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ABSTRACT

In this study we present blind equalization techniques for
ETSI standard Distributed Speech Recognition (DSR) front-
end which compensate for acoustic mismatch caused by in-
put devices. The DSR front-end employs vector quanti-
zation (VQ) for feature parameter compression so that the
mismatch does not only cause a shift of parameters but also
increases VQ distortion. Although CMSis one of the most
effective methods to compensate for the shift, it can not de-
crease VQ distortion in DSR. To compensate for the shift
and decrease VQ distortion simultaneously, the proposed
methods estimate the shift in the input data necessary to
match the VQ codebook distribution. The methods do not
need the acoustic likelihood whichis calcul ated in adecoder
ontheserver side. Therefore, they are applicabletotheDSR
front-end. Japanese Newspaper Article Sentences database
(INAS) was used for the equalization experiments. While
the word error rate (WER) for ETSI standard DSR front-
end was 18.6 % under acoustic mismatched condition, our
propsed method yielded arate of 12.3 %.

1. INTRODUCTION

Portable terminals, such as cellular phones and PDAS (Per-
sona Digital Assistants), lately have become very popu-
lar. These portable terminals are typically small in size and
it is inconvenient and inefficient to use their conventional
input devices provided to feed in complex command se-
quences. Speech isa more convenient and reasonable inter-
face. Hence, portable terminal s speech recognition demand.
However, due to hardware limitations, all speech recogni-
tion processes on a large or middle scale vocabulary task
can not be performed in the portable terminal.

One solution to this problem isto move the speech recog-
nition system to the server side. In this method, the system
has to recognize coded speech, such as VSELP, PSI-CELP,
and ACELP It is well known, however, that these systems
achieve lower recognition performance than uncoded speech
because of influences of the codec and channel distortion[1].
To avoid the influence of the speech decoding process, sev-
eral researchers have proposed feature extraction methods
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where recognition features are computed directly from the
transmitted information, i.e. codec parameterg[2, 3, 4, 5].

Distributed Speech Recognition (DSR) has been pro-
posed to overcome these problems of codec speech[6]. DSR
separates the structural and computational components of
recognition into two parts— front-end processing on the ter-
minal and speech recognition engine on the server. This
separation of tasks permits a flexible architecture with great
potential. DSR has the following advantages:

e |t is possible to avoid the influence of channel dis-
tortion because the front-end part sends the back-end
not to the speech signal but to the feature parameters.
Therefore, one can get improvement in recognition
performance.

e The bit rate is low because the bitstream which the
front-end part sendsto the back-end part only includes
the information necessary for speech recognition.

e Because there is no restriction on the frequency band,
it is possible to use information of low and high fre-
quencies.

To enable widespread applications of DSR in the market
place, afront-end standard is needed to ensure compatibility
between the terminal and the remote recognizer. The Euro-
pean Telecommunications Standards I nstitute (ETSI) is pro-
ducing a published standard DSR front-end algorithm based
on Mel-Cepstrum technology[7].

In this paper, we consider the influence on recognition
performance of DSR with acoustic mismatches caused by
input devices. Cepstral Mean Subtraction (CMS) is one of
the most effective methods to compensate for these mis-
matches. However, DSR employsavector quantization (VQ)
agorithm for feature compression so that the VQ distortion
isincreased by such mismatches. Large VQ distortion in-
creases the speech recognition error rate. The recommenda-
tion of DSR front-end standardizes a VVQ codebook so that
CMS can not be applied on the terminal side, and is ap-
plied on the server side. Therefore, CMS can not decrease
VQ distortion. To overcome these problems, this paper pro-
poses the blind equalization techniques (BEQ), which de-
crease both mismatch and distortion simultaneously. Al-
though BEQ is similar to the Signal Bias Remova (SBR)
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Table 1. Influence of the frequency characteristic (WER)

Filter
Sampling rate no M/A
8 kHz 135% 58.2%
16 kHz 122% 322%

technique [10], rather than maximize acoustic likelihood it
minimizes VQ distortion. Hence, BEQ does not need in-
formation from a decoder and can be adopted in the DSR
front-end.

2. BLIND EQUALIZATION METHOD

Itisknownthat |og-spectral based feature vectors, e.g. MFCC,
shift if the frequency characteristic of the input device isal-
tered. With DSR, these mismatches also increase VQ dis-
tortions. As a result, the speech recognition error rate in-
creases. In thissection, we propose blind equalization tech-
niques which decrease these distortions.

2.1. Preliminary Experiment

Weinvestigated the influence on the recognition performance
of the acoustic mismatch caused by the input device. The
moving average (M/A) filtering, which is shown in equa-
tion (9), was performed to the INAS speech corpus to sim-
ulate the mismatch of the frequency characteristic of input
devices. Other experimental conditions were the same asin
section 3.1.

The resultsare presented in Table 1. Thistable also con-
tains the results of non-filtering. From this table, the M/A
filtering increased the word error rate (WER) compared to
non-filtering. To investigate this result in more detail, we
viewed a scatter chart of the VQ codebook and feature pa-
rameters with M/A filtering (Fig.1). We noticed a differ-
ence between the distribution of the feature paramters and
the VQ codebook. This difference increased VQ distortion.
CMS on the server side could not decrease this distortion.

2.2. Blind Equalization Method 1

In this section, we propose Blind Equalization Method 1
(BEQ1) which equalizes the mean of the input datawith the
mean of VQ centroids. The followings show the steps of
BEQL.

1. Caculate an average feature vector of each test sen-
tence.
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Fig. 1. The distortion between feature parameter and VQ
codebook. (1st and 2nd order MFCC)
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Fig. 2. Anaysis example of BEQL (1st and 2nd order
MFCC)

where, a;.s; and x,, indicate the average feature vec-
tor of each test sentence and the feature vector of each
frame, respectively. N isthe number of framesina
test sentence.

2. Subtract the difference between the average feature
vector of training sentences and the average feature
vector of atest sentence.

:in = Tp — (atest - atrain)a (2)

where, a;-qin indicates the average feature vector of
VQ codebook training data. x,, isthe feature param-
eter which is applied BEQL. Because it is actualy
difficult to require these training data, we use the av-
erage values of VQ codebook centroids for a¢yqin.-

Fig.2illustrates the effectiveness of the proposed method,
BEQL, under the acoustic mismatched condition. By apply-
ing the BEQL, the distribution of the feature parameters ap-
proaches the VQ codebook. Consequently, the BEQL can
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decrease VQ distortion and may improve recognition per-
formance.

2.3. Blind Equalization Method 2

In this section, we propose Blind Equalization Method 2
(BEQ?2). The feature vectors approximate the VQ codebook
through the repetition of this method. This method is based
on the Generalized Lloyd Algorithm (GLA)[9].

The Signal Bias Remova (SBR) method has been pro-
posed to compensate the convolution noise caused by dif-
ferences in the input device's frequency characteristic[10].
The SBR calculates the bias which maximizes the acoustic
likelihood. The proposed method, BEQ2, issimilar to SBR.
However, in BEQ2, the bias does not maximize the acous-
tic likelihood, but minimizes VQ distortion. Therefore, the
BEQ2 can be adopted in the DSR front-end.

Given the test datax?, (n = 1,..., N, N isthe num-
ber of frames in atest sentence), and the centroid decision
function ¢(v), the proposed method iteratively performsthe
following steps:

1. The distortion between a test datum and VQ code-
book is defined as

dn = |z}, — q(;,)|%, ©)

where, ¢ indicates the iteration number.
2. Thedistortion of atest sentence is calculated as

3. We es}i mate the bias, h, which minimizes a distor-
tion, D.
D = ) (@ —h)—qz) ©)
oD A, (=i —h)—q(=i)})
h R =00
Xz —qlxy)
h = B @)

4. The modified test data which are used in the next it-
eration, z1, are calculated as

it =l — h. (8)

5. Repeat 1, if the distortion isless than the threshold.

Inthisway, the feature vectors are shifted tofit the VQ code-
book.

When the BEQ2 is applied to the feature parameters
in Fig.1, we can obtain amost the same result as in Fig.2
(BEQ1 result).

2.4. Techniqueto processin real-time

The proposed methods need the whole sentence to equalize
input data. Thus, they can be applied only after the whole
utterance ends and it is a disadvantage in real-time opera-
tion. Thismeansthat the methods are not applicableto DSR
systems. To overcome this problem, we applied an idea,
which has been used in some rea application systems[11],
and which had previously been developed by one of the au-
thors. The ideais that the system makes the best use of the
previous utterance. It calculates the shift of the previous ut-
terance for use in the subsequent equalization. We evaluate
thisideain the following experiments.

3. EVALUATION OF THE PROPOSED METHODS

3.1. Experimental Conditions

We eval uated the proposed methods through continuous speech

recognition experiments. A total of 5,168 sentences by 103
male speakers were used for the training. For the open test
set, 100 sentences by 23 male speakers were used.

The feature vector for the experiment was 25 MFCC'’s
(12 static MFCCs extracted from the ETSI standard DSR
front-end + 12 of their deltas + one delta-logpower).

For the acoustic model, shared-state triphone HMMs
with sixteen Gaussian mixture components per state were
trained. We set the number of states at about 1,000. In pre-
viouswork[ 8], we described that the acoustic model trained
with non-quantized feature vectors could improve recogni-
tion performance using DSR. Therefore, we used the acous-
tic model trained with non-quantized feature vector by the
following experiments.

The following moving average filter (M/A) was used to
simulate the mismatch of the frequency characteristic of in-
put devices.

Sof(n) = 0.25 x (sin(n) + sin(n+1)
+Sin(n +2) + sin(n+3)) 9

Where, s;,(n) and s,f(n) indicate the input speech signal
and the output speech signal, respectively.

3.2. Experimental results

Tables 2 and 3 show the speech recognition performance
obtained by using various equalization methodsat sampling
frequencies of 16 kHz and 8 kHz, respectively. The “Base-
line” indicatesETSI ES 201 108v.1.1.2 DSR front-end. The
resultsof ETSI blind equalization (“ETSI”), which were de-
scribed inthefinal draft of ETSI new robust DSR front-end
in 2002[12], are aso presented in Table 3 (8 kHz). In “non
real-time” conditions, the equalizations were performed by
using the whole utterance, while “real-time” methods used
the previous utterance for equalization.
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Table 2. Word error ratesin 16 kHz sampling.

Equalization Filter
method no M/A

Basdline 122% 322%

non real-time

CMS 96% 11.2%

BEQ1 104% 10.2%

BEQ2 100% 11.2%

real-time

BEQ1 96% 10.3%

BEQ2 103% 10.2%

Table 3. Word error rates in 8 kHz sampling.

4. SUMMARY

In this paper, we proposed blind equalization techniques
for ETSI DSR standard front-end, which decrease acous-
tic mismatches and VQ distortion simultaneously. Exper-
imental results showed that the proposed techniques could
improve the recognition performance under acoustic mis-
matched conditions. We also confirmed that the proposed
methods could decrease VQ distortion. Although the pro-
posed methods could not be performed in real-time as is,
we aso proposed an adoption to use them in real-time ap-
plications. Experimental results under real-time conditions
revealed the advantages of the methods.
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Equalization Filter
method no M/A
Basdline 135% 582%
non real-time
CMS 108% 14.1%
BEQ1 108% 12.3%
BEQ2 109% 124%
real-time
ETS 133% 18.6%
BEQ1 128% 13.7%
BEQ2 11.6% 14.0%

These tables show that the proposed methods, BEQL
and BEQ2, helped improve the recognition performances
of the baseline under al conditions. Compared to the base-
line under the M/A filter condition, BEQL (non real-time)
achieved 78.9 % (at 8 kHz) and 68.3 % (at 16 kHz) improve-
ment in the error rate. The BEQ2 (non real-time) yielded
78.7 % (at 8 kHz) and 65.2 % (at 16 kHz) improvement
in the error rate. These results were better than the results
of the baseline under the condition witout M/A filter. The
proposal methods can compensate for acoustic mismatches
caused by input devices.

Although CM Swas applied, the M/A filtering increased
the WER compared to the condition without the filter. CMS
was applied on the server side, so that the CMS could not
decrease VQ distortion. These results indicate the advan-
tage of the proposed methodswhich decrease VQ distortion.

The proposed methodsfor “real-time” versionsachieved
similar performance with methods for “non real-time” ver-
sionsin 16 kHz sampling. In 8 kHz sampling, “real-time’
BEQ1 and BEQ2 slightly degrade recognition performance
compared with “non real-time” values. However, in acous-
tic mismatched condition, the error rate significantly de-
creased from 18.6 % for ETSI blind equalization to 13.7 %
for our blind equalization technique (BEQL).
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