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ABSTRACT 2. SYSTEM OVERVIEW

This article introduces a novel approach to model morphosyntax in
morpheme unit based speech recognizers. The proposed metho
is evaluated in our recent Hungarian large vocabulary continu-
ous speech recognition (LVCSR) system. The architecture of the
recognition system is based on the weighted finite state transduce : 7 e
(WFST) paradigm. The task domain is the recognition of fluently ure and to use dedicated code in the decoder for combining and

: : searching them. This practice has been motivated by the need for
L?:rci/suen?ttse Eggg |sr? Lﬁgg%{é’m :gﬂg:gﬁé%g%gﬁggﬁﬁ rc')ryé? t\gog?gefflment implementations and perhaps also by the incremental de-
vide sufficient coverage of the large number of word-forms result- velopment_ of the ;ystgms. . ) .
ing from affixation and compounding. Besides the standard mor- _ The price of this highly optimized implementation is, however,
phemeN-gram language model we evaluate the natethastic the loss of flexibility for adding new knowledge sources to the sys-
morphosyntactic language mod&MLM) that describes the valid ~ tem. The reason is that the specialized code gets increasingly com-
word-forms (morpheme combinations) of the language. Thanks to Plex and usually only the original developer of the decoder mod-
the flexible transducer-based architecture of the system the mor-ule would be able to add the new components. It has been widely
phosyntactic component is integrated seamlessly with the basicunderstood for a long while that all the usual knowledge sources
modules with no need to modify the decoder itself. The proposed (KS) are just different instantiations of the same basic mathemati-
stochastic morphosyntactic language modetreases the error cal data structure: weighted finite-state transducers (WFSTSs). But
rate by 17.9% relatively compared to the baseline trigram system.it has only recently been demonstrated [2] that a recognition sys-

The morpheme error rate of the best configuration is 14.75% in atem using this uniform data representation and generic algorithms
1350 morpheme Hungarian dictation task. for all KSs can achieve, with affordable system resources, a per-
formance similar to and surpassing specialized systems.

This weighted finite-state transducer (WFST) based architec-
1. INTRODUCTION ture [1, 2] is especially attractive for us because all the phonolog-
ical and morphological dependencies described in [4, 5, 6] can be
Hungarian is a Finno-Ugric language spoken by about 15 million easily converted into a WFST representation. Moreover, we be-
people mainly in Hungary and in the neighbouring countries. Sim- lieve that higher level linguistic dependencies, such as the agree-
ilarly to the other members of the Finno-Ugric language family ment of the number and person of the subject and the predicate, can
Hungarian is an agglutinating language, that is, it relies heavily on also be represented in this framework. Therefore we designed our
suffixes. recognition system from the beginning according to the uniform-
Speech research has a long tradition in Hungary and there exisidata WFST paradigm.
several research and commercial systems both for speech synthesis
and automatic speech recognition (ASR). Previous ASR research
efforts have been limited, however, to command and control tasks )
that have a limited vocabulary. Besides the shortage of resource€-1. Review of WFST-based ASR
the main obstacle that delayed the beginning of Hungarian LVCSR . . )
research is the size of the vocabulary and the complexity of the The main idea of WFST-based speech recognition [1, 2] is that
morphology. The number of different word forms is in the range €ach of the knowledge sources is represented as a weighted finite-
of hundreds of millions according to estimates by different lin- State transducer. The search-space of the given task is obtained by
guists and the accurate modeling of this vocabuiary is not easycombining the basic components using the composition operation
even with morphological decomposition because the number of Of WFSTs. The main components of our current system besides
inflection classes is very large. The other difficulty, related to the the decoder itself are the acoustic modglthe context depen-
vocabulary representation problem, is the accurate computationad€ncy mapping’'D, the phonological ruleg’, the basic pronun-
representation of pronunciation. ciation dictionaryD, the morphosyntactic rule séi/S and the
In our previous work [4, 5] we proposed methods for treating /¥-gram language moddlMy. A, CD, D and LMy are stan-
both of these problems but until now we had experimental results dard components is introduced in [6], whileM S is the main
only about the pronunciation modeling method [6]. In Section 2 Subject of this paper.
of this article we describe the architecture of our new weighted fi- Using these components the recognition task is defined as find-
nite state transducer based recognition system that was designethg the path with the highest likelihood in the integrated recogni-
to facilitate an efficient implementation of both the phonology and tion network:
morphology modeling methods. Then we describe the details of
our proposed stochastic morphosyntactic language model in Sec- _
tion 3 and describe the results of the experimental evaluation of the ASR=bestpathAoCDo PoDoMSo LMy, (1)
method in Section 4. Finally, we conclude the article in Section 5
with a summary and suggestions for future work. whereo represents transducer composition.

he standard knowledge components in a state-of-the-art ASR sys-

m are the acoustic model, the pronunciation model andvthe
gram language model. The usual practice is to represent each of
{hese different types of knowledge in their specialized data struc-
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3. LANGUAGE MODELING 100

90 R~
As explained in the introduction, one of the difficulties in build- sol whole word vocabulary
ing a Hungarian LVCSR system is the modeling of the large vo- T 0l morpheme vocabulary -+ l
cabulary. For example, our language model (LM) database of 40 2 60l *«;,%
million words contains over 2 million different tokens before pre- S s0 |
processing. The number of different tokens remains over 1 million S
even after replacing all the number and punctuation characters with 2 40t
a white-space and converting all upper case characters to lower o 30r
case. Therefore it is essential to use units smaller than words as the 20 ¢
basic recognition unit in order to cover the vocabulary using sys- 10 | .
tem resources within practical limits. In most, if not all, languages 0 : : T
words are built from smaller meaningful units: morphemes. Un- 1 10 100 1000 10000 100000 1e+06 1e+07
like word units, the number of morphemes is quite limited and vocabulary size

they have been used with succes in speech recognition systems for
different languages that suffer from the vocabulary size problem _. .
[3]. After the words are split up for morphemes, these systems Fig- 1. Out of vocabulary word rate as a function of the vocabulary
are using morphem&’-gram language modeles instead of a word Size When using whole word units and morpheme units.
N-gram model.

Though the use of morpheme units proves to be quite effec-
tive fOr reduclng the number of different recogr)ltlon Unlts, it has Table 1 Language model perplexities for different Vocabulary
negative effects as well. Morphemes, especially pre- and suf-sjzes (morpheme units, PP=perplexity).
fixes, tend to be very short and acoustically confusable, leading
to a high error rate for these units. Analizing the recognition

errors reveals, however, that many errors result in a morpheme Vocabulary size PP 2GR PP 3GR
sequence that is not permitted by the language. Examples in- 1k 74.2 447
clude attaching a verb suffix to a nominal stem, such as “destruc- %k 58382 g%%
tive[Adj] -ing[Grnd] ", or combining suffixes that cannot follow 20k 979 529
each other, such asifig[Grnd] -ed[Past]’ (instead of the German 65k 95.1 54.5

name ‘Inge’). Due to the larger number of suffixes in agglutinat-
ing languages, the number of invalid combinations is much higher.

Such errors are easy to detect in the recognition output using a
morphosyntactic rule-set, and one approach for improving perfor- Finally, we note that the tail of the curve for morpheme coverage
mance could be to generadé-best lists and select the alternative was generated by inflected words that our analyzer could not split,
that includes the smallest number of morphosyntactic errors. It is therefore the coverage would be much better for morpheme vocab-
not guaranteed, however, that a good candidate would be includeculary sizes over 20k if we had a wider coverage analyzer.

in the list for reasonable values d&f. Therefore it is desirable
to use the rules directly in the first pass of the recognition. This

eliminates all invalid combinations, decreasing the error rate and3.2. The morphemeN-gram model
potentially increasing the recognition speed.

In the next part of this section we describe the whole-word and The standard approach to morpheme unit based language mod-
the morpheme coverage statistics of our language-model trainingeling is to use a morphem&-gram model. In the first step all
data to demonstrate the effectiveness of the morpheme based aghe words in the language model (LM) training data are split up to
proach in reducing the vocabulary size. Then we review the stan-their constituent morphemes. In the second stefy agram model
dard morphemeV-gram language modeling approach in more de- is estimated using the morpheme sequence instead of the original
tail as it is the baseline used in most current morpheme-based sysword sequence.
tems. Finally, we propose a new WFST-based method to integrate  In this approach the permitted word-forms (morpheme combi-
a morphosyntactic grammar with the morpheMeyram model in nations) are represented implicitly by the transition likelihoods of
a single recognition pass. the N-gram model. The advantage of this method is that it is easy
to use because only a morpheme analyzer is needed to split up the
words of the training data and the LM is estimated automatically.
Even though an accurate morpheme analyzer is not available for
We used 40 months of text of a large Hungarian daily newspaperall languages, a simple stem- and suffix-list based method may be
(“Magyar Hirlap”) as the LM development data. There are 38.9 equally suitable if it provides a consistent analysis.
million white space separated tokens in the unprocessed database We developed 2- and 3-gram models for different vocabulary
and the whole data size is 300 MByte. After normalizing the data- sizes using this method. The perplexities of the models are dis-
base by removing punctuation characters and splitting words intoplayed in Table 1. It is clear from the table that 3-gram models
their constituent morphemes the total number of morpheme tokenshave a significantly smaller perplexity and their use is mandatory
is 74.1 million. We removed all digit characters and converted all for high-accuracy recognition. The perplexity figures in them-
upper-case characters to lower-case for the coverage tests that weelves can be considered relatively good (small), but it is impor-
conducted in order to assess the effectiveness of morpheme analtant to note that these are per-morpheme perplexities and not per-
ysis in reducing the number of token types. The results of theseword perplexities. The per-morpheme perplexity is about half of
tests are displayed in Figure 1. It is clear from the figure that the equivalent per-word perplexity because each word is split up
the analysis significantly decreased the number of units necessaryo two morphemes on average. Besides, the resulting morphemes
for a given coverage. For example to attain a coverage of 99% are much shorter than the original words and are therefore more
(O0OV=1%) we need only 28k morpheme units while the number confusable acoustically.
of necessary word units would be over 750k. Because the distance  One disadvantage of this model is that all practical LM esti-
between the two curves is approximately constant and the “vocab-mation algorithms have to apply a smoothing mechanism to avoid
ulary size” axis is on a logarithmic scale, the size of the morpheme assigning zero likelihoods to valid but unseen word or morpheme
vocabulary is a constant factee (100) times smaller than the size combinations. Smoothing algorithms, however, cannot distinguish
of the whole word vocabulary for any given OOV-rate under 60%. between inflected word-forms missing due to data scarcity and be-

3.1. Training database and coverage
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Fig. 2. Representation of inflected word-forms by the back-off

bigram language model,M .

eat[Verb]

drank[Vpast]
drunk[Ptcpl]

A

Fig. 3. Representation of inflected word-forms by the morphosyn-
tactic grammarp/ S.

tween inflected forms prohibited by the rules of the language. As a
result, the smoothed language model assigns a positive likelihood
to inflected forms that are not permitted by the rules of the lan-
guage, for example the incorre@réztal” in Hungarian or “apple-
s-ed’ in English.

drink[Verb] =~
< e

drank[Vpast] O
>Q

A
3.3. The stochastic morphosyntactic language model drunk[Ptcpl]

The accurate representation of the vocabulary of a language is

also crucial in morphological analyzers. The most important com- _. . . .
ponent of a morpheme analizer is the morphosyntactic grammarF'g- 4. Representation of inflected word-forms by the stochastic
that represents the permitted combinations of morphemes. A mor-morphosyntactic language mod#l)/ LM . The morphosyntactic
phosyntactic grammar is frequently implemented as a finite-state Model filtered out the ungrammatical combinations at the price of
automaton (FSA). A simplified example of a morphosyntactic gram-ncreasing the size of the network.

mar in the form of a finite-state automaton is represented in Fig-
ure 3. As opposed to th&¥-gram model example of Figure 2, this
model does not permit ungrammatical sequences suchragk
[Verb+Past]g[Present+Persdhg[Geround].”

This representation is suitable for use in applications where the
input is a deterministic character sequence. In speech recognition,
however, the input is ambiguous and it is not enough to decide if
a particular input sequence is valid or not, but we need to assignWe conducted continuous speech recognition experiments in order

LMy and the sum of the weights becomes smaller than 1 for many
nodes.

4. EXPERIMENTAL EVALUATION

likelihoods to different input sequences.
In this regard the stochasti¢-gram model and the determin-

to evaluate the usefulness of the proposed stochastic morphosyn-
tactic language model in a real task. The conditions of the experi-

istic morphosyntactic grammar are complementary. The smoothedments are described in detail in [6], therefore here we provide only
N-gram model can assign a likelihood to any input sequence, buta brief summary in the interest of saving space.

cannot distinguish between permitted and invalid morpheme se-

quenes. The morphosyntactic grammar, on the other hand, can - ] ]

only decide if a sequence is permitted or not, but it cannot as- Conditions and results. The testing database contained read news-
sign a likelihood to permitted sequences. We would like to have paper sentences from the same Hungarian newspaper that was used
a language model that is accepting exactly those sequences thdpr training the LM-model (with no overlap between testing data
the morphosyntactic grammar is accepting and to the accepted seand LM-training data). For computational reasons, for these exper-

quences it assigns the same likelihood asXhgram model. The
finite-state intersectiod/ S N LMy of the two FSA-s has ex-

actly this property: by definition, the finite state intersection of two

iments we used only those sentences from the database that could
be covered with 1350 morphemes (closed vocabulary recognition).
The acoustic models used in the experiments were speaker and

weighted FSA-s is accepting those sequences that both automatgender independent triphone HMMs trained with 1 hour of read

accept. ButL M is accepting all sequenes, therefdfeSN LM
is accepting the same set 48S. And the intersection of two

speech from 30 speakers. The feature parameters were 13 MFCC
parameters plus their first and second order derivatives. The pho-

weighted FSA-s assigns the sum of the original weights to any ac- neme recognition error rate using these models was 39.13%, indi-

cepted sequence. But the unweighigd assigns a weight of 0 to
any sequence, therefore the sum is the weight assignédby .
Because the resulting language model,S N LMy, inte-

grates the advantages of the stochastigram model and the mor-
phosyntactic model we call it theochastic morphosyntactic lan-
guage modegISMLM). The SMLM resulting from the intersection
of the N-gram modelL My in Figure 2 and the morphosyntac-
tic grammarM S in Figure 3 is depicted in Figure 4. We can see
in the figure, thatM S eliminated the invalid combinations from
LMy while retaining the likelihoods of the valid transitions. The

cating severe under-training of the acoustic models. The decoder
used was a simple frame synchronous Viterbi decoder. The pro-
nunciation dictionary was generated automatically as described in
[6], but the phonology modeling component was not used.

We precompiled recognition networks using 4 different lan-
guage models: a bigram and a trigram model to serve as the base-
line, and the corresponding stochastic morphosyntactic models for
both cases. The final normalization step described at the end of
Section 3.3 was not applied in the case of the SMLM-s. The size
of the 4 networks is displayed in Table 2. We can see that the ap-

final step in making the SMLM a correct language model is to plication of the morphosyntactic model/ S, increased the size
renormalize the weights on the transitions leaving each node be-of both networks by more than a factor of 2. The reason is that

cause the intersection withf S is removing many transitions from

the composition of thel/.S model introduced several new back-
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Table 2. Number of arcs in the precompiled recognition network Table 4. Distribution of error rate reduction between deletion, in-

for different language models (k=thousand). sertion and substitution errors.
N-gram LM SMLM Error type | deletion insertion  substitution
Bi-gram 582 k . 1144 Kk Reduction 0% 21.4% 78.6%

Tri-gram 1085 k — 2504 k

5. CONCLUSION AND FUTURE WORK

Table 3. Comparision of speaker independent morpheme error IN this paper we introduced a novel stochastic morphosyntactic
rates with different language models. language model that integrates the advantage$-gfam models

and morphosyntactic grammars in morpheme-unit based speech
recognizers. The main difference of our model to the standéard

N-gram LM SMLM gram model is that our model can utilize the strong connection
Bi-gram 21.20% —  18.89% (-10.9%, rel. constraints between different morpheme classes, whereas the stan-
Tri-gram 17.97% —  14.75% 2-17.9%, rel.g dard (smoothed)V-gram model permits any combination. Thanks

to the flexible finite state transducer based design of our recog-
nizer, the morphosyntactic module could be integrated into the sys-
tem with no need to modifiy the decoder itself. We evaluated the
off nodes like the starting node of the two suffixes in the network method in a Hungarian dictation task and the use of the morpho-
of Figure 4. logical grammar reduced the baselinegram based morpheme

The recognition error raté$or the 4 cases are displayed in Ta- €TOr rate by about 11% in the bigram and by about 18% in the

it : trigram case. The source of the improvement is the elimination
ble 3. The application of the morphosyntactic grammar decreasedof insertion and substitution errors, but the method was not effec-

the error rate of the bigram model by about 11% relatively. The use tive for reducing the number of deletion errors. The cost of the

of a trigram LM decreased the error rate even more with a slightly : : . ;

: ; ; -7 improved accuracy is the doubling of the decoding-network size.
smaller network size. However, the improvement provided by tri- Thlios might be alle¥/iated by adopt?ng a two-pass s%rategy though
grams was completely independent from the improvement by mor- the two-pass method does not guarantee the same imprO\’/ement as

phosyntax, since the use &1 S together with the trigram model the sinal h :
e o . ; gle-pass method. Although these results were obtained in
gave an additional 18% relative improvement, larger than in the a small task, we believe that it will scale well for larger vocabu-

_cask(]a of the E!g(am model, |Th's |sh5|r_n||ar to the findings 'nl [6] laries because the problem that the method is addressing is getting
:th r%t/gnsqgﬁt Eﬂg?]t(taﬁergggglmg tsecstg:ﬂﬁ'g &?t)érglve more relative more acute with the increase of vocabulary size. Furthermore, we
P y ) believe that the method is applicable to other languages as well
because all recognizers that must use morpheme units suffer from

; . . these problems.
Result analysis. The result of the error-rate reduction analysis :
is summarized in Table 4. The first observation is that the use of Further improvement of the SMLM could be expected from

morphosyntax could not reduce the number of deletion errors. TheProperly normalizing the model as described at the end of Subsec-

reason is that almost all deletion errors are the result of missing fion 3.3. The acoustic modeling component in the system could be
syllables due to fast speech. Missing syllables cause a very stron

jmproved by modeling phoneme duration explicitly because the
acoustic mismatch and probably they can be compensated only by?> 10ng consonants differ exclusively in duration from their short

direct modeling in the pronunciation model. counterparts and without duration modeling the current system is

21.4% of the eliminated errors was an insertion error. Most of Unable to distinguish these pairs. Finally, we expect further im-
this reduction is due to the elimination of superfluous short suffix Provement of the recognition accuracy from combining the SMLM
morphemes frequently inserted during the leading and closing si- With the phonology modeling method introduced in [6].
lence period. These morphemes are frequently inserted by the rec-
ognizer when there is some non-speech noise during the silence 6. REFERENCES
periods, but usually the short morpheme that well matches the
acoustic signal is not permitted in that position. The other source [1] M. Mohri. Finite State Transducers in Language and Speech
o]t reducgionl_it? the numpeé olfttinsertion errorsthis the eIiminahtion ProcessingComputational Linguistic23:2, 1997.
of many "SpIting errors. Spiing errors ark hose errors where M. Mohri, F. Pereira, M. Riley. Weighted Finite-State Trans-

a longer, usually content-, morpheme is split up for two or more (2] ! Y ;
. Ha i _ ducers in Speech Recognition. FProc. ISCA Automatic
short, usually suffix-, morphemes. The result of these splits is usu Speech Recognition 200@p. 97-106.

ally ungrammatical, either because the first morpheme cannot be
connected to the preceding word, or because the two morphemes[3] K. Ohtsuki, T. Matsuoka, T. Mori, K. Yoshida, Y. Taguchi,

cannot be connected with each other. Elimination of such errors S. Furui, K. Shirai. Japanese large-vocabulary continuous-
reduces both the number of insertion and substition errors because  speech recognition using a newspaper corpus and broadcast
one of the members of the resulting split causes a substitution er- news.Speech Communication (28):155-166, 1999.

ror, while the rest are causing insertion errors. , o . .
Finally, the largest decrease is in the number of substitution er- [4] M. Szarvas, T. Fedy, P. Mihajlik, P. Tatai. Automatic Recog-

rors. There are three sources of this decrease. One source is from  Nition of Hungarian: Theory and Practicéternational
the eliminated split-errors we described above. The other sources  Journal of Speech Technolad3(3/4):237-251, 2000.

are mistaken stems restored by the acoustically well matching suf- [5] M. Szarvas, S. Furui. The use of finite-state transducers for

fix and suffixes restored by the stem. Sometimes the connection modeling phonological and morphological constraints in au-
constraint of two morphemes can eliminate a sequence of several tomatic speech recognition. Proc. Autumn Meeting of the
substitution errors. Acoustical Society of Japark-1-20, pp. 87-88, 2001.
[6] M. Szarvas, S. Furui. Finite-state transducer based Hungar-
Ydefined asl00=+2+L 9, whereS, D and denotes the number of ian LVCSR with explicit modeling of phonological changes.
substitutions, deletions and insertions avddenotes the total number of In Proc. ICSLP 2002.pp. 1297-1300.

morphemes in the test-set
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