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ABSTRACT

In this paper we propose a new formulation of minimum verifi-
cation error training and apply it to the problem of topic verifica-
tion as an example. In topic verification, a decision is made as
to whether a document truly belongs to a particular topic of inter-
est. Such a decision typically depends on a comparison between a
model for the desired topic and a model for background topics, us-
ing a decision threshold. We propose modeling the background
topics as a cohort model consisting of a weighted combination
of the M closest topics discovered from the training data. The
weights and the decision threshold are optimized using the gen-
eralized probabilistic descent algorithm to explicitly minimize the
verification error rate, which is defined to be a weighted sum of
the Type I (false rejection) and Type II (false acceptance) errors.

1. INTRODUCTION

In a natural language call routing application, callers give a de-
scription of what they want and are automatically routed to the
right department (or directed to a human operator when the sys-
tem is unable to determine the caller’s intent with certainty). In
probabilistic approaches to this task, call routing is treated as an
instance of document classification, where a collection of labeled
documents is used for training and the task is to determine the
class of a test document. Each destination in the call center is thus
treated as a collection of documents (transcriptions of calls routed
to that destination), and a new caller request is evaluated in terms
of relevance to each destination [1]. Such a framework is also ap-
plicable to topic identification or topic spotting.

In this paper, our focus is not on classifying call documents,
but rather the related problem of verifying whether a document
truly belongs to a particular topic of interest. This is similar in
spirit to other verification paradigms, such as utterance verification
or speaker verification [9, 10, 6].

Discriminative training has been found to be very effective for
training classifiers used for natural language call routing [3, 4].
The algorithm not only reduces the classification error rate sig-
nificantly but also provides other benefits, including portability
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and increased score separation of the correct class from compet-
ing classes. We showed recently that the classifier performance
can be improved dramatically with little manual tuning for a topic
identification task on the Switchboard corpus [5].

Although discriminative training has been shown to be effec-
tive for training classifiers, the minimum classification error cri-
terion used in training is not exactly the desired criterion of mini-
mum verification error (MVE). We describe here an effort to achieve
the MVE criterion by adjusting parameters in the verification model
using a generalized probabilistic descent (GPD) algorithm [2]. We
have seen in the past for discriminative methods that improvements
in the training set often carry over to the test set, so we expect
that applying this method to verification will also improve perfor-
mance.

In the next section, we introduce the concept of minimum ver-
ification error and describe an algorithm to minimize this metric.
We then present the results of initial experiments on the Switch-
board task with 66 topics, illustrating the effects of minimum ver-
ification error training.

2. MINIMUM VERIFICATION ERROR

Let Ek1 = total Type I (false rejection) error and Ek2 = total Type
II (false acceptance) error for class k. We would like to minimize
the class-specific total weighted verification error:

Ekw = wk1Ek1 + wk2Ek2, (1)

where wk1 and wk2 are constants set by the constraints of the par-
ticular application. For example, in certain applications, a false
rejection (missing an important document) may incur a larger cost
than a false acceptance (which can be rejected by humans). In this
case, wk1 will be set to be much larger than wk2.

Given that we want to minimize the total weighted error, we
now lay out a GPD formulation for minimizing this metric with
respect to two types of parameters: the threshold and the weights
for members of a competing cohort set used for verification. Note
that we will not be adjusting any of the parameters of the classifier
itself, which would already have been trained using the minimum
classification error (MCE) criterion [4].

Given a document or user request �xi, a destination or class k,
we define the misverification function as

dk(�x, α, θ) = −gk(�x) + Gk(�x, α) − θk, (2)
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where gk(�x) is the discriminant function defined to be a cosine
similarity metric [3] and

Gk(�x, α) =

[
1

M

M∑
j=1

αkjgj(�x)η

] 1
η

(3)

is the anti-discriminant function of the input �xi in class k, M is
the number of top competing models representing the cohort, αkj

is the weight of the jth cohort member that competes with class k,
and θk is the threshold for performing verification. Note that in the
limit as the positive parameter η → ∞, the anti-discriminant func-
tion is dominated by the biggest competing discriminant function:
Gk(�x, R) → maxj �=k gj(�x, R), where the α terms drop out of
the equation. This makes sense because in the limit, the discrimi-
nant should be compared with the best competitor, not a weighted
version.

If �xi belongs to class k, and dk > 0, this is a false rejection
error. If �xi does not belong to class k, and dk < 0, this is a false
acceptance error. Smoothed representations of these two types of
errors are created using a smooth differentiable 0-1 function such
as the sigmoid function lk:

Ek1 =
1

Nk1

∑
xi∈Ck

lk(dk(�xi, α, θ)), (4)

Ek2 =
1

Nk2

∑
xi �∈Ck

lk(−dk(�xi, α, θ)), (5)

where Ck represents class k, and Nk1 and Nk2 are the number of
training samples that are in Ck and not in Ck, respectively. More
specifically, the first sigmoid function used for false rejection er-
rors in Equation 4 is

lk(dk(�x)) =
1

1 + exp(−γdk)
, (6)

where γ is a constant which controls the slope of the sigmoid func-
tion. The second sigmoid function used for false acceptance errors
in Equation 5 is a reversed version, defined as:

lk(−dk(�x)) =
1

1 + exp(γdk)
. (7)

The class-specific empirical loss for class k, for the entire
training set consisting of N training vectors is then given by:

Lk(α, θ) = wk1Ek1 + wk2Ek2

= wk1
Nk1

∑
�xi∈Ck

lk(dk(�xi, α, θ)

+ wk2
Nk2

∑
�xf �∈Ck

lk(−dk(�xf , α, θ).
(8)

Note that the empirical loss is essentially a smoothed function ap-
proximating the total weighted error rate that is differentiable so
that it can be used in gradient descent optimization.

We will be minimizing the total weighted error with respect
to the cohort weights αkj and the verification threshold θk. Let
V be a vector of these parameters over which we are trying to
optimize. Using the GPD algorithm, we would iteratively optimize
these parameters to reduce the total weighted verification error:

Vt+1 = Vt − εt∇Lk(V ), (9)

where ∇Lk(V ) contains components of ∂L
∂αkj

and ∂L
∂θk

.

These parameters are iteratively adjusted to minimize the em-
pirical loss in Equation 8. The update equations for θk works out
to be quite simple:

θk,t+1 = θk,t + εt,θ


 wk1

Nk1

∑
�xi∈Ck

∂lk
∂dk

− wk2

Nk2

∑
�xf �∈Ck

∂lk
∂dk


 .

(10)
Intuitively, for each class, we examine each training sample.

If the training sample falls within the decision boundary (region
where the slope of the sigmoid is relatively large), the threshold
θk is adjusted as follows. If the sample is from the correct class,
the threshold is adjusted to the right (more positive) by an amount
weighted by wk1 in order to reduce the Type I error; otherwise if
it is not from the correct class, the threshold is adjusted to the left
(more negative) by an amount weighted by wk2 to reduce the Type
II error.

The update equations for the α parameters are as follows:

αkj,t+1 = αkj,t − εt,α
∂Ew

∂αkj
, (11)

where ∂Ew
∂αkj

equals:

1

ηM


 wk1

Nk1

∑
�xi∈Ck

∂lk

∂dk
Gk

(
gj

Gk

)η

− wk2

Nk2

∑
�xf �∈Ck

∂lk

∂dk
Gk

(
gj

Gk

)η

 .

(12)

Intuitively, the cohort weights αkj are adjusted by an amount
proportional to the slope of the sigmoid, wk1 or wk2, and the mag-
nitude of the anti-discriminant function Gk. Also, the adjustment
depends on (gj/Gk)η , where gj is the discriminant function of
class j, one of the competitors included in Gk . That is, the adjust-
ment for αkJ depends on how important class J is. If η is large,
only the αkJ associated with the best competing model J will be
adjusted. Notice also the sign of the adjustment for training sam-
ples that are in or not in Ck. For the ones in Ck, the adjustment to
αkj is negative; this will tend to decrease Gk and dk, and therefore
reduce Type I error. Likewise, for the training samples not in Ck,
the adjustment to αkj is positive; this will tend to increase Gk and
dk, and thereby reduce Type II error.

3. EXPERIMENTAL SETUP

Training and test data were taken from the text transcripts of the
Switchboard database [8]. Each conversation side was treated as a
separate document; similar to [7] we also removed the first 15 sec-
onds of a conversation because the speakers often said “ok, we’re
supposed to talk about X” at the start of a conversation. A set of 66
topics were identified within the corpus.1 The data were divided
into half for training and testing, with the test set drawn so that the
distribution of test topics roughly matched that of the training set.

1We also prepared a subset of 10 topics, corresponding to the topics
in [7], but the results are not reported here.
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baseline after DT
Training Set 27.9% 2.4%
Test Set 44.6% 13.5%

Table 1. Classification error rate before and after DT

4. RESULTS

First we report some topic classification results for the 66 topics
as a prelude to the topic verification experiments. Table 1 shows
the classification error rate of the baseline classifier trained using
maximum likelihood (ML) (counting based) and after discrimina-
tive training using the minimum classification error (MCE) crite-
rion. Note that these results are different from the ones reported
previously [5] because of the differences in data preparation, e.g.
only one side of conversation is used, the first few seconds are re-
moved, and less data are used for training to reserve more data for
the test set. The basic algorithms are the same.

In our topic verification experiments, we arbitrarily chose wk1

= wk2 = 0.5, keeping in mind that these two values will be dictated
by the needs of a particular application and are fixed values. The
background model was represented by a cohort model consisting
of M = 30 models of individual classes. The initial values of αkj

for these 30 classes were set to 1, with the other αkj values set to
0. The threshold θk was chosen to be 0 initially.

We had chosen to define αkj to be the weights of gη
j and not

of gj . The motivation was that as η → ∞, we wanted Gk(�x) →
maxj �=k gj(�x), rather than αkj maxj �=k gj(�x). However, in this
case, we have to be careful not to set η to be too large a value;
otherwise, Gk will be dominated by the most prominent term, and
the αkj terms will have no effect. Consequently, we use a small
value of η = 2; this can be thought of as a way of compensating for
unknown probability densities of the background model by using
a smoothed combination of competing models.

Initially we had chosen to use the same εt for training both the
αkj and θk parameters for each class. However, we discovered that
the adjustments made to the αkj parameters were much smaller
than those for θk. In the preliminary results we report below, we
used a different learning step size for the two types of parameters.

Many of the topic classes had very low verification error rate.
We therefore chose a class with one of the highest verification error
rates to illustrate the effects of MCE and MVE training.

Using the maximum likelihood (ML) classifier for verification,
we obtained a weighted verification error of 20% for the training
data and 41% for the test data. Figure 1 shows the distribution of
the misverification function for the training data. The impostor dis-
tribution (out-of-class tokens) is shown using a dashed line, while
the true distribution (in-class tokens) is shown as a histogram. The
optimal threshold was found by balancing the Type I and II errors
according to the weights and is shown as a dotted line at 0 in the
figure. Type I (false rejection) and Type II (false acceptance) errors
are also highlighted using dark gray and black shading, respec-
tively. Figure 1 clearly shows the high degree of overlap between
the true and impostor distributions using the ML classifier.

Using the MCE trained classifier for verification, we obtained
a weighted verification error of 6.4% and 11.8%, for the train-
ing and test data, respectively, representing a large improvement
over the ML classifier. Figure 2 shows the distribution of the mis-
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Fig. 1. Distribution of the misverification function using the ML
classifier.

verification function for the training data. It is apparent that the
separation between the true and impostor distributions has been
increased, resulting in a much lower verification error.
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Fig. 2. Distribution of the misverification function for the MCE
classifier before MVE training.

Next we perform MVE training using the MCE classifier. Re-
call that the baseline results shown in Figure 2 are based on αkj =
1 for the top M classes. The following set of GPD parameters
were used: η = 2, γ = 4, ε0 = 2. εt was reduced every 3 iter-
ations, and a total of 20 iterations were run. θk was set to be the
maximum dk value for the true tokens as an initial starting point.
After MVE training, the verification error was reduced to 3.8%
for the training data and to 8.8% for the test data. Table 2 shows
a summary of the improvements in the total weighted verification
error rate over the original ML classifier for the MCE classifier and
the MCE classifier plus MVE training.

Figure 3 shows the distribution of the misverification func-
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tion after MVE training for the training data. The shapes of the
distributions seem to have changed, perhaps representing a better
weighting of the cohort models of the background model. The
Type II (false positive) error rate has been reduced without any
increase in the Type I (false rejection) error rate.

Weighted Verification Error
Training Set Test Set

ML Classifier 20% 41%
MCE Classifier 6.4% 11.8%
MCE + MVE 3.8% 8.8%

Table 2. Total weighted verification error rate is reduced using
MCE and MVE training.
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Fig. 3. Distribution of the misverification function after MVE
training.

5. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a new formulation of minimum verifi-
cation error training. The goal is to minimize an error metric that is
based on a weighted sum of Type I and Type II errors. The weights
are assumed to be pre-determined by the application requirements.

The background model is formulated as a weighted combina-
tion of close competing classes (cohort). The particular weights for
this combination, as well as the decision threshold used for verifi-
cation are the parameters that are optimized to achieve minimum
verification error. This is achieved using a generalized probabilis-
tic descent algorithm that iteratively reduces a smoothed function
of the verification error. Preliminary results show promising im-
provements based on this simple MVE formulation. More research
has to be done to investigate how best to improve the separation be-
tween the in-class samples and the out-of-class samples to reduce
the verification error. In particular, instead of using MCE mod-
els, the MVE criterion can be used explicitly to re-train the model
parameters for each topic class.

We highlight a few differences between the current MVE train-
ing and the MCE training that we had proposed previously [4] for
topic identification in call routing. MVE is tuning for individual
classes separately to minimize the verification error whereas MCE
is a global adjustment for all training samples to minimize the clas-
sification error. Since verification is a two class problem, it is in
some ways an easier problem. However, the background model is
always difficult to model since we cannot usually anticipate all the
possible impostors; in this paper, we use a cohort model to try to
address this unsolved problem.

In MVE training, parameters are adjusted according to the cost
corresponding to Type I and II errors. Although we had chosen
to use uniform weights of 0.5 as a simple example to illustrate
the usefulness of MVE, it is straightforward to vary the weights
for Type I and II errors to generate results for different operat-
ing points on an ROC curve. Finally, although this paper focused
on topic verification, MVE training may also be useful for other
verification problems such as speaker verification or utterance ver-
ification (ASR confidence measures).
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