
USING A CONNECTIONIST MODEL IN A SYNTACTICAL BASED LANGUAGE MODEL

Ahmad Emami, Peng Xu, and Frederick Jelinek

Center for Language and Speech Processing
Johns Hopkins University

Baltimore, MD 21218
�ahmad, xp, jelinek�@clsp.jhu.edu

ABSTRACT

We investigate the performance of the Structured Language Model
when one of its components is modeled by a connectionist model.
Using a connectionist model and a distributed representation of the
items in the history makes the component able to use much longer
contexts than possible with currently used interpolated or back-
off models, both because of the inherent capability of the connec-
tionist model to fight the data sparseness problem, and because
of the only sub-linear growth in the model size when increasing
the context length. Experiments show significant improvement in
perplexity and moderate reduction in word error rate over the base-
line SLM results on the UPENN treebank and Wall Street Journal
(WSJ) corpora respectively. The results also show that the proba-
bility distribution obtained by our model is much less correlated to
regular N-grams than the baseline SLM model.

1. INTRODUCTION

A language model is a main component of many systems dealing
with speech or natural language such as Speech Recognition or
Machine Translation systems. N-gram language models are the
models used in all of the current practical state-of-the-art systems.
In these models only the surface (words only) information, and
that only limited to a short span (last N-1 words), is used to predict
the next word and the prediction is based on how often a given N-
gram was seen in the training data. These models have the inherent
disadvantage of having a short context available for the prediction.
Increasing the context length is not trivial because the model size
increases exponentially with context length, making it impossible
to estimate the model parameters reliably even with very plentiful
training data.

There have been attempts to use longer contexts by means of
inducing some features from the whole past and using them (fewer
parameters than if the corresponding past was used itself) for the
prediction. In one such method, the Structured Language Model
(SLM) [1], partial syntactical parses are built on the past sequence
of words and a subset of information (features) gained from the
parses is used to predict the next word. By using only a small
number of features obtained from a parse of a long past, the Struc-
tured Language Model avoids the data sparseness problem without
limiting itself to a short context. It also addresses the other prob-
lem with the N-gram models, the use of surface (lexical) words
only, by using information and features from the deeper syntactic
structure of the prefix of the sentence. The Structured Language
Model shows improvement over N-gram models in perplexity as
well as in reducing a speech recognizer’s word error rate.

The choice of the features to be used for the purpose of pre-
diction in SLM has been based mostly on intuition. In the original
SLM work the two previous exposed headwords and their non-
terminal tags were chosen from among all the information avail-
able in the partial parse. This decision was based on the belief that
the exposed headwords have the highest predicting power among
all the information gained from a partial parse. Ideally one would
like to use as much information from the partial parses as possible.
In fact, recent works [2, 3] have shown that using more informa-
tion in the SLM leads to significant reductions in both perplexity
and word error rate over a regular SLM baseline model. However,
the problem is that the SLM internal models grow exponentially
in size with the number of features used since they are structurally
similar to a word N-gram model, and in fact, a severe data sparse-
ness problem was observed when the number of conditioning fea-
tures was increased.

The goal of this paper is to use as much information from the
partial parses in the Structured Language Model as possible while
avoiding the pitfall of data sparseness. This requires using a dif-
ferent architecture for the SLM internal models than the current
deleted interpolation or back-off models that are very vulnerable
to data sparsity.

There has been recent promising work in using distributional
representation of words and neural networks for Language Mod-
eling [4]. One great advantage of this approach is its ability to
fight data sparseness. The model size grows only sub-linearly with
the number of predicting features used. It has been shown that this
method improves on regular N-gram models in both perplexity and
word error rate [4, 5]. The ability of the method to accommodate
longer contexts is most appealing to us. In fact, experiments have
shown consistent improvements in perplexity and word error rate
with increase in the context length.

In this paper we investigate the impact of using a neural net-
work model as the component of the Structured Language Model
that predicts the next word, giving it the ability to use many more
features, while avoiding data sparseness, than the original SLM.

Section 2 serves as an introduction to the SLM, emphasizing
on the parts we want to later modify. In section 3 we give a brief
introduction to the neural net model and the distributional repre-
sentation of words. Section 4 describes how we use the neural
network model in the SLM. Finally, results are presented in Sec-
tion 5.

I - 3720-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



2. STRUCTURED LANGUAGE MODEL

An extensive presentation of the SLM can be found in [1]. The
model assigns a probability� ���� � to every sentence� and
every possible binary parse� of � . The terminals of� are the
words of� with POS tags, and the nodes of� are annotated with
phrase headwords and non-terminal labels. Let� be a sentence

(<s>, SB)   .......   (w_p, t_p) (w_{p+1}, t_{p+1}) ........ (w_k, t_k) w_{k+1}.... </s>

h_0 = (h_0.word, h_0.tag)h_{-1}h_{-m} = (<s>, SB)

Fig. 1. A word-parse�-prefix

of length� words to which we have prepended the sentence be-
ginning marker<s> and appended the sentence end marker</s>
so that�� �<s> and���� �</s>. Let �� � �� � � � �� be
the word�-prefix of the sentence — the words from the begin-
ning of the sentence up to the current position�— and����
the word-parse �-prefix. Figure 1 shows a word-parse�-prefix;
h_0, .., h_{-m} are theexposed heads, each head being a
pair (headword, non-terminal label), or (word, POS tag) in the case
of a root-only tree. The exposed heads at a given position� in the
input sentence are a function of the word-parse�-prefix.

2.1. Probabilistic Model

The joint probability� ���� � of a word sequence� and a com-
plete parse� can be broken into:

� ���� ��

����
���

�� ��� ������������ �����������������

���
���

� ���� ������������ �����
�
� 			�

�
����� (1)

where:
��������� is the word-parse�� � ��-prefix
� �� is the word predicted by WORD-PREDICTOR
� �� is the tag assigned to�� by the TAGGER
� 	� � � is the number of operations the CONSTRUCTOR exe-
cutes at sentence position� before passing control to the WORD-
PREDICTOR (the	� � �
 operation at position� is thenull
transition);	� is a function of�
� ��
 denotes the� � �
 CONSTRUCTOR operation carried out
at position� in the word string; the operations performed by the
CONSTRUCTOR ensure that all possible binary branching parses,
with all possible headword and non-terminal label assignments for
the�� � � � �� word sequence, can be generated. The��� � � � �

�
��

sequence of CONSTRUCTOR operations at position� grows the
word-parse�� � ��-prefix into a word-parse�-prefix.

It is worth noting that we can use a finite state machine, as
shown in Figure 2, to characterize the operations of the SLM. The
SLM starts from the PREDICTOR to predict the start-of-sentence
symbol.

The SLM is based on three probabilities,� �������������,
� ���������������� and� ���
 ������. Each of the three prob-
abilities can be parameterized (approximated) in different ways, as
we will describe in Section 5.

The language model probability assignment for the word at

contract_NP

PREDICTOR TAGGER

PARSER

predict  word

tag word

adjoin_{left,right}

null

Fig. 2. Finite State Representation of the SLM

position� � � in the input sentence is made using:

���� ��������� �
�
�����

� ������������
�������� (2)


������� � � �������
�
�����

� ������� (3)

which ensures a proper probability normalization over strings��,
where
� is the set of all parses present in our stacks at the current
stage�.

3. NEURAL NETWORK MODEL

Recently a relatively new type of language model has been intro-
duced where words are represented by points in a multi-dimensional
feature space and the probability of a sequence of words is com-
puted by means of a neural network. The neural network, having
the feature vectors of the preceding words as its input, estimates
the probability of the next word [4]. The main idea behind this
model is to fight the curse of dimensionality by interpolating the
seen sequences in the training data. The generalization this model
aims at is to assign to an unseen (in training data) word sequence a
probability similar to that of a seen word sequence (sentence pre-
fix) whose words are similar to those of the unseen word sequence.
The similarity is defined as being close in the multi-dimensional
space mentioned above.

In brief, this model can be described as follows, afeature vec-
tor is associated with each token in theinput vocabulary, that is
the vocabulary of all the items that can be used for conditioning.
Then the conditional probability of the next word is expressed as a
function of the input feature vectors by means of a neural network.
This probability is produced for every possible next word from the
output vocabulary. In general there is no relationship between the
input and output vocabularies. The feature vectors and the parame-
ters of the neural network are learned simultaneously during train-
ing. The number of features is much smaller than the vocabulary
size, making it possible to reliably estimate the joint probability
function. The input to the neural network are the features vectors
for all the inputs concatenated, and the output is the conditional
probability distribution over the output vocabulary. The idea here
is that the words which are close to each other (close in the sense of
their role in predicting words to follow) would have similar (close)
feature vectors and since the probability function is a smooth func-
tion of these feature values, a small change in the features should
only lead to a small change in the probability.

3.1. More Detail

The conditional probability function� ������ ��� � � � � �����where
�
 and� are from the input and output vocabularies�
 and�� re-
spectively, is determined in two parts:

1. A mapping that associates with each word in the input vo-
cabulary�
 a real vector of fixed length

I - 373

➡ ➡



x 1

x 2

x n−1

outputhidden layer
input layer

W V

tanh softmax

y

Fig. 3. The neural network architecture

2. A conditional probability function which takes as the input
the concatenation of the feature vectors of the input items
��� ��� � � � � ����. The function produces a probability dis-
tribution (a vector) over��, the � � �
 element being the
conditional probability of the� � �
 member of��. This
probability function is realized by a standard multi-layer
neural network. Asoftmax function is used at the output of
the neural net to make sure probabilities sum up to 1.

Training is achieved by searching for parameters� of the neu-
ral network and the values of feature vectors that maximize the
penalized log-likelihood of the training corpus:

�� �
�

�
� ���� ��������			��

�
���	
����
� (4)

where� �������� ���� �
�
���� is the probability of word�� (network

output at time�), � is the training data size and���� is a regular-
ization term, sum of the parameters’ squares in our case.

The model architecture is given in Figure 3. The neural net-
work is a simple fully connected network with one hidden layer
and sigmoid transfer functions. The input to the function is the
concatenation of the feature vectors of the input items. The output
of the output layer is passed though a softmax to make sure that
the scores are positive and sum up to one, hence are valid proba-
bilities. More specifically the output of the hidden layer is given
by:

�����
� �
�
	 �	��	��



� � ������			��

where
� is the� � �
 output of the hidden layer,�� is the� � �


input of the network,��� and��
� are weight and bias elements

for the hidden layer respectively, and� is the number of hidden
units.

Furthermore, the outputs are given by:

���
�
	 �	��	��

�
� ������			�����

���
�

�

�
	 �


	
������			����� (7)

The softmax layer (equation 7) ensures that the outputs are
positive and sum up to one, hence are valid probabilities.

The�� �
 output of the neural network, corresponding to the
� � �
 item �� of the output vocabulary, is exactly the sought
conditional probability, that is�� � � ��� � ����

�
�� ���� �

�
����.

Standard back-propagation is used to train the parameters of
the neural network as well as the feature vectors. See [6] for de-
tails about neural networks and back-propagation. The function
we try to maximize is the log-likelihood of the training data given
by equation 4.

We can see from equation 7 that the neural net model is simi-
lar in function to the maximum entropy model [7] except that the
neural net learns the features by itself from the training data. It
is most important to say that one of the great advantages of this
model is that the number of inputs can be increased causing only

sub-linear increase in the model size, as opposed to exponential
growth in N-gram models. This makes this model more capable in
handling longer input spans.

4. NEURAL NETWORK MODEL IN SLM

The standard structured language model suffers from severe data
sparseness problems. Recent works [2, 3] have shown that increas-
ing the amount of information available to the SLM components,
namely the TAGGER, the CONSTRUCTOR, and the PREDIC-
TOR, leads to a significant improvement on the parsing accuracy
as well as a significant reduction in both perplexity and word error
rate. However, a severe case of the data sparseness problem was
observed in those experiments.

The fact that using longer contexts will improve the perfor-
mance of the SLM, and the neural network capability in fighting
the data sparseness problem, makes the connectionist model a very
good candidate to use in any of the SLM internal models.

In this work we investigate the use of a neural net model as
the PREDICTOR component of the Structured Language Model.
The other components of the SLM remain unchanged. The rea-
son that only PREDICTOR was chosen was that previous experi-
ments with the SLM have shown that the data sparseness problem
is much more severe for the PREDICTOR than for the other com-
ponents and in fact the perplexity of both the TAGGER and the
CONSTRUCTOR were found to be less than 2.

Furthermore, because the neural network model is computa-
tionally more expensive than the regular interpolated or back-off
internal SLM models, we didn’t use it for the PREDICTOR in
finding the partial parses along with their probabilities (equations 1
and 3). We use the neural PREDICTOR only to estimate the prob-
ability of the next word given the already constructed partial parses
(equation 2). More precisely, a neural network model will be used
for language model prediction� ����������� in equation 2 but
everything else remains unchanged in the standard SLM.

5. EXPERIMENTS

The baseline Structured Language Model uses different condition-
ing contexts for its different components. The PREDICTOR uses
the two previous heads as the context. The CONSTRUCTOR uses
the same context plus the non-terminal tag of the third previous
headword, and finally the TAGGER uses the current word and tags
of the two previous heads as its context.

We used the neural network model for thelanguage model
PREDICTOR while keeping the other components unchanged as
discussed in section 4. We also increased the information available
to the PREDICTOR.

The neural network is a standard multi-layered network ex-
actly as described in section 3. The inputs to the network are a
mixture of words and not-terminal tags. At the output layer we
have to make sure that the output is still a probability distribution
over words only. This means that the input and output vocabularies
are different, with the output vocabulary being a subset of the input
vocabulary. We used 30 dimensional feature vectors. The network
had 100 hidden units with adaptive learning and a starting learning
rate of 0.001. We used stochastic gradient descent for training and
trained the network for a maximum of 50 iterations.

Table 1 gives the perplexity results on the UPENN section of
the Wall Street Journal (WSJ) corpus. The vocabulary size was
10,000 and there were a total of 94 non-terminal tags and part of

I - 374

➡ ➡



+slm +3gm +5gm
SLM 161 161 137 132
2HW 174 137 127 123
3HW 161 132 123 119
HW-OP 155 129 121 117

Table 1. UPENN section perplexity

speech tags. The rows denoted by 2HW, 3HW, and HW-OP corre-
spond to contexts consisting of 2 previous heads, 3 previous heads,
and 3 previous heads plus the first previous opposite head. The
� � �
 previous opposite head is the child of the� � �
 previ-
ous head that is not the head itself. The columns +slm, +3gm, and
+5gm denote linear interpolation with the baseline SLM, a 3-gram
back-off, and 5-gram back-off models respectively, with weights
found on some held-out set. It can be seen that adding more con-
text always helps and the best result on the longest context im-
proves on the best result for the baseline significantly. The inter-
esting point is that the neural network model seems to be much
more uncorrelated with the 3-gram or 5-gram models than is the
SLM. This can be observed best for the shortest context where the
connectionist model performs worse than the SLM baseline, but
then does significantly better when interpolated with a regular N-
gram model. The SLM model simply can’t reproduce the same
improvements when combined with the same N-gram models.

With significant improvements gained on the perplexity we
carried out some experiments to see how well the model performs
its function in speech recognition and in reducing the word error
rate. Our model was used to re-rank the output N-best list of a
speech recognizer on the Wall Street Journal Corpus. The vocabu-
lary was 19,006 and there were again 94 non-terminal tag and part
of speech types. Because of the larger size of the WSJ corpus the
training time was considerably longer than for the UPENN cor-
pus. We limited the size of the output vocabulary to 5000 words,
reducing computations almost proportionally to the reduction in
vocabulary size [5]. The out of vocabulary (OOV) rate for this
limited vocabulary is rather low so we are not expecting a major
degradation in performance. For the words outside this limited vo-
cabulary we used the regular back-off 5-gram probabilities. Sub-
stituting probabilities in this manner causes them not to sum up to
one anymore but this is not critical since we are using the proba-
bilities only as scores to re-rank the recognizer’s hypotheses. The
rest of the network is the same as in the perplexity experiment ex-
cept that the number of iterations was limited to a maximum of
30. We should also note that the neural network was trained only
on half of the available WSJ data, the same amount the baseline
SLM is trained on. That is also the case for the 3-gram and 5-gram
back-off models we used but the language model of the recognizer
is trained on the whole WSJ corpus. The results are given in Ta-
ble 2. Here the row Lattice denotes the language model from the
speech recognizer and the column +l&5gm denotes interpolation
with the lattice and back-off 5-gram models. The linear interpola-
tion weights were chosen to give the best performance on the test
set itself.

The model gives an improvement of 1.6% relative over the
baseline model. The results suggest that the shorter context had
almost the same performance as the longest context, but in our
experiments in combining all the different models with different
weights we found the longest context results to be more consistent
in general. However, the results on word error rate don’t consti-
tute as good an improvement as we obtained for perplexity and we
think that the main reason is that the model is optimized explic-

+slm +lattice +5gm +l&5gm
Lattice 13.7 12.6 13.7 13.2 13.2
SLM 12.7 12.7 12.6 12.7 12.6
2HW 13.5 12.7 12.7 12.5 12.4
3HW 13.6 12.6 12.8 12.7 12.6
HW-OP 13.2 12.5 12.9 12.4 12.4

Table 2. WSJ word error rate

itly for perplexity without any consideration for its performance
on word error rate reduction.

6. CONCLUSION AND FUTURE WORK

In this paper we presented the integration of a neural network
model into the Structured Language Model. The neural network
model gives the SLM the power to use more features when pre-
dicting the next word in its language model computations. The
connectionist model seemed a good choice because of its capa-
bility in fighting the data sparseness problem, which is severe in
SLM. Experiments showed significant reduction in perplexity. It
was also observed that the neural network model produces prob-
abilities which are much less correlated with the regular N-gram
models than are those of the baseline SLM. Separate experiments
showed a moderate reduction in word error rate. We plan to con-
tinue this work by using the neural network model also for the
other components of the SLM.

7. ACKNOWLEDGEMENT

We would like to thank the Center for Imaging Science at the Johns
Hopkins University for the use of the RS/6000 SP machine pro-
vided by IBM corporation.

8. REFERENCES

[1] Ciprian Chelba and Frederick Jelinek, “Structured language
modeling,” Computer Speech and Language, vol. 14, no. 4,
pp. 283–332, October 2000.

[2] Ciprian Chelba and Peng Xu, “Richer syntactic dependen-
cies for structured language modeling,” inProceedings of the
Automatic Speech Recognition and Understanding Workshop,
Madonna di Campiglio, Trento-Italy, December 2001.

[3] Peng Xu, Ciprian Chelba, and Frederick Jelinek, “A study on
richer syntactic dependencies for structured language model-
ing,” in Proceedings of the 40th Annual Meeting of the Associ-
ation for Computational Linguistics, Philadelphia, PA, 2002.

[4] Y. Bengio, R. Ducharme, and P. Vincent, “A neural proba-
bilistic language model,” inAdvances in Neural Information
Processing Systems, 2001.

[5] Holger Schwenk and Jean-Luc Gauvain, “Connectionist
language modeling for large vocabulary continuous speech
recognition,” inProc. ICASSP, 2002.

[6] Simon Haykin, Neural Networks, A Comprehensive Founda-
tion, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[7] A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra, “A
maximum entropy approach to natural language processing,”
Computational Linguistics, vol. 22, no. 1, pp. 39–72, March
1996.

I - 375

➡ ➠


