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ABSTRACT The choice of the features to be used for the purpose of pre-

. . diction in SLM has been based mostly on intuition. In the original
We investigate the performance of the Structured Language ModelSLNI work the two previous exposed headwords and their non-

Wh_en one of its (_:on_1ponents IS m°d't3"e‘.’ bya connectlonlgt rnoolel'terminal tags were chosen from among all the information avail-
Using a connectionist model and a distributed representation of the,

. in the hi kes th bl hi able in the partial parse. This decision was based on the belief that
items in the history makes the component able to use much longeyy,o exposed headwords have the highest predicting power among
contexts than possible with currently used interpolated or back-

f models. both b f the inh bility of th all the information gained from a partial parse. Ideally one would
off models, both because of the inherent capability of the CoNNec- ¢ 1 yse as much information from the partial parses as possible.

tionist model to _fight the data_ sparseness problem, a_nd bec_ausqan fact, recent works [2, 3] have shown that using more informa-
of the only sub-linear gro_vvth in the model_s_lze W_hen INCr€asiNg +n jn the SLM leads to significant reductions in both perplexity
the context length. Experlment_s Show significant improvement in and word error rate over a regular SLM baseline model. However,
perplexny and moderate reduction in word error rate over the base-the problem is that the SLM internal models grow exponentially
line SLM results on the_ UPENN treebank and Wall Street Journal in size with the number of features used since they are structurally
(WSJ) corpora respectively. The results also show that the proba-sim"ar to a word N-gram model, and in fact, a severe data sparse-

bility distribution obtained by our model is much less correlated to ness problem was observed when the number of conditioning fea-
regular N-grams than the baseline SLM model. tures was increased

1 INTRODUCTION The goal of this paper is to use as much information from the

. ) _ partial parses in the Structured Language Model as possible while
A language model is a main component of many systems dealingayoiding the pitfall of data sparseness. This requires using a dif-
with speech or natural language such as Speech Recognition Oferent architecture for the SLM internal models than the current

Machine Translation systems. N-gram language models are thejeleted interpolation or back-off models that are very vulnerable
models used in all of the current practical state-of-the-art systems.g data sparsity.

In these models only the surface (words only) information, and
that only limited to a short span (last N-1 words), is used to predict There has been recent promising work in using distributional

the next word and the prediction is based on how often a given N- .
. S . r{epresentatlon of words and neural networks for Language Mod-
gram was seen in the training data. These models have the inheren

disadvantage of having a short context available for the prediction.e.IIng [4]. One great advantage Of.th's approach is |ts_ ability t_o
) h - ._ fight data sparseness. The model size grows only sub-linearly with
Increasing the context length is not trivial because the model size

: - ; A -~ “the number of predicting features used. It has been shown that this
increases exponentially with context length, making it impossible

. . . . method improves on regular N-gram models in both perplexity and
to estimate the model parameters reliably even with very plentiful o
training data. word error rate [4, 5]. The ability of the method to accommodate

There have been attempts to use longer contexts by means 0I1pnger contexts is most appealing to us. In fact, experiments have
P 9 y shown consistent improvements in perplexity and word error rate

inducing some features from the whole past and using them (fewer’ .. . :
. : . with increase in the context length.
parameters than if the corresponding past was used itself) for the
prediction. In one such method, the Structured Language Model . . ) ) )
(SLM) [1], partial syntactical parses are built on the past sequence N this paper we investigate the impact of using a neural net-
of words and a subset of information (features) gained from the Work model as the component of the Structured Language Model
parses is used to predict the next word. By using only a small that predicts the next word, giving it the ability to use many more
number of features obtained from a parse of a long past, the Strucfeatures, while avoiding data sparseness, than the original SLM.
tured Language Model avoids the data sparseness problem without
limiting itself to a short context. It also addresses the other prob- Section 2 serves as an introduction to the SLM, emphasizing
lem with the N-gram models, the use of surface (lexical) words on the parts we want to later modify. In section 3 we give a brief
only, by using information and features from the deeper syntactic introduction to the neural net model and the distributional repre-
structure of the prefix of the sentence. The Structured Languagesentation of words. Section 4 describes how we use the neural
Model shows improvement over N-gram models in perplexity as network model in the SLM. Finally, results are presented in Sec-
well as in reducing a speech recognizer’s word error rate. tion 5.
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predict word

2. STRUCTURED LANGUAGE MODEL

PREDICTO
An extensive presentation of the SLM can be found in [1]. The
model assigns a probabiliti’ (W, T') to every sentencé&’ and
every possible binary parse of W. The terminals of” are the
words of W with POS tags, and the nodesBfare annotated with
phrase headwords and non-terminal labels. Wiiebe a sentence

tag word

adjoin_{left,right}

h_{-m}=(<s> SB) h_{-1} h_0 = (h_0.word, h_0.tag) . L .
Fig. 2. Finite State Representation of the SLM

positionk + 1 in the input sentence is made using:

(<s>,SB) ....... (w_p, t_p) (W_{p+1}, t_{p+1}) ........ (W_k, t_K) w_{k+1}.... </s> Psiam(wpi1lWe) = Ty eSy Pwrs1lWeTe) (Wi, Tk), 2)
Fig. 1. A word-parsek-prefix (Wi, T) = POVTi)l Xy es, P(WeTk)s ®

which ensures a proper probability normalization over strifgs
of lengthn words to which we have prepended the sentence be-wheresS;, is the set of all parses present in our stacks at the current

ginning markexs> and appended the sentence end maxker> stagek.

so thatwy =<s> andw,+1 =</s>. LetW;, = wq...w; be

the word k-prefix of the sentence — the words from the begin- 3. NEURAL NETWORK MODEL

ning of the sentence up to the current positier- and W, T},

the word-parse k-prefix. Figure 1 shows a word-pardeprefix; Recently a relatively new type of language model has been intro-
h_0, .., h_{-n} are theexposed heads, each head being a  gyced where words are represented by points in a multi-dimensional
pair (headword, non-terminal label), or (word, POS tag) in the casefeature space and the probability of a sequence of words is com-
of a root-only tree. The exposed heads at a given positiorthe puted by means of a neural network. The neural network, having
input sentence are a function of the word-paegerefix. the feature vectors of the preceding words as its input, estimates

the probability of the next word [4]. The main idea behind this
model is to fight the curse of dimensionality by interpolating the
seen sequences in the training data. The generalization this model
The joint probabilityP (W, T') of a word sequencB” and a com- aims at is to assign to an unseen (in training data) word sequence a
plete parsd’ can be broken into: probability similar to that of a seen word sequence (sentence pre-
fix) whose words are similar to those of the unseen word sequence.
The similarity is defined as being close in the multi-dimensional

2.1. Probabilistic Model

P(W’T)nﬂ space mentioned above.
M=y [P Cwn W1 Th 1) P (g [ Wi -1 T 15wk )- In brief, this model can be described as followseature vec-
172, P¥ Wi 1 Th o1 wietieoph o 1)) 1) tor is associated with each token in theput vocabulary, that is
the vocabulary of all the items that can be used for conditioning.
where: Then the conditional probability of the next word is expressed as a
® Wi,_1T)—1 is the word-parsék — 1)-prefix function of the input feature vectors by means of a neural network.
e w;, is the word predicted by WORD-PREDICTOR This probability is produced for every possible next word from the
e t;, is the tag assigned to; by the TAGGER output vocabulary. In general there is no relationship between the

e N;, — 1 is the number of operations the CONSTRUCTOR exe- input and output vocabularies. The feature vectors and the parame-
cutes at sentence positiérbefore passing control to the WORD-  ters of the neural network are learned simultaneously during train-
PREDICTOR (theN, — th operation at positiork is thenul | ing. The number of features is much smaller than the vocabulary
transition); N}, is a function ofI’ size, making it possible to reliably estimate the joint probability

e p¥ denotes the — th CONSTRUCTOR operation carried out  function. The input to the neural network are the features vectors
at positionk in the word string; the operations performed by the for all the inputs concatenated, and the output is the conditional
CONSTRUCTOR ensure that all possible binary branching parses,probability distribution over the output vocabulary. The idea here
with all possible headword and non-terminal label assignments foris that the words which are close to each other (close in the sense of

the w; ... w;, word sequence, can be generated. phe. .p’ka their role in predicting words to follow) would have similar (close)
sequence of CONSTRUCTOR operations at positiarows the feature vectors and since the probability function is a smooth func-
word-parsek — 1)-prefix into a word-parsé-prefix. tion of these feature values, a small change in the features should

It is worth noting that we can use a finite state machine, as only lead to a small change in the probability.
shown in Figure 2, to characterize the operations of the SLM. The
SLM starts from the PREDICTOR to predict the start-of-sentence 3.1. More Detail
symbol.

’ The SLM is based on three probabilitie(wy |[Wi_1Tx_1), The conditional probability functiol (y|«1, 22, - - - , &n1) where
P(ti|wk, Wi 1Ty ) and P(p*|W,,T,). Each of the three prob- i anc_nly are from thg input and outpu.t vocabulariésandV/, re-
abilities can be parameterized (approximated) in different ways, assPeCt'VeW' is determined in two parts:
we will describe in Section 5. 1. A mapping that associates with each word in the input vo-

The language model probability assignment for the word at cabularyV; a real vector of fixed length
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input layer i i i i i
p 4 hidden layer output sub-linear increase in the model size, as opposed to exponential

X, Di growth in N-gram models. This makes this model more capable in
handling longer input spans.
<2 (]
Yy
wW \Y 4. NEURAL NETWORK MODEL IN SLM
x D; The standard structured language model suffers from severe data
n—-1 tanh softmax sparseness problems. Recent works [2, 3] have shown thatincreas-
) ) ing the amount of information available to the SLM components,
Fig. 3. The neural network architecture namely the TAGGER, the CONSTRUCTOR, and the PREDIC-

TOR, leads to a significant improvement on the parsing accuracy
as well as a significant reduction in both perplexity and word error
rate. However, a severe case of the data sparseness problem was
observed in those experiments.

The fact that using longer contexts will improve the perfor-
mance of the SLM, and the neural network capability in fighting
the data sparseness problem, makes the connectionist model a very
good candidate to use in any of the SLM internal models.

In this work we investigate the use of a neural net model as

Training is achieved by searching for parameteisf the neu- the PREDICTOR component of the Structured Language Model.
ral network and the values of feature vectors that maximize the The other components of the SLM remain unchanged. The rea-

2. A conditional probability function which takes as the input
the concatenation of the feature vectors of the input items
x1,%2, -+ ,&Tn—1. Thefunction produces a probability dis-
tribution (a vector) oveW,, thei — th element being the
conditional probability of the — th member ofl;. This
probability function is realized by a standard multi-layer
neural network. Asoftmax function is used at the output of
the neural net to make sure probabilities sum up to 1.

penalized log-likelihood of the training corpus: son that only PREDICTOR was chosen was that previous experi-
ments with the SLM have shown that the data sparseness problem
L= 34 logP(y' 2],y _1;8)+R(D) 4) is much more severe for the PREDICTOR than for the other com-

ponents and in fact the perplexity of both the TAGGER and the
CONSTRUCTOR were found to be less than 2.

Furthermore, because the neural network model is computa-
tionally more expensive than the regular interpolated or back-off
internal SLM models, we didn’t use it for the PREDICTOR in
finding the partial parses along with their probabilities (equations 1
and 3). We use the neural PREDICTOR only to estimate the prob-
ability of the next word given the already constructed partial parses
%equation 2). More precisely, a neural network model will be used

or language model prediction P (wy+1|WiT}) in equation 2 but
everything else remains unchanged in the standard SLM.

where P(y'|zt, ..., zl,_,) is the probability of wordy® (network
output at timet), 7' is the training data size af@l(®) is a regular-
ization term, sum of the parameters’ squares in our case.

The model architecture is given in Figure 3. The neural net-
work is a simple fully connected network with one hidden layer
and sigmoid transfer functions. The input to the function is the
concatenation of the feature vectors of the input items. The output
of the output layer is passed though a softmax to make sure tha
the scores are positive and sum up to one, hence are valid prob
bilities. More specifically the output of the hidden layer is given
by:

hy=tanh (5; f;We;+BR) k=1,2,....H
whereh,, is thek — th output of the hidden layelf; is thej — th

input of the networkW},; and By are weight and bias elements  1q paseline Structured Language Model uses different condition-
for the hidden layer respectively, aid is the number of hidden  jnq contexts for its different components. The PREDICTOR uses
units. _ the two previous heads as the context. The CONSTRUCTOR uses
Furthermore, the outputs are given by: the same context plus the non-terminal tag of the third previous
headword, and finally the TAGGER uses the current word and tags

5. EXPERIMENTS

k=25 hy Vi TBR =12yl Vol of the two previous heads as its context.
T k=1,2,..| Vol @) We used the neural network model for treguage model
i PREDICTOR while keeping the other components unchanged as
The softmax layer (equation 7) ensures that the outputs arediscussed in section 4. We also increased the information available
positive and sum up to one, hence are valid probabilities. to the PREDICTOR.
Thek — th output of the neural network, corresponding to the The neural network is a standard multi-layered network ex-
k — th item y; of the output vocabulary, is exactly the sought actly as described in section 3. The inputs to the network are a
conditional probability, that igox, = P(y' = yk|zi, ..., z5_1). mixture of words and not-terminal tags. At the output layer we

Standard back-propagation is used to train the parameters ohave to make sure that the output is still a probability distribution
the neural network as well as the feature vectors. See [6] for de-over words only. This means that the input and output vocabularies
tails about neural networks and back-propagation. The functionare different, with the output vocabulary being a subset of the input
we try to maximize is the log-likelihood of the training data given vocabulary. We used 30 dimensional feature vectors. The network
by equation 4. had 100 hidden units with adaptive learning and a starting learning

We can see from equation 7 that the neural net model is simi- rate of 0.001. We used stochastic gradient descent for training and
lar in function to the maximum entropy model [7] except that the trained the network for a maximum of 50 iterations.
neural net learns the features by itself from the training data. It Table 1 gives the perplexity results on the UPENN section of
is most important to say that one of the great advantages of thisthe Wall Street Journal (WSJ) corpus. The vocabulary size was
model is that the number of inputs can be increased causing onlyl0,000 and there were a total of 94 non-terminal tags and part of
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+slm | +3gm | +5gm +slm | +lattice | +5gm | +I&5gm
SLM 161 | 161 137 132 Lattice | 13.7 | 12.6 13.7 13.2 13.2
2HW 174 | 137 127 123 SLM 12.7| 12.7 12.6 12.7 12.6
3HW 161 | 132 123 119 2HW 13.5| 12.7 12.7 12.5 12.4
HW-OP | 155 | 129 121 117 3HW 136 | 12.6 12.8 12.7 12.6

HW-OP | 13.2 | 12.5 12.9 12.4 12.4
Table 2. WSJ word error rate

Table 1. UPENN section perplexity

speech tags. The rows denoted by 2HW, 3HW, and HW-OP corre- ) ) ) i .

spond to contexts consisting of 2 previous heads, 3 previous headd!lY for perplexity without any consideration for its performance

and 3 previous heads plus the first previous opposite head. Thén word error rate reduction.

n — th previous opposite head is the child of the- th previ-

ous head that is not the head itself. The columns +sIm, +3gm, and 6. CONCLUSION AND FUTURE WORK

+5gm denote linear interpolation with the baseline SLM, a 3-gram

back-off, and 5-gram back-off models respectively, with weights In this paper we presented the integration of a neural network

found on some held-out set. It can be seen that adding more conmodel into the Structured Language Model. The neural network

text always helps and the best result on the longest context im-model gives the SLM the power to use more features when pre-

proves on the best result for the baseline significantly. The inter-dicting the next word in its language model computations. The

esting point is that the neural network model seems to be muchconnectionist model seemed a good choice because of its capa-

more uncorrelated with the 3-gram or 5-gram models than is thebility in fighting the data sparseness problem, which is severe in

SLM. This can be observed best for the shortest context where theSLM. Experiments showed significant reduction in perplexity. It

connectionist model performs worse than the SLM baseline, butwas also observed that the neural network model produces prob-

then does significantly better when interpolated with a regular N- abilities which are much less correlated with the regular N-gram

gram model. The SLM model simply can't reproduce the same models than are those of the baseline SLM. Separate experiments

improvements when combined with the same N-gram models. ~ showed a moderate reduction in word error rate. We plan to con-
With Significant improvements gained on the perpiexity we tinue this work by using the neural network model also for the

carried out some experiments to see how well the model performsother components of the SLM.

its function in speech recognition and in reducing the word error

rate. Our model was used to re-rank the output N-best list of a 7. ACKNOWLEDGEMENT
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