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ABSTRACT

In this paper, we describe a unified probabilistic framework

for statistical language modeling—the latent maximum en-
tropy principle—which can effectively incorporate various
aspects of natural language, such as local word interac-
tion, syntactic structure and semantic document informa-
tion. Unlike previous work on maximum entropy methods
for language modeling, which only allow explicit features to
be modeled, our framework also allows relationships over
hidden features to be captured, resulting in a more ex-
pressive language model. We describe efficient algorithms
for marginalization, inference and normalization in our ex-
tended models. We then present experimental results for
our approach on the Wall Street Journal corpus.

1. INTRODUCTION

Statistical language modeling is concerned with determin-
ing the probability of naturally occurring word sequences
in human natural language. Traditionally, the dominant
motivation for language modeling has come from the field
of speech recognition, however statistical language models
have recently become more widely used in many other appli-
cation areas, such as information retrieval, machine transla-
tion, optical character recognition, spelling correction, doc-
ument classification, and bio-informatics.

There are various kinds of language models that can be
used to capture different aspects of regularities of natural
language. The simplest and most successful language mod-
els are the Markov chain (n-gram) source models [14], which
are efficient at encoding local lexical regularities; the struc-
tural language model [4], which effectively exploits relevant
syntactic regularities; and the semantic language model
[1, 10], which can exploit document-level semantic regu-
larities. However each of these language models only aims
at some specific linguistic phenomena. None of them can
simultaneously take into account the lexical information in-
herent in Markov chain models, the hierarchical syntactic
tree structure in stochastic branching processes, and the
semantic content in bag-of-words categorical mixture log-
linear models—all in a unified probabilistic framework.

Several techniques for combining language models have
been investigated. The most commonly used method is sim-
ple linear interpolation [4, 13], where each individual model
is trained separately and then combined by a weighted lin-
ear combination, where the weights are trained using held
out data. Even though this technique is simple and easy
to implement, it does not generally yield effective combina-
tions because the linear additive form is too blunt to capture
subtleties in each of the component models [13]. Another
approach is based on Jaynes’ maximum entropy (ME) prin-
ciple [11]. This approach has several advantages over other
methods for statistical modeling, such as introducing less
data fragmentation (as in decision tree learning), requiring
fewer independence assumptions (as in naive Bayes models),
and exploiting a principled technique for automatic feature
weighting. The major weakness with maximum entropy
methods, however, are that they can only model distribu-
tions over explicitly observed features, whereas in natural
language we encounter hidden semantic [1, 10] and syntactic
information [4] which we do not observe directly.
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One way to encode constraints over hidden features in a
maximum entropy model is to first pre-process the train-
ing corpus to obtain explicit values for all of the hidden
features—such as recovering syntactic structure by running
a parser, or recovering semantic content by using a latent se-
mantic indexer—and then incorporating statistics over ex-
plicitly measured features as additional constraints in the
model [2, 12, 13]. However, doing so explicitly is not al-
ways possible, and even if attempted, sparse data problems
almost always immediately arise in such complex models.
Consequently, the perplexity improvements or word error
rate reductions obtained are often minimal. In this paper
we address the question: is it possible to exploit the hidden
hierarchical structure of natural language in a maximum
entropy method without resorting to explicit preliminary
parsing or semantic analysis?

Recently we proposed a latent maximum entropy (LME)
principle [15] which extends Jaynes’ maximum entropy prin-
ciple to incorporate latent variables. In this paper, we show
how our new principle can be used for statistical language
modeling by training mixtures of exponential families with
rich expressive power. We summarize the LME principle,
its problem formulation, solution and certain convergence
properties. Then we discuss how to use LME for language
modeling. By properly using factorization methods and ex-
ploiting the sparseness of tri-gram features, we can demon-
strate efficient algorithms for feature expectation, inference
and normalization. Finally, we apply this model to the Wall
Street Journal data to obtain experimental results which
support the utility of our approach.

2. LATENT MAXIMUM ENTROPY (LME)

To express a joint probability model, let X € X" denote the
complete data, Y € Y be the observed incomplete data and
Z € Z be the missing data. That is, X = (Y, Z). For ex-
ample, Y might be observed natural language in the form
of text, and X might be the text along with its missing syn-
tactic and semantic information Z. The goal of maximum
entropy is to find a probability model that matches certain
constraints in the observed data while otherwise maximiz-
ing entropy. When the data has both missing and observed
components we extend the maximum entropy principle to
the latent maximum entropy principle as follows.

Latent maximum entropy principle Given features
fi, ..., f~ specifying the properties we would like to match
in the data, select a joint model p. from the set of possible
probability distributions that maximizes the entropy

max, H(p) = — Zp(m) log p(x)
subject to z

S p@fi@) = S 6w) S pClY =y) fily,2); i=1.N

Here p(y) is the empirical distribution of the set of observed
components of the training data, and p(z|Y = y) encodes
the hidden dependency structure into the statistical model.

The LME principle is strictly more general than the ME
principle, and only becomes equivalent to ME in the special
case when the features only depend on the observable data
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Y. However, if the features depend on unobserved compo-
nents of the data Z then ME only models the observed part
of the data, and LME differs from ME [15].

Below we will apply the LME principle to the problem of
combining language models. However, we first consider a
small improvement that will prove useful. In many statis-
tical modeling situations, the constraints used in the maxi-
mum entropy principle are subject to errors due to the em-
pirical data, especially in a very sparse domain. One way
to gain robustness to these errors is to relax the constraints
but add a penalty to the entropy of the joint model [5, 6].

Regularized LME principle

max, H(p)— ZP Jlogp(z) —U(a) (1)
subject to (for i = 1 N)

S p@) fila) = S 5w) SO pGIY =) fily, ) +ai (2)

T Yy z
Here a = (ai,...,an) and a; is the error for each constraint,

and U : RV — R is a smoothing convex function [5, 6] which
has minimum at 0. The regularization term U penalizes
deviations in more reliably observed constraints to a greater
degree than deviations in less reliably observed constraints.

3. A TRAINING ALGORITHM

We are now left with the problem of solving the constrained
optimization problem posed in (1) and (2). Note that due
to the nonlinear mapping introduced by p(z|Y = y) we
have nonlinear constraints (2) on the objective and the fea-
sible set is no longer convex. So even though the objective
function (1) is concave, no unique optimal solution can be
expected. In fact, minima and saddle points may exist.

To make progress, we first restrict p(z) to be an expo-
nential model, px(z) = &, " exp (3, Ai fi(z)), where @, is
a constant that ensures ) _pi(x) = 1. This assumption
makes it possible to formulate an iterative algorithm for
finding feasible solutions (below). Our algorithmic strategy
then is to generate many feasible candidates (by restarting
the iterative procedure at different initial points), evaluate
their entropy and select the best model. The hardest part
of this process is generating feasible solutions.

The key observation to finding feasible solutions is to note
that the stationary points of the penalized log-likelihood of
the observed data, R(\,0) = >, p(y)logpa(y) + U™ (N),
are among the feasible set of the relaxed constraints; where
U*(X) is the convex conjugate of U.! That is, to find fea-
sible solutions it suffices to find models that maximize the
penalized log-likelihood on observed data using standard
iterative approaches. We use an iterative procedure, EM-
IS, which employs an EM algorithm [9] as an outer loop,
but uses a nested GIS/IIS algorithm [2, 7] to perform the
internal M step. Assuming the Gaussian prior, we obtain

EM-IS algorithm
E step: Compute 35, p(y) 3°. pyo) (1Y = y)fi(y, 2), i=1.N

M step: Perform K parallel updates of the parameter values
Ai,i = 1...N by iterative scaling (GIS or IIS) as follows

)\(]+S/K) — )\(J+(S 1)/K) _+_,7(J+S/K)7 s=1.K (3)
where 697°/%) satisfies
Do P GHs—1y/K) (@) fi(z)e? W )+)‘EH(571)/I:.2+ b
D8y D pao @Y = 9)fily.2) (4)
Y z
INote that for a quadratic penalty U(a) = va 1 é o?a? with
a; = 2—& we obtain U*(\) = va 1 2 2 , the Gaussian prior.

where f(z) = Y, fi(z). The value of 691" can be
obtained by bisection line search or solving the nonlinear
equation (4) by Newton-Raphson iteration.

A natural interpretation of this iterative procedure is
that, if the right hand side of (2) is constant, then the op-
timal solution py(z) is a log-linear model with parameters
provided by GIS/IIS. Once we obtain px we can calculate
the value of the right hand side of (2). If this value matches
the value previously assigned, then by the optimality condi-
tion we have reached a stationary point of the log-likelihood
and a feasible solution of the LME problem; otherwise, we
iterate until the constraints are met.

Theorem 1 The EM-IS algorithm monotonically increases
the likelihood function L(\), and all limit points of any EM-

IS sequence {\UT/5) >0}, s =1..K, belong to the set

r = { &aN-agg\)_o} (5)

Therefore, EM-IS asymptotically yields feasible solutions to
the LME principle for log-linear models [15].

4. LME FOR LANGUAGE MODELING

The latent maximum entropy principle can be used to model
natural language in a principled way by combining differ-
ent exponential models to obtain rich expressive power. In
this section, we describe how to use the LME principle to
combine the tri-gram Markov model with PLSA to obtain
a better language model.

Currently almost all maximum entropy language mod-
els use the conditional form first proposed by Brown et
al. [3] for statistical machine translation. The main rea-
son for using the conditional model is to avoid enumerat-
ing all possible histories to perform inference. Here we use
the joint probability model, but point out that once the
set of features are selected, the problem of calculating the
needed feature expectations and normalization terms be-
comes tractable by using proper factorization methods and
exploiting the sparseness of tri-grams.

4.1. Combining N-gram and PLSA Models

Define the complete data as z = (Wa, Wy, Wy, D, Ts, T1,Tp),
where Wy, Wi, Ws are the current and two previous words,
T>,Ti,To are the hidden ‘topic’ values associated with these
words, D is a document identifier, and y = (W2, Wi, Wo, D)
is the observed data. Typically the number of documents,
words in the vocabulary, and latent class variables are on
the order of 100,000, 10,000 and 100, respectively. A graph-
ical representation of a semantic node interacting with a
tri-gram is illustrated in Figure 1.

For the tri-gram portion of the model, all features are ex-
plicitly observed in the training data, and the corresponding
constraints can be modeled directly as follows.

ZP =w;, Wi=w;, Wo=wi) = ZP
1
D> p@)> (Wepr=wi, Wy=w;) = ZP
z £=0
2
D op(@)) §(We=

p(wiwjwg|d)
p(w;wj|d)

Zp p(wild)  (6)

These specify the tri-gram, bi-gram and uni-gram con-
straints the model should respect, respectively.

For the semantic (PLSA) portion of the model, the con-
straints involve the hidden topic variables 7" and can be
encoded by the more complex constraints

2
> (@) 6(Ty=t,D=d) =

{=0

Z (Weld)p(tWe,d) (7)
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Figure 1. A graphical representation of the semantic tri-
gram model, where the curve that connects the three word
nodes together denotes the tri-gram feature. In this graphi-
cal representation, many arcs share the same parameters.

2
D p(@) Y §(Te=t,We=w;)
T {=0 2
Zp pwild) Y p(tIWr=w;,d) (8)

£=0

where 6(.) is 1 if the event is active and zero otherwise. The
first equality (7) imposes the constraints between the docu-
ment node and the topic node, and the second equality (8)
imposes the constraints between the topic node and words.

We can now learn a probability model that simultane-
ously takes all of these information sources into account, by
employing the LME principle to find the log-linear model
px(z) that maximizes entropy subject to satistying all of the
constraints. This model will encapsulate the n-gram and
semantic models as special cases. Figure 1 gives a graph-
ical representation of the structure resulting from satisfy-
ing all of the imposed constraints. Note that many of the
components share the same parameters; namely, (1%, D),
T1, D), and (To, D) are identical; (To, Ws), (T1, W1), and
To, Wy) are identical; (W2, W1) and (W1, Wy) are identical;
and (W3), (W1) and (Wo) are identical.

4.2. Efficient Feature Expectation and Inference

The computational bottleneck is calculating the feature ex-
pectations and normalization constants needed to perform
inference. Note that the full joint distribution is in the form
of a product over exponential functions of features. The key
idea for efficient calculation is to “push” the sums in as far
as possible when summing (marginalizing) out irrelevant
terms. Since calculating feature expectations has the same
computational cost as normalization [12], we only show how
to do normalization efficiently here. The normalization fac-
tor can be calculated efficiently by sum-product algorithm,
that is, summing over all the links at each time slice and
passing through the trellis nodes with the product of the
weight to the ongoing nodes we obtain

6=y

wa2,w1,wo,t2,t1,t0,d

eAwz Awr Awg pAwswy

e/\W1WO e)‘w2w1w0 eAW2i2

eAW1f1 6Aw0t0 eAt2d6AtldeAt0d)

— E:e wOE:e wotg
E:e wig wlwo§:€ wity
Awy gAwywy Aw2w1WO
e e e
2 :e)\w2t2(§ 6/\t2d6/\tlde>\tod) (9)
to d

Simultaneously to obtaining the normalization constant, we
can also calculate all of the feature expectations. For ex-
ample, the expectation of a given tri-gram feature w;w;ws
can be calculated as

E p(x)&(Wz = wi,Wl = wy, Wo = wk)
<I>_16)‘“’i6)‘“’1' 6)\wk ez\w,—wj ez\ijk ekwiijk

Ze wito Ze wjty Ze wity
(Zehzd Atld Atod) (10)

4.3. Semantic Smoothing

To make use of semantic similarity and subtle variation be-
tween words, we can introduce an additional node C' be-
tween each topic node and word node. The feature con-
straints in (7) can be augmented to incorporate this new
cluster variable C'. The effect of these cluster nodes criti-
cally depends on the range of their variation. For example,
if all the words are grouped into a single class, then the
model will be maximally smoothed. On the other hand, if
there are as many classes as words in the vocabulary, there
will be no smoothing effect at all. There is a trade-off be-
tween smoothing to reduce the effective number of param-
eters in the model, and non-smoothing to permit a more
detailed model.

A further extension which takes account of the seman-
tic similarity and sub-topic variation within each document
and among documents, we can introduce additional node S
between the topic nodes and the document node. Again,
the feature constraints as in (8) can be written analogously.
Again the effect of node S critically depends on the range
of its variation. If all the documents are grouped in a single
cluster, then the model is over-smoothed, and in the con-
text of diverse discourse this could not capture the specific
topics. On the other hand, if there are as many clusters as
documents in the corpus, the model is the same as (8) and
there will be no smoothing effect at all. Again, we encounter
a trade-off between smoothing to reduce parameters, versus
non-smoothing to permit variation.

Note that the benefit of the maximum entropy combi-
nation method is that the cluster nodes behave like latent
variables in a mixture model for “soft clustering”, instead of
the[ ‘]‘hard clusters” created by methods like K-means used
in [1].

4.4. Computation in Testing

To evaluate the perplexity of our semantic tri-gram model
on the observable portion of the test data, note that

p(wg...w)
L

= Hp(wde...le)
=1

L
(=1D,T»,Ty,Tp

=HZ

=1D,T>,T1,Ty

p(U)[, D, TQ, Tl, T0|’UJL...U)[+]_)

p(wh D) T2) T]-) T0|’LU(+27 We+1)

Since our model provides the probability of complete
data p(Wa, W1, Wo, D, T>,T1,To) , the conditional proba-
bility p(Wo, D, T, T, To|W2, W1) can be easily obtained by
marginalization (and division).
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5. EXPERIMENTAL RESULTS

The corpus used to train our model was taken from the WSJ
portion of the NAB corpus and was composed of about
87,000 documents spanning the years 1987 to 1989, com-
prising approximately 38 millions words. The vocabulary
was constructed by taking the 20,000 most frequent words
of the training data. Another separate set of data consist-
ing of 325,000 words was taken from the year 1989 and used
for testing.

We perform EM-IS to train our models where we set the
internal IIS loop iterations to be 20, and the outer EM loop
iterations to be 5.

We chose |T'| = 125 as number of possible topics. The
baseline tri-gram model with Good-Turing back-off smooth-
ing has perplexity of 105. In our model, we fixed the vari-
ance of the Gaussian prior o; to be 1. When only the tri-
gram constraints are considered, we obtain a perplexity of
107. After the PLSA constraints are added, the perplexity
is reduced to 91; comprising a 13.3% reduction in perplexity
from the baseline tri-gram model.

When we add just the word cluster nodes to our model,
we find that the result is sensitive to the number of classes.
When the class number is chosen to be 10, the perplex-
ity reached 89. However, if the class number is set to be
50, then the perplexity is 93, which is worse than strongly
smoothing. This is probably due to the huge increase in
parameters.

When we add just the document cluster nodes to our
basic model, we also find that the result depends on the
number of clusters. When the cluster number is chosen to
be 5, the perplexity achieved is 90. However, if the class
number is set to be 20, the perplexity becomes 91. Thus,
fairly substantial smoothing appears to help once again.

Finally, when we add both the word cluster nodes and
document cluster nodes simultaneously to our model, we
find that the result is again sensitive to the number of
classes. When the word class number is chosen to be 10
and the document cluster number is chosen to be 5, the
perplexity achieved is 87, which is about 18.7% reduction
compared to the baseline tri-gram model.

In [1], Bellegarda built a language model that combined
a tri-gram model and an LSA model using an ad hoc ap-
proach. The formula he used to calculate the perplexity
was

p(we|w...wpg1)
p(we|wes2wes1)prsalde|we)

= 11
> w; Pwilwepswes1)prsa(de|we) ()

where prsa(de|we) is the probability of current document
history given current word wy, obtained by the latent se-
mantic analysis. We calculated the perplexity of his model
using the same training data and test data considered
above. The perplexity obtained by Bellegarda’s model is
97, which is only an 8% reduction in perplexity compared
to the baseline tri-gram model above. However, if we inten-
tionally emphasize the LSA portion of Bellegarda’s model
by taking its 7th power, and renormalizing

plwelwg...wp—1)

_ p(we|wesoswesr)(prsalde|we))” (12)
2w, P(Wilweowes1)(prsa(de|we))”

we obtain a drastic perplexity reduction. The perplexity
achieved in this case is reduced to 82, which is a remarkable
reduction (21% compared to the baseline tri-gram model).

It is worthwhile to investigate principles for adopting an
analogous technique in our LME approach.

6. CONCLUSION

We have presented a latent maximum entropy principle for
statistical language modeling. Our LME method provides

a general statistical framework for incorporating arbitrary
aspects of natural language into a parametric model. The
parameters can be estimated by combining standard itera-
tive procedures, interactions among various aspects of lan-
guage can be taken into account automatically and simul-
taneously, and the general model is reduced to a familiar
model when aiming at a specific linguistic phenomenon.
We can demonstrate efficient algorithms for feature expec-
tation, normalization and inference.

We believe that our preliminary results on the WSJ cor-
pus are very promising because we have not significantly
tuned the parameters. We are investigating techniques for
finding the optimal number of clusters to use in smoothing.
Also, we are currently only combining an n-gram model
with document semantic information, and we are now inves-
tigating how to efficiently add syntactic information (such
as context free grammatical structure) to this framework
and expect to obtain further improvement.
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