
designing data-driven temporal filters, in which more than one
eigenvectors are weighted by their corresponding eigenvalues
and summed to form the filter coefficients. Very encouraging
experimental results have been obtained and this approach is
also shown to be particularly effective when the training and
testing environments are highly mismatched.
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