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ABSTRACT

In this study we present blind equalization techniques for
ETSI standard Distributed Speech Recognition (DSR) front-
end which compensate for acoustic mismatch caused by in-
put devices. The DSR front-end employs vector quanti-
zation (VQ) for feature parameter compression so that the
mismatch does not only cause a shift of parameters but also
increases VQ distortion. Although CMS is one of the most
effective methods to compensate for the shift, it can not de-
crease VQ distortion in DSR. To compensate for the shift
and decrease VQ distortion simultaneously, the proposed
methods estimate the shift in the input data necessary to
match the VQ codebook distribution. The methods do not
need the acoustic likelihood which is calculated in a decoder
on the server side. Therefore, they are applicable to the DSR
front-end. Japanese Newspaper Article Sentences database
(JNAS) was used for the equalization experiments. While
the word error rate (WER) for ETSI standard DSR front-
end was 18.6 % under acoustic mismatched condition, our
propsed method yielded a rate of 12.3 %.

1. INTRODUCTION

Portable terminals, such as cellular phones and PDAs (Per-
sonal Digital Assistants), lately have become very popu-
lar. These portable terminals are typically small in size and
it is inconvenient and inefficient to use their conventional
input devices provided to feed in complex command se-
quences. Speech is a more convenient and reasonable inter-
face. Hence, portable terminals speech recognition demand.
However, due to hardware limitations, all speech recogni-
tion processes on a large or middle scale vocabulary task
can not be performed in the portable terminal.

One solution to this problem is to move the speech recog-
nition system to the server side. In this method, the system
has to recognize coded speech, such as VSELP, PSI-CELP,
and ACELP. It is well known, however, that these systems
achieve lower recognition performance than uncoded speech
because of influences of the codec and channel distortion[1].
To avoid the influence of the speech decoding process, sev-
eral researchers have proposed feature extraction methods

where recognition features are computed directly from the
transmitted information, i.e. codec parameters[2, 3, 4, 5].

Distributed Speech Recognition (DSR) has been pro-
posed to overcome these problems of codec speech[6]. DSR
separates the structural and computational components of
recognition into two parts – front-end processing on the ter-
minal and speech recognition engine on the server. This
separation of tasks permits a flexible architecture with great
potential. DSR has the following advantages:

• It is possible to avoid the influence of channel dis-
tortion because the front-end part sends the back-end
not to the speech signal but to the feature parameters.
Therefore, one can get improvement in recognition
performance.

• The bit rate is low because the bitstream which the
front-end part sends to the back-end part only includes
the information necessary for speech recognition.

• Because there is no restriction on the frequency band,
it is possible to use information of low and high fre-
quencies.

To enable widespread applications of DSR in the market
place, a front-end standard is needed to ensure compatibility
between the terminal and the remote recognizer. The Euro-
pean Telecommunications Standards Institute (ETSI) is pro-
ducing a published standard DSR front-end algorithm based
on Mel-Cepstrum technology[7].

In this paper, we consider the influence on recognition
performance of DSR with acoustic mismatches caused by
input devices. Cepstral Mean Subtraction (CMS) is one of
the most effective methods to compensate for these mis-
matches. However, DSR employs a vector quantization (VQ)
algorithm for feature compression so that the VQ distortion
is increased by such mismatches. Large VQ distortion in-
creases the speech recognition error rate. The recommenda-
tion of DSR front-end standardizes a VQ codebook so that
CMS can not be applied on the terminal side, and is ap-
plied on the server side. Therefore, CMS can not decrease
VQ distortion. To overcome these problems, this paper pro-
poses the blind equalization techniques (BEQ), which de-
crease both mismatch and distortion simultaneously. Al-
though BEQ is similar to the Signal Bias Removal (SBR)
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Table 1. Influence of the frequency characteristic (WER)
Filter

Sampling rate no M/A
8 kHz 13.5 % 58.2 %

16 kHz 12.2 % 32.2 %

technique [10], rather than maximize acoustic likelihood it
minimizes VQ distortion. Hence, BEQ does not need in-
formation from a decoder and can be adopted in the DSR
front-end.

2. BLIND EQUALIZATION METHOD

It is known that log-spectral based feature vectors, e.g. MFCC,
shift if the frequency characteristic of the input device is al-
tered. With DSR, these mismatches also increase VQ dis-
tortions. As a result, the speech recognition error rate in-
creases. In this section, we propose blind equalization tech-
niques which decrease these distortions.

2.1. Preliminary Experiment

We investigated the influence on the recognition performance
of the acoustic mismatch caused by the input device. The
moving average (M/A) filtering, which is shown in equa-
tion (9), was performed to the JNAS speech corpus to sim-
ulate the mismatch of the frequency characteristic of input
devices. Other experimental conditions were the same as in
section 3.1.

The results are presented in Table 1. This table also con-
tains the results of non-filtering. From this table, the M/A
filtering increased the word error rate (WER) compared to
non-filtering. To investigate this result in more detail, we
viewed a scatter chart of the VQ codebook and feature pa-
rameters with M/A filtering (Fig.1). We noticed a differ-
ence between the distribution of the feature paramters and
the VQ codebook. This difference increased VQ distortion.
CMS on the server side could not decrease this distortion.

2.2. Blind Equalization Method 1

In this section, we propose Blind Equalization Method 1
(BEQ1) which equalizes the mean of the input data with the
mean of VQ centroids. The followings show the steps of
BEQ1.

1. Calculate an average feature vector of each test sen-
tence.

atest =
∑N

n=1 xn

N
, (1)
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Fig. 1. The distortion between feature parameter and VQ
codebook. (1st and 2nd order MFCC)
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Fig. 2. Analysis example of BEQ1 (1st and 2nd order
MFCC)

where, atest and xn indicate the average feature vec-
tor of each test sentence and the feature vector of each
frame, respectively. N is the number of frames in a
test sentence.

2. Subtract the difference between the average feature
vector of training sentences and the average feature
vector of a test sentence.

x̃n = xn − (atest − atrain), (2)

where, atrain indicates the average feature vector of
VQ codebook training data. x̃n is the feature param-
eter which is applied BEQ1. Because it is actually
difficult to require these training data, we use the av-
erage values of VQ codebook centroids for atrain.

Fig.2 illustrates the effectiveness of the proposed method,
BEQ1, under the acoustic mismatched condition. By apply-
ing the BEQ1, the distribution of the feature parameters ap-
proaches the VQ codebook. Consequently, the BEQ1 can
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decrease VQ distortion and may improve recognition per-
formance.

2.3. Blind Equalization Method 2

In this section, we propose Blind Equalization Method 2
(BEQ2). The feature vectors approximate the VQ codebook
through the repetition of this method. This method is based
on the Generalized Lloyd Algorithm (GLA)[9].

The Signal Bias Removal (SBR) method has been pro-
posed to compensate the convolution noise caused by dif-
ferences in the input device’s frequency characteristic[10].
The SBR calculates the bias which maximizes the acoustic
likelihood. The proposed method, BEQ2, is similar to SBR.
However, in BEQ2, the bias does not maximize the acous-
tic likelihood, but minimizes VQ distortion. Therefore, the
BEQ2 can be adopted in the DSR front-end.

Given the test data x0
n, (n = 1, . . . , N , N is the num-

ber of frames in a test sentence), and the centroid decision
function q(v), the proposed method iteratively performs the
following steps:

1. The distortion between a test datum and VQ code-
book is defined as

dn = |xi
n − q(xi

n)|2, (3)

where, i indicates the iteration number.

2. The distortion of a test sentence is calculated as

D =
∑

n

dn. (4)

3. We estimate the bias, h, which minimizes a distor-
tion, D̃.

D̃ =
∑

n

|(xi
n − h) − q(xi

n)|2 (5)

∂D̃

∂h
=

∂(
∑

n |(xi
n − h) − q(xi

n)|2)
∂h

= 0 (6)

h =
∑

n xi
n − q(xi

n)
N

. (7)

4. The modified test data which are used in the next it-
eration, xi+1

n , are calculated as

xi+1
n = xi

n − h. (8)

5. Repeat 1, if the distortion is less than the threshold.

In this way, the feature vectors are shifted to fit the VQ code-
book.

When the BEQ2 is applied to the feature parameters
in Fig.1, we can obtain almost the same result as in Fig.2
(BEQ1 result).

2.4. Technique to process in real-time

The proposed methods need the whole sentence to equalize
input data. Thus, they can be applied only after the whole
utterance ends and it is a disadvantage in real-time opera-
tion. This means that the methods are not applicable to DSR
systems. To overcome this problem, we applied an idea,
which has been used in some real application systems[11],
and which had previously been developed by one of the au-
thors. The idea is that the system makes the best use of the
previous utterance. It calculates the shift of the previous ut-
terance for use in the subsequent equalization. We evaluate
this idea in the following experiments.

3. EVALUATION OF THE PROPOSED METHODS

3.1. Experimental Conditions

We evaluated the proposed methods through continuous speech
recognition experiments. A total of 5,168 sentences by 103
male speakers were used for the training. For the open test
set, 100 sentences by 23 male speakers were used.

The feature vector for the experiment was 25 MFCC’s
(12 static MFCCs extracted from the ETSI standard DSR
front-end + 12 of their deltas + one delta-logpower).

For the acoustic model, shared-state triphone HMMs
with sixteen Gaussian mixture components per state were
trained. We set the number of states at about 1,000. In pre-
vious work[8], we described that the acoustic model trained
with non-quantized feature vectors could improve recogni-
tion performance using DSR. Therefore, we used the acous-
tic model trained with non-quantized feature vector by the
following experiments.

The following moving average filter (M/A) was used to
simulate the mismatch of the frequency characteristic of in-
put devices.

sof (n) = 0.25× (sin(n) + sin(n + 1)
+sin(n + 2) + sin(n + 3)) (9)

Where, sin(n) and sof (n) indicate the input speech signal
and the output speech signal, respectively.

3.2. Experimental results

Tables 2 and 3 show the speech recognition performance
obtained by using various equalization methods at sampling
frequencies of 16 kHz and 8 kHz, respectively. The “Base-
line” indicates ETSI ES 201 108 v.1.1.2 DSR front-end. The
results of ETSI blind equalization (“ETSI”), which were de-
scribed in the final draft of ETSI new robust DSR front-end
in 2002[12], are also presented in Table 3 (8 kHz). In “non
real-time” conditions, the equalizations were performed by
using the whole utterance, while “real-time” methods used
the previous utterance for equalization.
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Table 2. Word error rates in 16 kHz sampling.
Equalization Filter

method no M/A
Baseline 12.2 % 32.2 %
non real-time
CMS 9.6 % 11.2 %
BEQ1 10.4 % 10.2 %
BEQ2 10.0 % 11.2 %

real-time
BEQ1 9.6 % 10.3 %
BEQ2 10.3 % 10.2 %

Table 3. Word error rates in 8 kHz sampling.

Equalization Filter
method no M/A

Baseline 13.5 % 58.2 %
non real-time
CMS 10.8 % 14.1 %
BEQ1 10.8 % 12.3 %
BEQ2 10.9 % 12.4 %

real-time
ETSI 13.3 % 18.6 %
BEQ1 12.8 % 13.7 %
BEQ2 11.6 % 14.0 %

These tables show that the proposed methods, BEQ1
and BEQ2, helped improve the recognition performances
of the baseline under all conditions. Compared to the base-
line under the M/A filter condition, BEQ1 (non real-time)
achieved 78.9 % (at 8 kHz) and 68.3 % (at 16 kHz) improve-
ment in the error rate. The BEQ2 (non real-time) yielded
78.7 % (at 8 kHz) and 65.2 % (at 16 kHz) improvement
in the error rate. These results were better than the results
of the baseline under the condition witout M/A filter. The
proposal methods can compensate for acoustic mismatches
caused by input devices.

Although CMS was applied, the M/A filtering increased
the WER compared to the condition without the filter. CMS
was applied on the server side, so that the CMS could not
decrease VQ distortion. These results indicate the advan-
tage of the proposed methods which decrease VQ distortion.

The proposed methods for “real-time” versions achieved
similar performance with methods for “non real-time” ver-
sions in 16 kHz sampling. In 8 kHz sampling, “real-time”
BEQ1 and BEQ2 slightly degrade recognition performance
compared with “non real-time” values. However, in acous-
tic mismatched condition, the error rate significantly de-
creased from 18.6 % for ETSI blind equalization to 13.7 %
for our blind equalization technique (BEQ1).

4. SUMMARY

In this paper, we proposed blind equalization techniques
for ETSI DSR standard front-end, which decrease acous-
tic mismatches and VQ distortion simultaneously. Exper-
imental results showed that the proposed techniques could
improve the recognition performance under acoustic mis-
matched conditions. We also confirmed that the proposed
methods could decrease VQ distortion. Although the pro-
posed methods could not be performed in real-time as is,
we also proposed an adoption to use them in real-time ap-
plications. Experimental results under real-time conditions
revealed the advantages of the methods.
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