
CONTEXT-DEPENDENT SEARCH IN A CONTEXT-INDEPENDENT NETWORK

Fabio Brugnara

ITC-irst – Centro per la Ricerca Scientifica e Tecnologica
I-38050 Povo di Trento, Italy

ABSTRACT
This paper introduces a search algorithm for continuous speech
recognition, working on a network that integrates both lexical and
linguistic constraints. It differs from traditional Viterbi beam-
search in that it does not assume that the network includes any
information regarding context dependency of the acoustic models.
Phonetic context dependency is instead taken into account by the
search procedure itself, in a way that uniformly deals with within-
word and cross-word contexts. In the paper the algorithm is de-
scribed in detail, and results are given on two representative tasks:
American English dictation and Italian broadcast news.

1. INTRODUCTION

The use of context-dependent acoustic models is of primary impor-
tance to achieve high accuracy in speech recognition. The integra-
tion of context dependency in the decoding process is straightfor-
ward when limited to the consideration of within-word contexts,
as in this case it only amounts to appropriately transcribing the
words as sequences of context-dependent units. On the other hand,
if contexts have to be considered at word boundaries, special care
is needed at word transitions, because in this case the transcription
of a word depends on surrounding words. In the common case
in which the main structure searched by the decoder is a network
of models, either completely compiled beforehand or dynamically
expanded on demand, this requires a multiplication of arcs at word
boundaries in order to properly join contexts. This problem can
be dealt with through composition of Weighted Finite State Tran-
ducer (WFST), as proposed e.g. in [1], but the intermediate steps
are very resource demanding, and the network structure depends
on the particular set of models used.

The algorithm presented here is instead aimed at decoupling
context dependency from the network structure, that maintains the
context-independent description of words, and uniformly deal with
within-word and cross-word contexts. Given the need for concise-
ness, the description must assume some familiarity of the reader
with the terminology in beam-search decoding. An excellent sur-
vey of decoding techniques can be found in [2].

2. OVERVIEW OF THE STANDARD VITERBI DECODER

To ease the understanding of the proposed algorithm, this section
gives an outline of the standard Viterbi beam-search in the ITC-
irst recognizer. Following the definitions in [1], the recognition
network can be seen as a WFST, where input labels correspond
to phonetic units, and output labels, attached to word-end arcs,
correspond to words. The decoder assumes that input labels are

This work was partially funded by the European Commission under
the CORETEX project (IST-1999-11876)

in one-to-one correspondence with HMMs. In the following, arcs
that carry an input label will be referred to as named arcs, those
without any label will be called empty arcs.

The search algorithm keeps the whole network in memory, but
dynamically allocates memory for the structures that depend on
the decoder status, such as information concerning active nodes
and active arcs. For each active named arc, a trellis column is
kept, which is updated at each time frame with status information
for each internal node of the corresponding HMM. For each active
node, a status record is kept, containing the best likelihood for it
so far, and backtrack information. All likelihood computation are
done in the logarithmic domain. The operations at each time frame
can be summarized as follows:

• The list of active nodes is pruned, removing nodes which have
a likelihood below the current beam-search threshold.

• The list of active nodes is scanned to activate the outgoing
named arcs that are not already active.

• The list of active arcs is scanned to propagate the paths within
the HMMs. The maximum likelihood value is kept, to be used
for setting the beam threshold for the next time frame. The like-
lihood of each HMM final state is assigned as output score to
the corresponding arc.

• The output scores of arcs are combined to update status infor-
mation for the network nodes, and a new beam threshold is set.

• The list of active nodes is scanned for propagating scores along
empty arcs.

• The backtrack information for all the “relevant” nodes for the
current time frame are stored while doing recombination. The
set of relevant nodes can include all nodes, or, more commonly,
only the nodes reached by a word-end arc.

3. THE CONTEXT-DEPENDENT SEARCH

The procedure for the context-dependent search is similar to the
one described above. In this case however, status information and
score propagation are done so as to keep separate status informa-
tion for different contexts. The main structure is outlined here,
and described in more detail in the following subsections. Table 1
explains the symbols used.

Instead of being associated to a single HMM, a named arc

τ : s(τ)
u(τ)−→ d(τ) is associated to a subnetworkN(τ) with sev-

eral entry nodes and exit nodes. An entry node exists for each seen
left context of the source nodes(τ), and an exit node exists for
each right context of the destination noded(τ). Arcs inN(τ) are
associated to the HMMs corresponding to the unitu(τ) in differ-
ent contexts, and are connected to nodes inN(τ) according to the
context they represent (see Figure 1).

I - 3600-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

a

b

c e f

e

f

c

b

e
a

d

a

d

b

a
e

c

f

d

a

e

µ(a,b,c)

µ(a,b,e)

µ(a,b,f)

µ(d,b,c)

µ(d,b,e)

µ(d,b,f)

Fig. 1. The subnetwork N(τ) associated to an arc τ with label b.

N ,E The sets of named and empty arcs, respectively
N(τ) The subnetwork of HMMs associated to arcτ
Ls The set of left context of hypotheses that actually

entered nodes
Rs The complete set of right contexts for a nodes
Lτ The set of left context of hypotheses that actually

entered arcτ
ps(l, r) The status information corresponding to left con-

text l and right contextr in nodes
Pr(τ) The log-probability of arcτ
pτ (r) The output likelihood of arcτ for right contextr
µ(l, b, r) The HMM to be used for modeling unitb in left

contextl and right contextr

Table 1. Symbols used in the description of the algorithm.

A nodes keeps a matrixps of status information, with an entry
for each possible context combination(l, r) ∈ Ls × Rs. The set
Rs for each node is computed beforehand, by examining the labels
on outgoing arcs, while the setLs is incrementally updated when
new hypotheses enter the node.

When expanding an arc, input scores are taken from the proper
column of the score matrix of the source node and propagated into
the internal trellises of the models according to their left context.

The likelihoods for the entry nodes ofN(τ) are set to:

Iτ (l) = ps(τ)(l, u(τ)) + Pr(τ),∀l ∈ Lτ

All the HMM trellises are then updated processing the cur-
rent observation, and their outputs assigned according to their right
contexts. After all arc hypotheses have been scored, the likeli-
hoods for each nodes are updated so as to have,∀(l, r) ∈ Ls×Rs:

ps(l, r) = max {pτ (r) : τ ∈ N, d(τ) = s, u(τ) = l}

and backpointers are updated accordingly. Score propagation is
then performed along empty arcs, so as to have, for each nodes
and(l, r) ∈ Ls × Rs:

ps(l, r) = max
{
ps(τ)(l, r) + Pr(τ) : τ ∈ E, d(τ) = s

}

3.1. Node pruning

For each active nodes and(l, r) ∈ Ls ×Rs, ps(l, r) is compared
with the current threshold, and set to−∞ if it is lower. A node is
removed if all its associated likelihoods are deleted in this way.

3.2. Arc activation

For each active nodes, the outgoing arcs are examined. An arcτ is
activated if any of the likelihoods{ps(l, u(τ)) + Pr(τ), l ∈ Ls}
is greater than the current threshold.

3.3. Named arc expansion

The paths of the network nodes are then propagated into the
HMMs. For each active arc,τ : s u−→ d, the following steps are
performed:

• If the setLs contains any elementl′ /∈ Lτ , Lτ andN(τ) are
expanded. For this purpose, a new entry node forl′ is added to
N(τ), the context-mapping module is queried to get the model
corresponding to each triphone{(l′, u, r) : r ∈ Rd}, and arcs
are added toN(τ) with the appropriate models, joining the new
entry node with the exit nodes.

• For eachl ∈ Lτ such thatps(l, u) > −∞, the corresponding
entry node inN(τ) is initialized withps(l, u) + Pr(τ).

• Paths are then propagated withinN(τ) with a step of the Viterbi
algorithm, using the HMM parameters and the current frame of
acoustic parameters. An arc is deactivated if all node likelihoods
in N(τ) are below the current threshold before expansion.

• The output scores of the HMMs are used to update the exit
nodes ofN(τ). These likelihoods{pτ (r) : r ∈ Rd} are the out-
put of the arc for the current frame, and will be used when doing
path recombination on the main network.

In propagating scores withinN(τ), redundant computation is
avoided if more instances of the same model are attached to differ-
ent arcs leaving the same node.

When doing path expansion, the maximum value of all com-
puted node likelihoods is computed, to be used later for setting the
beam threshold.

3.4. Arc score recombination

When named arcs have been processed, their scores are used to
update the status of network nodes, after clearing the list of active
nodes. Based on the maximum likelihood values computed in the
previous step, two thresholdsωw andωi are computed, to be used
in pruning word-end nodes and word-internal nodes, respectively.
For each arcτ : s u−→ d, and for eachr ∈ Rd:

• If pτ (r) ≤ ω, contextr is skipped, otherwise the following
actions are taken. Hereω is the proper threshold betweenωw

andωi.

• Noded is activated if not already active.

• If u /∈ Ld, u is added toLd.

• If pτ (r) > pd(u, r), thenpd(u, r) is replaced bypτ (r), and the
backpointer is updated accordingly.

I - 361

➡ ➡

3.5. Empty arc expansion
Empty arc expansion is based on a queue, initialized with all active
nodes which have some outgoing empty arc. Then, the following
procedure is repeated until the queue empties:

• The first elements is taken from the queue.

• The score is propagated through all empty arc leavings. If the
likelihood of a noded is updated, andd has outgoing empty
arcs,d is put on the queue.

Score propagation for empty arc is trivial in the classical case,
but it is more complex in the context-dependent search. For each
empty arcτ : s −→ d, for eachl ∈ Ls, and for eachr ∈ Rd:

• If ps(l, r) + Pr(τ) ≤ ω, the combination(l, r) is skipped.

• Noded is activated if not already active.

• If l /∈ Ld, l is added toLd.

• If ps(l, r) + Pr(τ) > pd(l, r), then pd(l, r) is replaced by
ps(l, r) + Pr(τ), and the backpointer is updated accordingly.

Notice that if there exists an empty arcτ : s −→ d, then it
must beRd ⊆ Rs.

3.6. Storage of backpointers and backtracking
When status information about all nodes has been updated, back-
pointers are stored for later use in recovering the best path.

At each time instantt, a backpointer is kept for each nodes
and each pair(l, r) ∈ Ls × Rs for which ps(l, r) > −∞. The
backpointer itself links to a network node and a previous time in-
dex, and also includes indication of the particular context combi-
nation on that node through which the best path reachings passed.

After all time frames have been processed, backtracking is
performed as usual by following the backpointers stored during
the search, starting from the node with the highest likelihood. The
only difference comes from the additional context information car-
ried by backpointers, as explained above.

3.7. Triphone-to-model mapping
As previously stated, the mapping(l, b, r) �→ µ(l, b, r) from tri-
phones to models is done at run time. If the last unitl of a path
entering an arcτ has not been already seen onτ , a module is
queried to know which model has to be used for each triphone
(l, u(τ), r), r ∈ Rd(τ). This module is external to the decoder
and can therefore implement different policies. This information
is cached by the decoder, so that a mapping for a given triphone is
asked only once. In the experiments, for example, where the mod-
els are built using a Phonetic Decision Tree (PDT), the mapping is
obtained by querying the decision tree itself.

The triphone-mapping module can notify the decoder when
certain units are to be considered inherently context-independent,
as is often the case for the silence unit or other filler units. When
expanding and combining arcs labeled by such units, the decoder
takes advantage of it by not building subnetworks and disregarding
context dependency when propagating likelihoods.

4. EXTENSIONS AND IMPROVEMENTS

4.1. Arc chains
It is common, when compiling LM networks, that sequences of
arcs form achain, i.e. they link nodes having a single entry arc
and a single exit arc. A chain can be conveniently represented by a

a

b

c e f

e

a

c

fd

e
a

d

b

a
e

c

f

d

a

e b a b

µ(a,b,b)

µ(b,a,b)

µ
(d

,b
,b

)

µ(
a,

b,
c)

µ(a,b,e)

µ(a,b,f)

Fig. 2. The subnetwork on an arc representing a chain b a b.

single arc labeled by a sequence of units, thereby reducing the net-
work size. Of course, such arcs are to be processed appropriately
when doing arc expansion.

In the case of the context-dependent search, however, it is al-
ready the common case that an arc is associated to a subnetwork
N(τ), therefore the processing for the inner path expansion is the
same as for other arcs. The only differences are the topology of
N(τ), and the rules used when expanding it on demand. Figure 2
shows the typical structure for these arcs.

When activating an arcτ for the first time, the portion ofN(τ)
that do not includes the entry nodes can be built at once. Then, for
each left contextl entering the arc, the triphone-mapping module
has to be queried to getµ(l, u1, u2) only, whereu1,u2 are the first
and the second unit in the chain, respectively. That is, only a single
arc is added toN(τ), unlike to what happens with normal arcs.

Moreover, in this case it is simple to detect cases in which
entry arcs inN(τ) are redundant, since all entry arcs converge.

4.2. Improving memory usage through memory mapping
To lessen the impact of large networks, some techniques have been
integrated to reduce memory usage, taking advantage of virtual
memory features commonly available on modern operating sys-
tems.

Memory-mapping of the network: By using a technique
called memory-mapping, the operating system can be instructed
to use a file as support for a particular region of the virtual ad-
dress space of a process, instead of the swap space. The actual
fetching of data from disk is under control of the operating sys-
tem, with a granularity that depends on the system page size. If
the region is read-only, as is the case of the network structure for
the present algorithm, this allows to reserve a portion of virtual
address space, without actually loading the pages unless they are
referenced. Therefore, the usage of real memory is not determined
by the whole size of the network, but by the network portion actu-
ally visited during search.

On-demand memory-mapping of network regions: If the
memory mapping is done for the whole network at once, the vir-
tual address space is still dependent on the total size. In order to
reduce both the virtual address space and the real memory space,
a demand-mapping of network regions has been introduced. With
this option, the mapping of a network region is explicitly requested
by the program only upon a reference to that region. The num-
ber of mapping requests can be reduced by reordering the network
nodes. This can be easily done off-line by visiting the network in a
breadth-first manner, that is with the same policy the decoder uses,
and renumbering the nodes so as to reflect the order in which they
are encountered. Since the information about nodes and arcs is se-
quentially stored in the network structure, this helps in improving

I - 362

➡ ➡

Max. Mem. Avg. Mem. RTR
Baseline 351Mb 306Mb 3.9
Paged 270Mb 162Mb 4.0
Paged and Sorted 274Mb 147Mb 4.0

Table 2. Decoder resource usage on the 20K WSJ ’93 Evaluation
task with different options enabled.

the locality of references to network elements.

5. EXPERIMENTS

5.1. Wall Street Journal
The first experiment is based on the Wall Street Journal corpus, a
widely used speaker independent American English dictation task.
Acoustic models were trained on the standard SI-284 training set.
The test set is the November ’93 Evaluation Test, a set of 213
sentences uttered by 10 speakers. The language model is a 20k
trigram backoff LM, defined in the evaluation specification. In
the results of the evaluation, performances ranged from 11.7% to
19.0% Word Error Rate (WER), with an average of 14.9%.

The set of acoustic models included 27320 models, with a
PDT-based tied-state architecture of 8873 tied states and 71115
Gaussians. The model complexity and training procedure for
HMMs are similar to the WSJ system described in [3], that reports
a 12.7% WER, except that our system used gender-independent
models, and the lexicon made available by LIMSI after the ’93
evaluation. This was done on purpose, because a baseline with
predictable results was required to validate the approach. The
compilation of the standard trigram LM resulted in a network
with 5,428,622 nodes, 5,197,189 named arcs, and 9,660,367 empty
arcs. The network contained 1,361,617 arc chains with an average
length of 3 arcs. The resulting system produced a WER of 12.9%.

Table 2 shows the resource usage, and the effect of the tech-
niques described in section 4.2, as measured on a 1.5GHz AMD
Athlon CPU running Linux 2.4.9. Memory usage was measured
by exploiting the/proc/ interface exposed by Linux. Compar-
ing the first and second row of the table, it can be seen that explicit
demand paging of network regions is effective in mitigating the
drawbacks of the static representation. In the last row, the effect
is shown of reordering the nodes in order to reduce mapping re-
quests, which adds another small improvement. Running times
are not significantly affected by introducing paging, as expressed
by the Real Time Ratio (RTR) in the last column.

5.2. Italian broadcast news
At ITC-irst there is an ongoing activity on Italian Broadcast News
transcription, that has been described in previous papers [4]. The
transcription system includes several stages, but here we focus on
a single step of recognition with speaker independent models, and
results are presented to compare the performances of the within-
word and cross-word systems. Training data consist of about 57
hours of speech coming from radio and TV newscast, including
planned and spontaneous speech, which constitute the wideband
portion of the ITC-irst BN corpus. The test data include the wide-
band portion of 6 radio shows and 2 TV shows, for a total of 1 hour
and 24 minutes of speech.

The within-word models of the baseline system are built with
an agglomeration technique [5] using phonetically tied mixtures,
and correspond to those used in our best system so far. Previous at-
tempts to use PDT-based state tying on this task with within-word

Model set Models Mixtures Gaussians
Within-word 9,734 36,671 42,212
Cross-word 8,458 7,509 60,007

Table 3. Characteristics of the model sets used in BN experiments.

Max. Mem. Avg. Mem. RTR WER
Baseline 642Mb 538Mb 7.1 15.2
Paged and Sorted 500Mb 263Mb 7.5 ”

Within-word 575Mb 425Mb 6.4 16.0

Table 4. Decoder performance and resource usage on the 64K BN
task. The last row refers to the reference within-word system.

models did not result in any improvement. Given the good perfor-
mance of PDT tying when combined with cross-word models on
WSJ data, however, it was decided to use the same procedure used
for the WSJ experiments in building the cross-word acoustic mod-
els. Table 3 summarizes the characteristics of the two model sets.
Given the different tying scheme, they are not directly comparable,
but the overall complexity is similar.

The language model is an interpolated trigram LM with a 64k
word vocabulary, trained on a corpus mostly composed by newspa-
per texts, augmented with the transcriptions of the BN data used in
training acoustic models. The network obtained after LM com-
pilation contained 9,047,564 nodes, 8,713,951 named arcs, and
19,974,485 empty arcs. There are 1,550,862 arc chains in the net-
work, with an average length of 2.9 arcs.

Table 4 shows the performance and resource usage of the
cross-word and within-word systems. In comparing memory us-
age, one must take into account that the within-word system has
not yet been updated with on-demand mapping of network regions.

6. CONCLUSION AND FUTURE WORK

In this paper, a search algorithm for speech recognition has been
described, using a network that integrates both linguistic and lex-
ical information, but is independent from the context dependency
characteristics of the acoustic units. To demonstrate the feasibility
of the approach, results have been presented on two representative
tasks. Future work will be devoted to improve the algorithm with
respect to run time and memory usage.

7. REFERENCES

[1] M. Mohri, M. Riley, D. Hindle, A. Ljolje, and F. Pereira, “Full
expansion of context-dependent networks in large vocabulary
speech recognition,” inProc. of ICASSP, Seattle,WA,USA,
1998, pp. 665–668.

[2] X. L. Aubert, “An overview of decoding techniques for large
vocabulary continuous speech recognition,”Computer Speech
and Language, vol. 16, no. 1, pp. 89–114, 2002.

[3] J. J. Odell, The Use of Context in Large Vocabulary Speech
Recognition, Ph.D. Thesis, Cambridge University, 1995.

[4] F. Brugnara, M. Cettolo, M. Federico, and D. Giuliani, “Ad-
vances in automatic transcription of broadcast news,” inProc.
of ICSLP, Beijing, China, 2000, pp. II:660–663.

[5] F. Brugnara, “Model agglomeration for context-dependent
acoustic modeling,” inProc. of EUROSPEECH, Aalborg,
Denmark, 2001, pp. 1641–1644.

I - 363

➡ ➠

