
ABSTRACT
In this paper we model noise as a sequence of states of a dynam-
ical system with a continuum of states. Observations generated
by such a system are assumed to be related to the state of the sys-
tem by a functional relation which models clean speech as the
corrupting influence on noise. We show how the closed-form
representation of such a dynamical system can be rendered trac-
table and solved iteratively by dynamically sampling the state
space, resulting in an estimated noise sequence (sequence of
states), which can then be removed from the noisy speech signal
by standard methods. Experiments on speech corrupted by vari-
ous noises show that the proposed algorithm performs better than
our best previous algorithm, VTS, which assumes that the noise
is stationary.

1. INTRODUCTION

Any noise sequence is the output of some underlying process.
We may not fully know the nature or the parameters of the pro-
cess. To counter our ignorance, we model the process largely as
random, with additional formulaic representation of what little
we do know about the system. Dynamical systems represent con-
venient tools to facilitate such representations. They can accom-
modate arbitrarily complex processes, diverse sources of
information, and are amenable to standard analytical tools when
simplified to suitable forms.

In this paper we attempt to represent the underlying process
behind any noise using a simple dynamical system with a contin-
uum of states. Using this model, we attempt to track the noise
affecting a speech signal.

The conventional approach to estimating noise affecting a speech
signal is to model the speech signal as the output of a dynamical
system, such as an HMM, and to estimate the noise based on
variations of the measured speech signal from typical output of
the known underlying system. We, however, treat the problem
inversely and assume that it is the speech signal that corrupts our
observations of the noise. The measurements of the observed
speech-corrupted noise are non-linearly related to both, the
hypothetical measurements of the noise that would have been
made, had there been no corrupting speech, and the correspond-
ing measurement of the corrupting speech in the absence of
noise. Note that this is different from the statement that the noise
and the corrupting speech are non-linearly combined. Based on
this model, we attempt to estimate the noise from its speech-cor-
rupted measurements.

Once the noise is estimated, however, we revert to the conven-

tional approach and attempt to eliminate the estimated noise
from the noisy speech signal, assuming that speech is the pri-
mary signal to be measured.

In this paper we will call dynamical systems which have a con-
tinuum of states as continuous-state dynamical systems. While
these can be arbitrarily complex, we choose to work with simple
systems with linear Markovian dynamics. These represent a first-
order fit to any true underlying dynamical system, however com-
plex, and often capture most of the salient features of the under-
lying system. Also, first-order parameters are fewer and can be
robustly learned from a small amount of training data. This is of
immense practical value in most situations encountered in speech
recognition, wherein noise must be compensated for.

Tracking dynamical systems in an analytical manner becomes
difficult when the conditional densities of the output of the sys-
tem are mixtures of many component densities. This is unfortu-
nately the case in most real-world processes, including noise and
speech. In these cases the complexity of the estimated distribu-
tion for the state of the system, as measured by the number of
parameters in it, increases exponentially with the progression of
time. Additionally, when the relationship between the measured
output and the true output of the system is non-linear, the esti-
mated state distributions may not have a closed form at all.

In continuous-state dynamical systems such as the ones used in
this paper we encounter both these problems. We restrain the
complexity of the estimated distribution by sampling predicted
distributions for the output of the system at each time step, and
propagating these thus discretized distributions to further steps of
algorithm. This approach has been successfully used in several
problems (e.g. [1,2]). The non-linearity of the relation between
the state of the system and the observations is dealt with by lin-
earization using Taylor series expansions around previous esti-
mates of the system state [3]. 

Section 2 of this paper describes the continuous-state dynamical
system used to model noise. Section 3 describes the algorithm
used to estimate the noise. Section 4 describes how we estimate
clean speech feature vectors from the feature vectors of noisy
speech and the estimated distribution of noise. Sections 5 and 6
present an experimental evaluation of the proposed algorithm
and related conclusions, respectively.

2. DYNAMICAL SYSTEM FOR NOISE

A dynamical system can be described by two equations: a state
equation that specifies the state dynamics of the system, and an
observation equation that relates the underlying state of the sys-
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tem to the measurements of the output of the system. When the
state dynamics of the system are assumed to be Markovian, the
state equation can be represented as

(1)

where , the state at any time , is a function of the state at time
 and a driving term . The output of the system at any time

is usually assumed to be dependent only on the state of the system
at that time. The observation equation can be represented as

(2)

where  is the observation at time  and  represents any noise
affecting the system at time .

In many cases, the best set of state and observation equations
required to model a system accurately may be quite complex,
making the estimation of the state from the observations intracta-
ble. In addition, the estimation of the parameters of such a system
may be very difficult from finite amounts of data. For these rea-
sons, it is often advantageous to approximate the dynamics with a
simple first-order system. In keeping with this argument, we
model the dynamics of the system whose states are log-spectrcal
vectors of noise as

(3)

where  represents the noise log-spectral vector at time . This
is an auto-regressive model of order 1 that assumes that the
sequence of noise log-spectral vectors can be modelled as the out-
put of a first-order auto-regressive (AR) system excited by a 0
mean Gaussian process.  represents the AR parameter, and 
represents the Gaussian excitation process. The AR parameter ,
and the variance of , , can all be learned from a small
amount of representative noise samples. The mean of  is
assumed to be 0.

The log-spectral vectors of the noisy observations  are related
to the state of the dynamical system, as represented by , and the
log-spectra of the corrupting clean speech  by the following
equation [3]:

(4)

Equations (3) and (4) represent the state and observation equa-
tions respectively. Having thus formulated the dynamical system,
the problem we address next is that of determining the state of the
system, namely the noise , given only the sequence of observa-
tions , the parameters of the state equation,  and , and the
distribution of . We model the distribution of  by a mixture
Gaussian density of the form

(5)

where ,  and  represent the mixture weight, mean and
variance respectively of the  Gaussian, and  rep-
resents a Gaussian with mean  and variance .

3. NOISE ESTIMATION ALGORITHM

For ease of presentation we introduce the following notation: we
represent the sequence of observations  as . It

can easily be shown that the a posteriori probability distribution
of the state of the system at time , given the sequence of obser-
vations  can be obtained through the following recursion:

(6)

(7)

where  is a normalizing constant. Equation (6) is referred to as
the prediction equation and Equation (7) as the update equation.

 is the predicted distribution for  and 
is the updated distribution for . The goal of the recursion is to
estimate the updated distribution. In this paper we refer to recur-
sions of Equation (6) and Equation (7) as the Kalman recursion.

From Equation (3), since  has a Gaussian distribution with
mean  and variance , we obtain the conditional density of ,
given  as

(8)

The clean speech vector at any time  may have been generated
by any of the  Gaussians in the Gaussian mixture distribution in
Equation (5), with probability . We can therefore write:

(9)

where  is the probability of , conditioned on , and
given that the clean speech vector  was generated by the 
Gaussian in the mixture. It can be shown that [4]:

(10)

where  is the inverse function that derives  as a func-
tion of  and , and the Jacobian of  in the denominator is the
determinant of the derivative of  with respect to .

Both  and the Jacobian are highly non-linear functions,
as a result of which  has a form that leads to compli-
cated solutions. In order to avoid this complication, we approxi-
mate Equation (4) by a truncated Taylor series, expanded around
the mean of the  Gaussian:

(11)

Higher order terms are not shown in the Equation (11). We trun-
cate this series after the first term, to obtain

(12)

This can be used to derive  as

(13)

We could also truncate the series expansion in Equation (11) after
the first order term, and  would still be Gaussian.
Inclusion of higher order terms in the approximation will, how-
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ever, result in more complicated distributions for .

It is important to note that the approximation in Equation (12) is
specific to the  Gaussian. Combining Equation (13) with
Equation (9), we get the following approximation for :

(14)

The Kalman recursion is initialized using the a priori distribution
of the noise:

(15)

While it is possible to now run the Kalman recursion by direct
computations of Equations (6) and (7), it can easily be shown that
this results in an exponential increase in the complexity of the
updated distribution for  with increasing . In general, the esti-
mated distribution of  will be a mixture of  Gaussians.
Figure 1 illustrates this problem. The problem could be simplified
by collapsing the Gaussian mixture distribution for 
into a single Gaussian at every step. However this frequently
leads to unsatisfactory solutions and poor tracking of the noise.
Instead, we use sampling methods to reduce the problem.

3.1 Sampling the Predicted State Density
The complexity of the a posteriori noise distribution can be con-
trolled by discretizing the predicted noise density at each time
step. The predicted noise density is sampled to generate a number
of noise samples. The continuous density is then replaced by a
uniform discrete distribution over these generated samples:

(16)

where  is the  noise sample generated from the continuous
density , and  is the total number of samples gen-
erated from it. Thereafter, the update equation simply becomes

(17)

where  is a normalizing constant that ensures that the total
probability sums to 1.0.  is computed using Equation
(14). The prediction equation for time  now becomes:

(18)

This is a mixture of  distributions of the form .
This is once again sampled to approximate it as in Equation (16).
The overall algorithm can be summarized as:

1. Set . Set .

2. Generate  samples of noise from .

3. Compute  using Equation (17).

4. Compute  using Equation (18).

5. Set  and return to step 2.

4. COMPENSATING FOR THE NOISE

The noise estimation algorithm described in Section 3.1 esti-
mates, for each frame of incoming noisy speech, a discrete a pos-
teriori distribution of the form:

(19)

For any estimate of the noise, , we estimate , the log spec-
trum of the clean speech, from  the log spectrum of the
observed noisy speech, using the approximated minimum mean
squared estimation (MMSE) procedure developed in [3] as:

(20)

where  is given by

(21)

Combining Equations (19) and (20), we get the overall estimate
for  as

(22)
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Figure 1.  Evolution of densities with the progression of the algo-
rithm. In this example, the a priori distribution of the state, and the
conditional density of the state at time  given the state at , are
both Gaussian. The output density, given the state, is a mixture of two
Gaussians. In conventional estimation of continuous densities, the
updated density at each instant has twice as many Gaussian compo-
nents as at the previous instant. In the sampling based algorithm, the
updated distribution has only as many values as the number of sam-
ples derived from the predicted density. This number is entirely con-
trolled by the sampling and does not increase with time.
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5. EXPERIMENTS

The proposed algorithm was evaluated on a Spanish telephone
speech database provided by Telefonicá Investigación y Desar-
rollo (TID) using the CMU Sphinx-3 speech recognition system.
Continuous density 8 Gaussian/state HMMs with 500 tied states
were trained from 3500 utterances of clean telephone recordings.
The test data consisted of telephone recordings corrupted to vari-
ous SNRs by traffic noise, music, babble recorded in a bar, and
noise recordings from a subway. The AR matrix for each noise
condition was trained from a training example of the noise. The
predicted state (noise) distributions were discretized by drawing
25 samples from them. Clean speech log spectra were estimated
from the log spectra of the noisy speech using the MMSE proce-
dure in Section 4. Cepstra derived from the estimated clean
speech log spectra were used for recognition.

Figure 2 shows recognition results obtained for the various noise
types as a function of SNR. As a comparison, recognition with
uncompensated noisy speech, and with cepstra derived by VTS
compensation are also shown. The VTS algorithm has previously
been shown to be highly effective at compensating for stationary
noises [3]. We observe from Figure 2 that both VTS and the pro-
posed algorithm are highly effective at improving recognition per-
formance at low SNRs. At these SNRs it is apparently
advantageous to eliminate even an average characteristic of the
noise, regardless of the non-stationary nature of the noise. How-
ever, at higher SNRs the VTS algorithm begins to falter, since the
noises are all non-stationary. At these SNRs recognition perfor-
mance with VTS-compensated speech is actually poorer than that
obtained with the uncompensated noisy speech. However, the
proposed algorithm is able to cope with the nonstationarity of the
noise at all SNRs, and performs consistently better than the VTS
algorithm. At high SNRs, where the VTS algorithm fails, it con-
tinues to provide improvements over recognition with noisy
speech. Even at SNRs higher than 20dB, where the speech is
essentially clean, the algorithm does not degrade performance to a
perceptible degree.

6. CONCLUSIONS

The proposed algorithm uses more information about the noise
signal than the VTS algorithm, or other algorithms that assume
that the noise is stationary. The amount of explicit information
required about the noise is however small, due to the simple first
order model assumed for the dynamics. Even this small amount of
information permits us to track the noise well. In the format of the
algorithm reported in this paper, the type of noise corrupting the
speech signal was assumed to be known. In a more generic case,
this may not be known. In such situations, one solution would be
to have several different dynamical systems trained on a variety
of noise types. The most appropriate model for the noise type
affecting the signal could then be identified using system or
model identification methods [5].

The speech log-spectra are modelled as the output of an IID pro-
cess, in this paper. They can also be modelled by an HMM, with-
out any significant modification of the algorithm. As an extension
we could treat the systems generating the speech and the noise as
coupled dynamical systems, and the algorithm can be appropri-
ately modified to simultaneously track both speech and noise.

The dynamical system modelling the noise may itself also be
extended. For example, the AR order for the dynamical system
has been assumed to be one in this paper. This can easily be
extended to higher orders. Additionally, the dynamical system
may be made non-linear without major modifications to the algo-
rithm. However, this would require appropriate techniques to
learn the parameters of the non-linear dynamical system.

Finally, we note that the proposed algorithm is designed to be an
on-line algorithm, as opposed to previously reported algorithms
like VTS, which are essentially off-line algorithms that require
many passes over the noisy data. The proposed algorithm esti-
mates the noise at each instant without reference to future data
enabling the compensation of data as they are encountered.
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Figure 2.  Recognition performance on telephone speech corrupted
by four different types of noises. Word error rates (WERs) obtained
with noisy speech, compensation with the VTS algorithm, and com-
pensation using the proposed dynamical systems (DS) algorithm are
all shown.
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