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ABSTRACT in one-to-one correspondence with HMMs. In the following, arcs

This paper introduces a search algorithm for continuous speecHhat carry an input label will be referred to as named arcs, those
recognition, working on a network that integrates both lexical and Without any label will be called empty arcs.
linguistic constraints. It differs from traditional Viterbi beam- The search algorithm keeps the whole network in memory, but
search in that it does not assume that the network includes anydynamically allocates memory for the structures that depend on
information regarding context dependency of the acoustic models.the decoder status, such as information concerning active nodes
Phonetic context dependency is instead taken into account by th@nd active arcs. For each active named arc, a trellis column is
search procedure itself, in a way that uniformly deals with within- kept, which is updated at each time frame with status information
word and cross-word contexts. In the paper the algorithm is de-for each internal node of the corresponding HMM. For each active
scribed in detail, and results are given on two representative tasksnode, a status record is kept, containing the best likelihood for it
American English dictation and Italian broadcast news. so far, and backtrack information. All likelihood computation are
done in the logarithmic domain. The operations at each time frame

can be summarized as follows:
1. INTRODUCTION

_ _ ) _ e The list of active nodes is pruned, removing nodes which have
The use of context-dependent acoustic models is of primary impor- 3 Jikelihood below the current beam-search threshold.

tance to achieve high accuracy in speech recognition. The integra-
tion of context dependency in the decoding process is straightfor-'
ward when limited to the consideration of within-word contexts,
as in this case it only amounts to appropriately transcribing the e The list of active arcs is scanned to propagate the paths within
words as sequences of context-dependent units. On the other hand, the HMMs. The maximum likelihood value is kept, to be used
if contexts have to be considered at word boundaries, special care for setting the beam threshold for the next time frame. The like-
is needed at word transitions, because in this case the transcription lihood of each HMM final state is assigned as output score to
of a word depends on surrounding words. In the common case the corresponding arc.

in which the main structure searched by the decoder is a networks The output scores of arcs are combined to update status infor-

of models, either completely compiled beforehand or dynamically  mation for the network nodes, and a new beam threshold is set.
expanded on demand, this requires a multiplication of arcs at word

boundaries in order to properly join contexts. This problem can ®

be dealt with through composition of Weighted Finite State Tran-

ducer (WFST), as proposed e.g. in [1], but the intermediate stepse The backtrack information for all the “relevant” nodes for the

are very resource demanding, and the network structure depends current time frame are stored while doing recombination. The

on the particular set of models used. set of relevant nodes can include all nodes, or, more commonly,
The algorithm presented here is instead aimed at decoupling only the nodes reached by a word-end arc.

context dependency from the network structure, that maintains the

context-independent description of words, and uniformly deal with 3. THE CONTEXT-DEPENDENT SEARCH

within-word and cross-word contexts. Given the need for concise-

ness, the description must assume some familiarity of the readerThe procedure for the context-dependent search is similar to the

with the terminology in beam-search decoding. An excellent sur- one described above. In this case however, status information and

vey of decoding techniques can be found in [2]. score propagation are done so as to keep separate status informa-

tion for different contexts. The main structure is outlined here,

and described in more detail in the following subsections. Table 1

2. OVERVIEW OF THE STANDARD VITERBI DECODER explains the symbols used.

To ease the understanding of the proposed algorithm, this section |n$teazd )Of being associated to a single HMM, a named arc

gives an outline of the standard Viterbi beam-search in the ITC- _ u(T : : .

irst recognizer. Following the definitions in [1], the recognition 7 5(r) — d(7) is associated to a subnetwdi(r) with sev-

. ral entry nodes and exit nodes. An entry node exists for each seen
network can be seen as a WFST, where input labels corresponcf3 y y

) - eft context of the source nod€ ), and an exit node exists for
to phonetic units, and output labels, attached to word-end arcs,,ach right context of the destination nadie-). Arcs inN(r) are
correspond to words. The decoder assumes that input labels arg . .iziad to the HMMs corresponding to the urit) in differ-

This work was partially funded by the European Commission under €Nt contexts, and are connected to nodeX (n) according to the
the CORETEX project (IST-1999-11876) context they represent (see Figure 1).

The list of active nodes is scanned to activate the outgoing
named arcs that are not already active.

The list of active nodes is scanned for propagating scores along
empty arcs.
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3.1. Nodepruning

For each active nodeand(l,r) € Ls x R, ps(l,r) is compared
with the current threshold, and set+ox if it is lower. A node is
removed if all its associated likelihoods are deleted in this way.

3.2. Arcactivation

For each active node the outgoing arcs are examined. An alis
activated if any of the likelihood$p. (I, u(7)) + Pr(7),l € L.}
is greater than the current threshold.

3.3. Named arc expansion

The paths of the network nodes are then propagated into the
HMMs. For each active are; : s -, d, the following steps are
performed:

Fig. 1. The subnetwork N(r) associated to an arc ~ with label b. e If the setL, contains any elemeiit ¢ L,, L, andN(r) are

expanded. For this purpose, a new entry nodd’ feradded to

N,E The sets of named and empty arcs, respectively N(7), the context-mapping module is queried to get the model

N(7) The subnetwork of HMMs associated to arc corresponding to each triphodé!’, u,r): r € R4}, and arcs

L, The set of left context of hypotheses that actually are added to\(7) with the appropriate models, joining the new
entered node entry node with the exit nodes.

Rs The complete set of right contexts for a nade )

L, The set of left context of hypotheses that actudlly ~ ® For eachl € L, such thaip(l, u) > —oo, the corresponding

entered are- entry node irlN(7) is initialized with p, (1, u) + Pr(7).

ps(l,r) | The status information corresponding to leftcdn- 4 paths are then propagated withiitr) with a step of the Viterbi
text! and right context in nodes algorithm, using the HMM parameters and the current frame of
Pr(r) The log-probability of are . acoustic parameters. An arc is deactivated if all node likelihoods
p-(r) The output likelihood of are for right contextr in N(7) are below the current threshold before expansion.
wu(l,b,7) | The HMM to be used for modeling unitin left ]
context! and right context: e The output scores of the HMMs are used to update the exit
nodes ofN (7). These likelihood$p-(r): r € Ry} are the out-
Table 1. Symbols used in the description of the algorithm. put of the arc for the current frame, and will be used when doing
path recombination on the main network.
A nodes keeps a matriyp, of status information, with an entry In propagating scores withiN(7), redundant computation is

for each possible context combinatiéhr) € Ls x Rs. The set avoided if more instances of the same model are attached to differ-

R, for each node is computed beforehand, by examining the labelsent arcs leaving the same node.

on outgoing arcs, while the sét, is incrementally updated when When doing path expansion, the maximum value of all com-

new hypotheses enter the node. puted node likelihoods is computed, to be used later for setting the
When expanding an arc, input scores are taken from the propedbeam threshold.

column of the score matrix of the source node and propagated into

the internal trellises of the models according to their left context.

3.4. Arc scorerecombination
The likelihoods for the entry nodes df(7) are set to:

When named arcs have been processed, their scores are used to
I:(1) = paimy (L u(7)) + Pr(r),Vl € L, update the status of network nodes, after clearing the list of active
nodes. Based on the maximum likelihood values computed in the
All the HMM trellises are then updated processing the cur- previous step, two thresholds, andw; are computed, to be “S‘?d
rent observation, and their outputs assigned according to their rightln pruning word-erLd nodes and word-internal nodes, respectively.
contexts. After all arc hypotheses have been scored, the likeli-For each are : s —, d, and for each € Rq:

hoods for each nodeare updated so as to ha¥/, r) € Ls X Rs: ) ) . .
e If p-(r) < w, contextr is skipped, otherwise the following

po(l,7) = max {p.(r): 7 € N,d(r) = s,u(r) =1} actions are taken. Here is the proper threshold between,
’ e ’ ’ andw;.

and backpointers are updated accordingly. Score propagation i§ Noded is activated if not already active.
then performed along empty arcs, so as to have, for each siode
and(l,r) € Ls x Rs: o If u¢ Ly, uis added talq.

o If p-(r) > pa(u,r), thenpq(u, r) is replaced by, (r), and the
ps(l,r) = max {py-)(l,r) + Pr(r): 7 € E,d(r) = s} backpointer is updated accordingly.
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3.5. Empty arc expansion a
Empty arc expansion is based on a queue, initialized with all active
nodes which have some outgoing empty arc. Then, the following
procedure is repeated until the queue empties:

e The first element is taken from the queue.

e The score is propagated through all empty arc leayinlj the
likelihood of a noded is updated, and has outgoing empty
arcs,d is put on the queue.

Score propagation for empty arc is trivial in the classical case,
but it is more complex in the context-dependent search. For each
empty arcr : s — d, for eachl € L, and for eachr € Ry:

Fig. 2. The subnetwork on an arc representing a chain b a b.

o If ps(l,7) + Pr(r) < w, the combinatior{l, r) is skipped. single arc labeled by a sequence of units, thereby reducing the net-
work size. Of course, such arcs are to be processed appropriately
when doing arc expansion.

o If [ ¢ Ly, lis added tag. In the case of the context-dependent search, however, it is al-
o If ps(l,7) + Pr(r) > pa(l,r), thenpa(l,r) is replaced by ready the common case tha_tt an arc is_associated to a s_ubn_etwork
ps(l,7) + Pr(7), and the backpointer is updated accordingly. N(7), therefore the processing for the inner path expansion is the

same as for other arcs. The only differences are the topology of
Notice that if there exists an empty arc: s — d, then it N(7), and the rules used when expanding it on demand. Figure 2

e Noded is activated if not already active.

must beRg C R.. shows the typical structure for these arcs.
) . When activating an are for the first time, the portion dN(r)

3.6. Storage of backpointersand backtracking that do not includes the entry nodes can be built at once. Then, for
When status information about all nodes has been updated, backeach left context entering the arc, the triphone-mapping module
pointers are stored for later use in recovering the best path. has to be queried to @, ui, uz) only, whereu, ,u. are the first

At each time instant, a backpointer is kept for each node  and the second unit in the chain, respectively. That s, only a single
and each paifl,r) € Ls x R, for which p,(l,7) > —oco. The arc is added toV(7), unlike to what happens with normal arcs.
backpointer itself links to a network node and a previous time in- Moreover, in this case it is simple to detect cases in which

dex, and also includes indication of the particular context combi- entry arcs irlN(7) are redundant, since all entry arcs converge.
nation on that node through which the best path reachipassed.

After all time frames have been processed, backtracking is4.2. Improving memory usage through memory mapping
performed as usual by following the backpointers stored during To lessen the impact of large networks, some techniques have been
the search, starting from the node with the highest likelihood. The jntegrated to reduce memory usage, taking advantage of virtual
only difference comes from the additional context information car- memory features commonly available on modern operating sys-

ried by backpointers, as explained above. tems.

. . Memory-mapping of the network: By using a technique
37 Trl!ohoneto-model mapping _ called memory-mapping, the operating system can be instructed
As previously stated, the mappirt§ b, ) — (L, b, r) from tri- to use a file as support for a particular region of the virtual ad-

phones to models is done at run time. If the last it a path  dress space of a process, instead of the swap space. The actual
entering an are- has not been already seen on a module is  fetching of data from disk is under control of the operating sys-
queried to know which model has to be used for each triphonetem, with a granularity that depends on the system page size. If
(l,u(r),r), 7 € Racr). This module is external to the decoder the region is read-only, as is the case of the network structure for
and can therefore implement different policies. This information the present algorithm, this allows to reserve a portion of virtual

is cached by the decoder, so that a mapping for a given triphone isaddress space, without actually loading the pages unless they are
asked only once. In the experiments, for example, where the mod-referenced. Therefore, the usage of real memory is not determined
els are built using a Phonetic Decision Tree (PDT), the mapping is by the whole size of the network, but by the network portion actu-
obtained by querying the decision tree itself. ally visited during search.

The triphone-mapping module can notify the decoder when On-demand memory-mapping of network regions: If the
certain units are to be considered inherently context-independentmemory mapping is done for the whole network at once, the vir-
as is often the case for the silence unit or other filler units. When tual address space is still dependent on the total size. In order to
expanding and combining arcs labeled by such units, the decodereduce both the virtual address space and the real memory space,
takes advantage of it by not building subnetworks and disregardinga demand-mapping of network regions has been introduced. With

context dependency when propagating likelihoods. this option, the mapping of a network region is explicitly requested
by the program only upon a reference to that region. The num-

4. EXTENSIONSAND IMPROVEMENTS ber of mapping requests can be reduced by reordering the network
] nodes. This can be easily done off-line by visiting the network in a

4.1. Arcchains breadth-first manner, that is with the same policy the decoder uses,

It is common, when compiling LM networks, that sequences of and renumbering the nodes so as to reflect the order in which they
arcs form achain, i.e. they link nodes having a single entry arc are encountered. Since the information about nodes and arcs is se-
and a single exit arc. A chain can be conveniently represented by ajuentially stored in the network structure, this helps in improving
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Max. Mem. Avg. Mem. RTR Model set Models Mixtures Gaussians
Baseline 351Mb 306Mb 3.9 Within-word 9,734 36,671 42,212
Paged 270Mb 162Mb 4.0 Cross-word 8,458 7,509 60,007
Paged and Sorted 274Mb 147Mb 4.0 Table 3. Characteristics of the model sets used in BN experiments.
Table 2. Decoder resource usage on the 20K WSJ ' 93 Evaluation
task with different options enabled. Max. Mem.  Avg. Mem. RTR WER
Baseline 642Mb 538Mb 7.1 15.2
Paged and Sorted 500Mb 263Mb 7.5 "
the locality of references to network elements. [ Within-word I 575Mb 425Mb 6.4 16.0

Table 4. Decoder performance and resource usage on the 64K BN
task. Thelast row refers to the reference within-word system.

5. EXPERIMENTS

5.1. Wall Street Journal

The first experiment is based on the Wall Street Journal corpus, a

widely used speaker independent American English dictation task.models did not result in any improvement. Given the good perfor-
Acoustic models were trained on the standard SI-284 training set.mance of PDT tying when combined with cross-word models on
The test set is the November '93 Evaluation Test, a set of 213 WSJ data, however, it was decided to use the same procedure used
sentences uttered by 10 speakers. The language model is a 20kr the WSJ experiments in building the cross-word acoustic mod-
trigram backoff LM, defined in the evaluation specification. In els. Table 3 summarizes the characteristics of the two model sets.
the results of the evaluation, performances ranged from 11.7% toGiven the different tying scheme, they are not directly comparable,
19.0% Word Error Rate (WER), with an average of 14.9%. but the overall complexity is similar.

The set of acoustic models included 27320 models, with a The language model is an interpolated trigram LM with a 64k
PDT-based tied-state architecture of 8873 tied states and 7111%vord vocabulary, trained on a corpus mostly composed by newspa-
Gaussians. The model complexity and training procedure for per texts, augmented with the transcriptions of the BN data used in
HMMs are similar to the WSJ system described in [3], that reports training acoustic models. The network obtained after LM com-
a 12.7% WER, except that our system used gender-independenpilation contained 9,047,564 nodes, 8,713,951 named arcs, and
models, and the lexicon made available by LIMSI after the '93 19,974,485 empty arcs. There are 1,550,862 arc chains in the net-
evaluation. This was done on purpose, because a baseline withwork, with an average length of 2.9 arcs.
predictable results was required to validate the approach. The Table 4 shows the performance and resource usage of the
compilation of the standard trigram LM resulted in a network cross-word and within-word systems. In comparing memory us-
with 5,428,622 nodes, 5,197,189 named arcs, and 9,660,367 empt@ge, one must take into account that the within-word system has
arcs. The network contained 1,361,617 arc chains with an averageiot yet been updated with on-demand mapping of network regions.
length of 3 arcs. The resulting system produced a WER of 12.9%.

Table 2 shows the resource usage, and the effect of the tech- 6. CONCLUSION AND FUTURE WORK

niques described in section 4.2, as measured on a 1.5GHz AMDy, this paper, a search algorithm for speech recognition has been
Athlon CPU running Linux 2.4.9. Memory usage was measured gegcribed, using a network that integrates both linguistic and lex-
by exploiting the/ pr oc/ interface exposed by Linux. Compar- e information, but is independent from the context dependency
ing the firstand second row of the table, it can be seen that explicitcaracteristics of the acoustic units. To demonstrate the feasibility
demand paging of network regions is effective in mitigating the 4t the approach, results have been presented on two representative

drawbacks of the static representation. In the last row, the effectiyqrs Future work will be devoted to improve the algorithm with
is shown of reordering the nodes in order to reduce mapping r€-respect to run time and memory usage.

quests, which adds another small improvement. Running times
are not significantly affected by introducing paging, as expressed

by the Real Time Ratio (RTR) in the last column. 7. REFERENCES
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