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ABSTRACT

This article introduces a novel approach to model morphosyntax in
morpheme unit based speech recognizers. The proposed method
is evaluated in our recent Hungarian large vocabulary continu-
ous speech recognition (LVCSR) system. The architecture of the
recognition system is based on the weighted finite state transducer
(WFST) paradigm. The task domain is the recognition of fluently
read sentences selected from a major daily newspaper. The vocab-
ulary units used in the system are morpheme based in order to pro-
vide sufficient coverage of the large number of word-forms result-
ing from affixation and compounding. Besides the standard mor-
phemeN -gram language model we evaluate the novelstochastic
morphosyntactic language model(SMLM) that describes the valid
word-forms (morpheme combinations) of the language. Thanks to
the flexible transducer-based architecture of the system the mor-
phosyntactic component is integrated seamlessly with the basic
modules with no need to modify the decoder itself. The proposed
stochastic morphosyntactic language modeldecreases the error
rate by 17.9% relatively compared to the baseline trigram system.
The morpheme error rate of the best configuration is 14.75% in a
1350 morpheme Hungarian dictation task.

1. INTRODUCTION

Hungarian is a Finno-Ugric language spoken by about 15 million
people mainly in Hungary and in the neighbouring countries. Sim-
ilarly to the other members of the Finno-Ugric language family
Hungarian is an agglutinating language, that is, it relies heavily on
suffixes.

Speech research has a long tradition in Hungary and there exist
several research and commercial systems both for speech synthesis
and automatic speech recognition (ASR). Previous ASR research
efforts have been limited, however, to command and control tasks
that have a limited vocabulary. Besides the shortage of resources
the main obstacle that delayed the beginning of Hungarian LVCSR
research is the size of the vocabulary and the complexity of the
morphology. The number of different word forms is in the range
of hundreds of millions according to estimates by different lin-
guists and the accurate modeling of this vocabulary is not easy
even with morphological decomposition because the number of
inflection classes is very large. The other difficulty, related to the
vocabulary representation problem, is the accurate computational
representation of pronunciation.

In our previous work [4, 5] we proposed methods for treating
both of these problems but until now we had experimental results
only about the pronunciation modeling method [6]. In Section 2
of this article we describe the architecture of our new weighted fi-
nite state transducer based recognition system that was designed
to facilitate an efficient implementation of both the phonology and
morphology modeling methods. Then we describe the details of
our proposed stochastic morphosyntactic language model in Sec-
tion 3 and describe the results of the experimental evaluation of the
method in Section 4. Finally, we conclude the article in Section 5
with a summary and suggestions for future work.

2. SYSTEM OVERVIEW

The standard knowledge components in a state-of-the-art ASR sys-
tem are the acoustic model, the pronunciation model and theN -
gram language model. The usual practice is to represent each of
these different types of knowledge in their specialized data struc-
ture and to use dedicated code in the decoder for combining and
searching them. This practice has been motivated by the need for
efficient implementations and perhaps also by the incremental de-
velopment of the systems.

The price of this highly optimized implementation is, however,
the loss of flexibility for adding new knowledge sources to the sys-
tem. The reason is that the specialized code gets increasingly com-
plex and usually only the original developer of the decoder mod-
ule would be able to add the new components. It has been widely
understood for a long while that all the usual knowledge sources
(KS) are just different instantiations of the same basic mathemati-
cal data structure: weighted finite-state transducers (WFSTs). But
it has only recently been demonstrated [2] that a recognition sys-
tem using this uniform data representation and generic algorithms
for all KSs can achieve, with affordable system resources, a per-
formance similar to and surpassing specialized systems.

This weighted finite-state transducer (WFST) based architec-
ture [1, 2] is especially attractive for us because all the phonolog-
ical and morphological dependencies described in [4, 5, 6] can be
easily converted into a WFST representation. Moreover, we be-
lieve that higher level linguistic dependencies, such as the agree-
ment of the number and person of the subject and the predicate, can
also be represented in this framework. Therefore we designed our
recognition system from the beginning according to the uniform-
data WFST paradigm.

2.1. Review of WFST-based ASR

The main idea of WFST-based speech recognition [1, 2] is that
each of the knowledge sources is represented as a weighted finite-
state transducer. The search-space of the given task is obtained by
combining the basic components using the composition operation
of WFSTs. The main components of our current system besides
the decoder itself are the acoustic modelA, the context depen-
dency mappingCD, the phonological rulesP , the basic pronun-
ciation dictionaryD, the morphosyntactic rule setMS and the
N -gram language modelLMN . A, CD, D andLMN are stan-
dard components,P is introduced in [6], whileMS is the main
subject of this paper.

Using these components the recognition task is defined as find-
ing the path with the highest likelihood in the integrated recogni-
tion network:

ASR = bestpathA ◦ CD ◦ P ◦D ◦MS ◦ LMN , (1)

where◦ represents transducer composition.
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3. LANGUAGE MODELING

As explained in the introduction, one of the difficulties in build-
ing a Hungarian LVCSR system is the modeling of the large vo-
cabulary. For example, our language model (LM) database of 40
million words contains over 2 million different tokens before pre-
processing. The number of different tokens remains over 1 million
even after replacing all the number and punctuation characters with
a white-space and converting all upper case characters to lower
case. Therefore it is essential to use units smaller than words as the
basic recognition unit in order to cover the vocabulary using sys-
tem resources within practical limits. In most, if not all, languages
words are built from smaller meaningful units: morphemes. Un-
like word units, the number of morphemes is quite limited and
they have been used with succes in speech recognition systems for
different languages that suffer from the vocabulary size problem
[3]. After the words are split up for morphemes, these systems
are using morphemeN -gram language modeles instead of a word
N -gram model.

Though the use of morpheme units proves to be quite effec-
tive for reducing the number of different recognition units, it has
negative effects as well. Morphemes, especially pre- and suf-
fixes, tend to be very short and acoustically confusable, leading
to a high error rate for these units. Analizing the recognition
errors reveals, however, that many errors result in a morpheme
sequence that is not permitted by the language. Examples in-
clude attaching a verb suffix to a nominal stem, such as “destruc-
tive[Adj] -ing[Grnd] ”, or combining suffixes that cannot follow
each other, such as “-ing[Grnd] -ed[Past]” (instead of the German
name “Inge”). Due to the larger number of suffixes in agglutinat-
ing languages, the number of invalid combinations is much higher.

Such errors are easy to detect in the recognition output using a
morphosyntactic rule-set, and one approach for improving perfor-
mance could be to generateN -best lists and select the alternative
that includes the smallest number of morphosyntactic errors. It is
not guaranteed, however, that a good candidate would be included
in the list for reasonable values ofN . Therefore it is desirable
to use the rules directly in the first pass of the recognition. This
eliminates all invalid combinations, decreasing the error rate and
potentially increasing the recognition speed.

In the next part of this section we describe the whole-word and
the morpheme coverage statistics of our language-model training
data to demonstrate the effectiveness of the morpheme based ap-
proach in reducing the vocabulary size. Then we review the stan-
dard morphemeN -gram language modeling approach in more de-
tail as it is the baseline used in most current morpheme-based sys-
tems. Finally, we propose a new WFST-based method to integrate
a morphosyntactic grammar with the morphemeN -gram model in
a single recognition pass.

3.1. Training database and coverage

We used 40 months of text of a large Hungarian daily newspaper
(“Magyar H́ırlap”) as the LM development data. There are 38.9
million white space separated tokens in the unprocessed database
and the whole data size is 300 MByte. After normalizing the data-
base by removing punctuation characters and splitting words into
their constituent morphemes the total number of morpheme tokens
is 74.1 million. We removed all digit characters and converted all
upper-case characters to lower-case for the coverage tests that we
conducted in order to assess the effectiveness of morpheme anal-
ysis in reducing the number of token types. The results of these
tests are displayed in Figure 1. It is clear from the figure that
the analysis significantly decreased the number of units necessary
for a given coverage. For example to attain a coverage of 99%
(OOV=1%) we need only 28k morpheme units while the number
of necessary word units would be over 750k. Because the distance
between the two curves is approximately constant and the “vocab-
ulary size” axis is on a logarithmic scale, the size of the morpheme
vocabulary is a constant factor (≈ 100) times smaller than the size
of the whole word vocabulary for any given OOV-rate under 60%.
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Fig. 1. Out of vocabulary word rate as a function of the vocabulary
size when using whole word units and morpheme units.

Table 1. Language model perplexities for different vocabulary
sizes (morpheme units, PP=perplexity).

Vocabulary size PP 2GR PP 3GR

1k 74.2 44.7
5k 85.6 49.1
10k 89.5 51.2
20k 97.9 52.9
65k 95.1 54.5

Finally, we note that the tail of the curve for morpheme coverage
was generated by inflected words that our analyzer could not split,
therefore the coverage would be much better for morpheme vocab-
ulary sizes over 20k if we had a wider coverage analyzer.

3.2. The morphemeN -gram model

The standard approach to morpheme unit based language mod-
eling is to use a morphemeN -gram model. In the first step all
the words in the language model (LM) training data are split up to
their constituent morphemes. In the second step anN -gram model
is estimated using the morpheme sequence instead of the original
word sequence.

In this approach the permitted word-forms (morpheme combi-
nations) are represented implicitly by the transition likelihoods of
theN -gram model. The advantage of this method is that it is easy
to use because only a morpheme analyzer is needed to split up the
words of the training data and the LM is estimated automatically.
Even though an accurate morpheme analyzer is not available for
all languages, a simple stem- and suffix-list based method may be
equally suitable if it provides a consistent analysis.

We developed 2- and 3-gram models for different vocabulary
sizes using this method. The perplexities of the models are dis-
played in Table 1. It is clear from the table that 3-gram models
have a significantly smaller perplexity and their use is mandatory
for high-accuracy recognition. The perplexity figures in them-
selves can be considered relatively good (small), but it is impor-
tant to note that these are per-morpheme perplexities and not per-
word perplexities. The per-morpheme perplexity is about half of
the equivalent per-word perplexity because each word is split up
to two morphemes on average. Besides, the resulting morphemes
are much shorter than the original words and are therefore more
confusable acoustically.

One disadvantage of this model is that all practical LM esti-
mation algorithms have to apply a smoothing mechanism to avoid
assigning zero likelihoods to valid but unseen word or morpheme
combinations. Smoothing algorithms, however, cannot distinguish
between inflected word-forms missing due to data scarcity and be-
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Fig. 2. Representation of inflected word-forms by the back-off
bigram language model,LMN .

tween inflected forms prohibited by the rules of the language. As a
result, the smoothed language model assigns a positive likelihood
to inflected forms that are not permitted by the rules of the lan-
guage, for example the incorrect “érez-tál” in Hungarian or “apple-
s-ed” in English.

3.3. The stochastic morphosyntactic language model

The accurate representation of the vocabulary of a language is
also crucial in morphological analyzers. The most important com-
ponent of a morpheme analizer is the morphosyntactic grammar
that represents the permitted combinations of morphemes. A mor-
phosyntactic grammar is frequently implemented as a finite-state
automaton (FSA). A simplified example of a morphosyntactic gram-
mar in the form of a finite-state automaton is represented in Fig-
ure 3. As opposed to theN -gram model example of Figure 2, this
model does not permit ungrammatical sequences such as “drank
[Verb+Past]-s[Present+Pers3]-ing[Geround].”

This representation is suitable for use in applications where the
input is a deterministic character sequence. In speech recognition,
however, the input is ambiguous and it is not enough to decide if
a particular input sequence is valid or not, but we need to assign
likelihoods to different input sequences.

In this regard the stochasticN -gram model and the determin-
istic morphosyntactic grammar are complementary. The smoothed
N -gram model can assign a likelihood to any input sequence, but
cannot distinguish between permitted and invalid morpheme se-
quenes. The morphosyntactic grammar, on the other hand, can
only decide if a sequence is permitted or not, but it cannot as-
sign a likelihood to permitted sequences. We would like to have
a language model that is accepting exactly those sequences that
the morphosyntactic grammar is accepting and to the accepted se-
quences it assigns the same likelihood as theN -gram model. The
finite-state intersectionMS ∩ LMN of the two FSA-s has ex-
actly this property: by definition, the finite state intersection of two
weighted FSA-s is accepting those sequences that both automata
accept. ButLMN is accepting all sequenes, thereforeMS∩LMN

is accepting the same set asMS. And the intersection of two
weighted FSA-s assigns the sum of the original weights to any ac-
cepted sequence. But the unweightedMS assigns a weight of 0 to
any sequence, therefore the sum is the weight assigned byLMN .

Because the resulting language model,MS ∩ LMN , inte-
grates the advantages of the stochasticN -gram model and the mor-
phosyntactic model we call it thestochastic morphosyntactic lan-
guage model(SMLM). The SMLM resulting from the intersection
of theN -gram modelLMN in Figure 2 and the morphosyntac-
tic grammarMS in Figure 3 is depicted in Figure 4. We can see
in the figure, thatMS eliminated the invalid combinations from
LMN while retaining the likelihoods of the valid transitions. The
final step in making the SMLM a correct language model is to
renormalize the weights on the transitions leaving each node be-
cause the intersection withMS is removing many transitions from
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Fig. 4. Representation of inflected word-forms by the stochastic
morphosyntactic language model,SMLM . The morphosyntactic
model filtered out the ungrammatical combinations at the price of
increasing the size of the network.

LMN and the sum of the weights becomes smaller than 1 for many
nodes.

4. EXPERIMENTAL EVALUATION

We conducted continuous speech recognition experiments in order
to evaluate the usefulness of the proposed stochastic morphosyn-
tactic language model in a real task. The conditions of the experi-
ments are described in detail in [6], therefore here we provide only
a brief summary in the interest of saving space.

Conditions and results.The testing database contained read news-
paper sentences from the same Hungarian newspaper that was used
for training the LM-model (with no overlap between testing data
and LM-training data). For computational reasons, for these exper-
iments we used only those sentences from the database that could
be covered with 1350 morphemes (closed vocabulary recognition).

The acoustic models used in the experiments were speaker and
gender independent triphone HMMs trained with 1 hour of read
speech from 30 speakers. The feature parameters were 13 MFCC
parameters plus their first and second order derivatives. The pho-
neme recognition error rate using these models was 39.13%, indi-
cating severe under-training of the acoustic models. The decoder
used was a simple frame synchronous Viterbi decoder. The pro-
nunciation dictionary was generated automatically as described in
[6], but the phonology modeling component was not used.

We precompiled recognition networks using 4 different lan-
guage models: a bigram and a trigram model to serve as the base-
line, and the corresponding stochastic morphosyntactic models for
both cases. The final normalization step described at the end of
Section 3.3 was not applied in the case of the SMLM-s. The size
of the 4 networks is displayed in Table 2. We can see that the ap-
plication of the morphosyntactic model,MS, increased the size
of both networks by more than a factor of 2. The reason is that
the composition of theMS model introduced several new back-
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Table 2. Number of arcs in the precompiled recognition network
for different language models (k=thousand).

N -gram LM SMLM

Bi-gram 582 k → 1144 k
Tri-gram 1085 k → 2504 k

Table 3. Comparision of speaker independent morpheme error
rates with different language models.

N -gram LM SMLM

Bi-gram 21.20% → 18.89% (-10.9%, rel.)
Tri-gram 17.97% → 14.75% (-17.9%, rel.)

off nodes like the starting node of the two suffixes in the network
of Figure 4.

The recognition error rates1 for the 4 cases are displayed in Ta-
ble 3. The application of the morphosyntactic grammar decreased
the error rate of the bigram model by about 11% relatively. The use
of a trigram LM decreased the error rate even more with a slightly
smaller network size. However, the improvement provided by tri-
grams was completely independent from the improvement by mor-
phosyntax, since the use ofMS together with the trigram model
gave an additional 18% relative improvement, larger than in the
case of the bigram model. This is similar to the findings in [6]
in that a sophisticated modeling technique may give more relative
improvement when the baseline system is better.

Result analysis. The result of the error-rate reduction analysis
is summarized in Table 4. The first observation is that the use of
morphosyntax could not reduce the number of deletion errors. The
reason is that almost all deletion errors are the result of missing
syllables due to fast speech. Missing syllables cause a very strong
acoustic mismatch and probably they can be compensated only by
direct modeling in the pronunciation model.

21.4% of the eliminated errors was an insertion error. Most of
this reduction is due to the elimination of superfluous short suffix
morphemes frequently inserted during the leading and closing si-
lence period. These morphemes are frequently inserted by the rec-
ognizer when there is some non-speech noise during the silence
periods, but usually the short morpheme that well matches the
acoustic signal is not permitted in that position. The other source
of reduction in the number of insertion errors is the elimination
of many “splitting errors.” Splitting errors are those errors where
a longer, usually content-, morpheme is split up for two or more
short, usually suffix-, morphemes. The result of these splits is usu-
ally ungrammatical, either because the first morpheme cannot be
connected to the preceding word, or because the two morphemes
cannot be connected with each other. Elimination of such errors
reduces both the number of insertion and substition errors because
one of the members of the resulting split causes a substitution er-
ror, while the rest are causing insertion errors.

Finally, the largest decrease is in the number of substitution er-
rors. There are three sources of this decrease. One source is from
the eliminated split-errors we described above. The other sources
are mistaken stems restored by the acoustically well matching suf-
fix and suffixes restored by the stem. Sometimes the connection
constraint of two morphemes can eliminate a sequence of several
substitution errors.

1defined as100S+D+I
N

%, whereS, D andI denotes the number of
substitutions, deletions and insertions andN denotes the total number of
morphemes in the test-set

Table 4. Distribution of error rate reduction between deletion, in-
sertion and substitution errors.

Error type deletion insertion substitution

Reduction 0% 21.4% 78.6%

5. CONCLUSION AND FUTURE WORK

In this paper we introduced a novel stochastic morphosyntactic
language model that integrates the advantages ofN -gram models
and morphosyntactic grammars in morpheme-unit based speech
recognizers. The main difference of our model to the standardN -
gram model is that our model can utilize the strong connection
constraints between different morpheme classes, whereas the stan-
dard (smoothed)N -gram model permits any combination. Thanks
to the flexible finite state transducer based design of our recog-
nizer, the morphosyntactic module could be integrated into the sys-
tem with no need to modifiy the decoder itself. We evaluated the
method in a Hungarian dictation task and the use of the morpho-
logical grammar reduced the baselineN -gram based morpheme
error rate by about 11% in the bigram and by about 18% in the
trigram case. The source of the improvement is the elimination
of insertion and substitution errors, but the method was not effec-
tive for reducing the number of deletion errors. The cost of the
improved accuracy is the doubling of the decoding-network size.
This might be alleviated by adopting a two-pass strategy, though
the two-pass method does not guarantee the same improvement as
the single-pass method. Although these results were obtained in
a small task, we believe that it will scale well for larger vocabu-
laries because the problem that the method is addressing is getting
more acute with the increase of vocabulary size. Furthermore, we
believe that the method is applicable to other languages as well
because all recognizers that must use morpheme units suffer from
these problems.

Further improvement of the SMLM could be expected from
properly normalizing the model as described at the end of Subsec-
tion 3.3. The acoustic modeling component in the system could be
improved by modeling phoneme duration explicitly because the
25 long consonants differ exclusively in duration from their short
counterparts and without duration modeling the current system is
unable to distinguish these pairs. Finally, we expect further im-
provement of the recognition accuracy from combining the SMLM
with the phonology modeling method introduced in [6].
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