
A TAIL-SHARING WFST COMPOSITION ALGORITHM FOR LARGE VOCABULARY
SPEECH RECOGNITION

Diamantino Caseiro, Isabel Trancoso

�
�
� Spoken Language Systems Lab.

INESC-ID/IST
Rua Alves Redol 9, 1000-029 Lisbon, Portugal
�dcaseiro, Isabel.Trancoso�@l2f.inesc-id.pt

ABSTRACT

This paper presents an algorithm for approximating minimiza-
tion in the context of the weighted finite-state transducers approach
to large vocabulary speech recognition. The algorithm is designed
for the integration of the lexicon with the language model and per-
forms composition, determinization and pushing in one step. Fur-
thermore, it uses tail-sharing in order to approximate minimiza-
tion. Our results show that it is a good approximation to explicit
minimization, with the added advantage that it can be used “on-
the-fly” in a dynamic decoder.

1. INTRODUCTION

Weighted finite-state approaches have been gaining popularity in
the speech recognition community [1, 2, 3, 4] due to advantages
such as flexibility [5, 6, 4] and efficiency [3, 7, 2].

The approach can be briefly described in the following way:
all knowledge sources, such as the lexicon or the language model
(LM), are encoded as weighted finite-state transducers (WFSTs);
the knowledge sources are combined using WFST composition,
in a very large integrated static network, that is then optimized
using well founded algorithms such as determinization, minimiza-
tion and pushing. The flexibility of the approach comes from the
uniformity of representation and combination of the knowledge
sources, allowing the easy integration of novel sources. The ef-
ficiency comes from the optimization algorithms that make very
good use of the sparsity of the integrated network.

The main problem with the approach has to do with scalability.
This problem has two aspects: the first one is that the memory re-
quired to determinize and optimize the integrated network is much
larger than the size of the resulting network; the second one is the
large size of the static network in runtime.

In previous work [8] we proposed a WFST composition algo-
rithm, specialized for the integration of the lexicon with the lan-
guage model, to get around the first aspect of the problem. Later,
in [9], we addressed the second aspect by employing an optimized
version of the algorithm to perform the combination and optimiza-
tion of the knowledge sources in runtime and “on-the-fly”. With
this algorithm, we showed that WFST approaches could be used in
a dynamic decoder which might have advantages when the original
knowledge sources are adapted.

Our “on-the-fly” algorithm is only exact for some local knowl-
edge integration and optimization operations such as composition
and determinization. Other operations, of a global nature, have to
be approximated.

One of these global operations is the weight pushing operation,
that consists of redistributing weights throughout the network in
order to reduce pruning errors, and consequently, improving per-
formance through the use of tighter beams. In our algorithm we
approximate the intra-word effect of pushing with the use of “lan-
guage model lookahead”, and the inter-word effect by applying
“pushing” to the language model, in a preprocessing step.

The other main global optimization operation is minimization;
its main effect is the reduction of the size of the network, but it
also has a positive influence on the performance of the decoder.

We differentiate two main aspects of minimization: on one
hand it merges large portions of the network corresponding to full
words; on the other it merges the suffixes of words. We approxi-
mate the first aspect by minimizing the language model in a pre-
processing step. In [10] we proposed a suffix sharing technique
to address the second aspect, but it was not efficient enough for
“on-the-fly” use in a decoder. In this paper, we propose an effi-
cient technique that is equivalent when n-gram language models
are used.

In the context of search using a static network, it was proposed
by [11] that, since all words linking to the same LM-history condi-
tioned lexicon-tree are the same, then, after language model looka-
head optimization, the linear pronunciation suffixes (tails) of such
words could be shared, thus reducing redundancy. The proposed
method resembles this tail-sharing technique in that it allows the
sharing of pronunciation suffixes by instances of the same word.

In the next section we describe our composition algorithm and
the structure of the search space it generates. In section 3 we
present the new tail-sharing algorithm, followed by the results of
its application to an European Portuguese broadcast news task. Fi-
nally, the main conclusions are presented.

2. COMPOSITION OF THE LEXICON WITH THE
LANGUAGE MODEL

Our algorithm for the integration of the lexicon with the language
model is based on a theorem [12] that states that the transducer
resulting of the composition of deterministic transducers is also
deterministic. Using this result, we avoid the explicit determiniza-
tion of the composition of the lexicon with the language model
by determinizing them independently. In practice, when the usual
composition algorithm for WFSTs is used, this theorem is of lit-
tle help, because of the generation of too many non-coaccessible1

1A non-coaccessible path is a “dead-end” path that does not reach a
final state.

I - 3560-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

paths in the result, which make the method unpractical.
We avoid this problem by developing a specialized version of

the WFST composition algorithm that only generates useful states.
It relies on the use of a lexicon where every � (or empty) output
edge was previously tagged with the set of non-� output labels
directly accessible from that edge. Those sets are used to avoid
following � output edges of the lexicon when they do not lead to a
useful path.

In traditional continuous speech large vocabulary recognition
systems, the search space is sometimes described in terms of copies
of the lexicon, while in WFST approaches an algebraic description
is preferred. Our composition algorithm is equivalent to the use
of explicit determinization for optimization of the search space, in
the sense that the resulting networks represent the same relation
and both are deterministic, but the precise distribution of weights
and the location of output labels along paths may be different. This
equivalence can help us gaining some insight into the determinized
search space in terms of lexicon copies.

In the following discussion we assume that the lexicon WFST
is organized in a loop, in which the initial state is both the initial
and final state of all pronunciations. To exemplify, figures 1, 2,
and 3 show a toy lexicon loop ��, a language model � and their
composition.

0

1

{AMO,ATO}
a:_

2
{OLA}

o:_

3

m:AMO

t:ATO

4
l:OLA

0

{...}
o:_

{...}
a:_

Fig. 1. Tagged lexicon loop ��.

0

2AMO/4

1/0

ATO/3

Fig. 2. Sample Language Model �.

(0,0) (1,0)
a:_/3

(3,2)
m:AMO/1

(3,1)
t:ATO/0

(0,2)o:_/0

(0,1)o:_/0

Fig. 3. Composition �� Æ�.

In the figures, � labels are represented as , the set of all words
is represented as �����. For clarity, the initial state of the lexicon
loop is shown twice in figure 1.

Each state of the composed WFST corresponds to a pair of
states from the argument transducers (for example, state (1,0) cor-
responds to state 1 of the lexicon and to state 0 of the LM). We
designate states with the form ���� ���, where �� is the initial state
of the lexicon and �� a language model state, as anchor states.
Assuming that the lexicon includes pronunciations for all words

in the language model, then anchor states (and indirectly, the lan-
guage model) shape the global structure of the search space: the
global structure consists of paths corresponding to the pronuncia-
tion of words connecting anchor states.

To help the local characterization of the search space, we des-
ignate states in the lexicon that are between the initial state and
a non-� output edge, as prefix states (shown inside a gray rectan-
gle in figure 1). And we designate states in the lexicon between a
non-� output edge and the final state as suffix states (shown inside
a white rectangle).

Analyzing the composed WFST , we see that two types of repli-
cation of the lexicon occur: one that starts in anchor states and
replicates lexicon prefix states until non-� output edges are found;
and other that consists of suffix states, and progresses until the end
of the pronunciation. In the first type of replication, edges (and
states) of the lexicon are filtered by the input labels (words) of
edges leaving the language model state, so that only edges of the
lexicon which match a language model label either in its tagging
set or in its output label are copied. In the second type, the fil-
tering is done by the incoming words of the language model state
that corresponds to the destination anchor state. In figure 3 three
replication regions are marked, one prefix region, in gray, and two
suffix ones, in white rectangles.

It is obvious that the topology of the lexicon WFST is crucial in
determining the shape, size and performance of the search space. If
the lexicon is deterministic and the identity of the word is produced
in the last edge of the pronunciation, then no suffix sharing will
take place among words arriving at the same language model state.
If the lexicon is deterministic and minimal, as the one shown in
figure 1, then some suffix sharing will occur, even among different
words, if the language model WFST allows it.

Figure 4 shows an example language model �� that when
composed with the lexicon loop generates the network shown in
5. As this example shows, the suffix sharing will not be, in gen-
eral, complete. In order to more closely approximate minimization
we would like to obtain the network shown in figure 6.

1

3

ATO/4

2
ATO/3

Fig. 4. Sample language model ��.

0 2
a:_/0

3

t:ATO/4

1 4
a:_/0

t:ATO/3
5

o:_/0

Fig. 5. Composition �� Æ��.

1

2

a:ATO/3

3
t:_/0

4/0
o:_/0

5
a:ATO/4

Fig. 6. Desired composition �� Æ ��, with complete sharing of
suffixes.

I - 357

➡ ➡

(0,1) (1,1)
a:ATO/3

(3,3)

t:_/0

(0,3)
o:_/0

(0,2) (1,2)
a:ATO/4

t:_/0

Fig. 7. Composition �� Æ�� with pushing.

2.1. Pushing of Weights and Output Labels

In the previous discussion, nothing was said about the distribution
of weights in the network. If the composition algorithm, as de-
scribed so far, is used, language model weights are incorporated
into the composed network only in non-� output edges. We im-
proved our algorithm in order to spread language model weights
throughout the replication of the prefix region of the lexicon.

When the algorithm verifies if a word from the language model
is present in the set tagging an � output edge of the lexicon, it keeps
track of the edge with the best matching weight in the language
model. The difference between this best weight and the language
model weight that was spread from the previous anchor state is
combined with the weight of the lexicon edge in order to produce
the weight of the composed edge. To help this computation, the
language model weight spread since the beginning of the pronun-
ciation is kept in each state of the composed WFST .

When only one language model edge matches a lexicon edge,
the output label is immediately produced. This has the effect of
pushing the output labels toward the initial state. A boolean value
is associated with each composed state indicating if the output la-
bel was produced or not, and is used to avoid its production more
than once.

This improvement of the algorithm does not change the topol-
ogy of the network, only the distribution of weights and output
labels throughout its paths.

One effect of this redistribution of weights and output labels
is that in the resulting network further sharing of suffixes will be
easier. Figure 7 shows the composition of �� with the language
model �� using this improvement, where we see that now states
(1,1) and (1,2) may be safely merged.

3. TAIL-SHARING WFST COMPOSITION ALGORITHM

It is difficult to know, in an “on-the-fly” algorithm that generates
the search space state by state, such as ours, when two states like
(1,1) and (1,2) can be merged.

In the algorithm described in [10], we proposed the use of two
versions of the lexicon: one optimized for prefix sharing; and the
other optimized for suffix sharing. The second version was used
instead of the suffix region of the lexicon as soon as the output
label was produced by pushing. The main problem with that ap-
proach was that, due to the need of finding correspondences be-
tween states of both lexicons, it was too slow for use in a dynamic
decoder. Also, its ability of sharing suffixes of different words is
useless when n-gram language models are used, as the edges en-
tering an n-gram language model are either backoff edges labeled
with � or have all the same label. When n-gram language mod-
els are used, sharing the suffixes of the same word (tail-sharing) is
enough.

The modification of the algorithm to allow tail-sharing con-
sists of the use of a hash table containing composed states, indexed
by a tuple ���	
����� ��	
����� ������ ��	� ����
�
�����.

Whenever a state ��� �� is generated such that � is a prefix state,
but the output label was already produced, then a lookup is made
to the hash table to find a state on the same position in the lexicon,
on a path of the same word and going to the same anchor state. If
such a state is found, it is used instead of ��� ��, if it is not found
then ��� �� is entered on the hash table. The apparent ambiguity
of indexing the hash table with both the word and the destination
state is necessary to avoid incorrect behavior when using non n-
gram language models that allow different words to enter the same
state.

In figure 8 we see the effect of the tail-sharing composition
algorithm. Assuming that state (1,1) was generated first and is
thus present in the hash table, when state (0,2) is expanded and
state (1,2) generated, the algorithm detects that (1,2) is equivalent
to (1,1) and uses it as destination of the edge leaving (0,2). State
(1,2) is ignored as it has no incoming or outgoing edges.

Our method differs from [11] in that it is restricted neither to
a tree lexicon; neither to n-gram language models. Furthermore,
it progresses forward state by state, while the original tail-sharing
algorithm performs the sharing of tails by following the pronunci-
ation backwards, from the leaves to the root of the pronunciation
tree.

(0,1)
(1,1)

a:ATO/3

(0,2)
(1,2)

a:ATO/4
(3,3)

t:_/0
(0,3)

o:_/0

Fig. 8. Tail-sharing composition �� Æ��.

4. EXPERIMENTAL RESULTS

The recognition experiments described in this section were based
on the European Portuguese broadcast news corpus collected in the
scope of the ALERT European project [13]. The acoustic models
used by our hybrid recognition system are based on the combi-
nation of various multilayer perceptrons[14]. The lexicon used
contained 57k words, and was first converted to a deterministic
WFST with 157,255 states and 221,321 edges and this was mini-
mized resulting in a WFST with 58,837 states and 121,657 edges.
The language model was obtained by interpolation of training set
transcriptions with online newspaper texts. It is a 3-gram language
model containing 3.7M n-grams. The language model was first
converted to a pseudo-deterministic WFST with 1,961,814 states
and 5,719,694 edges and then minimized to 528,879 states and
4,280,938 edges.

In the first experiment, we compared the search networks gen-
erated by the previous version of the composition algorithm, ver-
sus the one generated by the new tail-sharing algorithm, and the
use of explicit offline transducer minimization. We used the min-
imized lexicon and language model WFSTs. Table 1 shows the
dimension of the search spaces. We observe that the network ob-
tained with tail-sharing algorithm has only 5% more states and 3%
more edges than the minimum, and we also observe a huge reduc-
tion on the size of the network relative to the previous version.

In table 2 we show the performance resulting of the use of the
networks at various beams. One thing we notice is that all net-
works produce the same word error rate (WER) at the same beam.
This was expected for the previous and the tail-sharing algorithm,
as the distribution of weights along paths is the same. The fact that

I - 358

➡ ➡

Previous Tail-Sharing Minimum
States 16,612,807 4,596,489 4,383,798
Edges 21,270,815 8,925,409 8,698,667

Table 1. Dimension of search spaces.

Previous Tail-Sharing Minimum
Beam xRT WER xRT WER xRT WER

4.0 0.19 42.5 0.17 42.5 0.17 42.5
4.5 0.43 39.0 0.40 39.0 0.40 39.0
4.7 0.59 38.1 0.54 38.1 0.54 38.1
5.0 0.91 37.5 0.84 37.5 0.83 37.5
5.2 1.19 37.1 1.10 37.1 1.09 37.1
5.5 1.71 37.1 1.60 37.1 1.57 37.1
5.7 2.15 36.8 2.01 36.8 1.98 36.8

Table 2. Performance of the various search spaces.

is was also the same for the minimized network is an indication
that the tail-sharing algorithm is a good approximation. Looking
at the real time factor (xRT), we see that while the previous algo-
rithm was 8 to 11% slower than the minimized network, the new
one is only 0.5 to 1.5% slower. The behavior of the new algorithm
is almost indistinguishable from the minimized network.

The main advantage of the tail-sharing algorithm versus ex-
plicit minimization is that it can be used “on-the-fly” in a dynamic
decoder. We compared the tail-sharing algorithm with the previ-
ous one in a dynamic decoder. The WER values obtained were the
same as before, and the real-time factors are shown in table 3. The
observed improvement is around 4 to 7%.

Beam Previous Tail-Sharing
4.0 0.24 0.23
4.5 0.50 0.48
4.7 0.67 0.63
5.0 1.01 0.96
5.2 1.30 1.23
5.5 1.85 1.74
5.7 2.30 2.15

Table 3. “On-the-fly” performance.

5. CONCLUDING REMARKS

We have presented a tail-sharing approximation to minimization
specially tailored for use in LVR. It provides an exact simultane-
ous composition and determinization of the lexicon and language
model WFSTs. Furthermore, it also approximates pushing and
minimization of the search space. The tail-sharing approximation
permits the “on-the-fly” generation of search spaces very close in
size and performance to the ones optimized by offline minimiza-
tion. The algorithm is efficient enough for use in a dynamic de-
coder, with advantages of added scalability and adaptability rela-
tive to the use of static search networks.

6. ACKNOWLEDGEMENTS

The present work is part of Diamantino Caseiro’s PhD thesis, ini-
tially sponsored by a FCT scholarship (PRAXIS XXI/BD/15836/98).
This work was also partially funded by IST-HLT European pro-
gram project ALERT, and by FCT national project IPSOM (POSI-

34252/99). INESC-ID Lisboa had support from the POSI program
of the “Quadro Comunitario de Apoio III”.

7. REFERENCES

[1] M. Mohri, F. Pereira, and M. Riley, “Weighted Finite-State
Transducers in Speech Recognition,” in ASR 2000 Workshop,
September 2000.

[2] J. Glass, T. Hazen, and I. Hetherington, “Real-Time
Telephone-Based Speech Recognition in the Jupiter Do-
main,” in Proc. ICASSP ’99, Phoenix, Arizona, U.S.A., May
1999.

[3] H. Dolfing, “A Comparison of Prefix Tree and Finite-State
Transducer Search Space Modellings for Large-Vocabulary
Speech Recognition,” in Proc. ICSLP ’2002, Denver, Col-
orado, U.S.A., September 2002.

[4] M. Szarvas and S. Furui, “Finite-State Transducer Based
Hungarian LVCSR with Explicit Modelling of Phonological
Changes,” in Proc. ICSLP ’2002, Denver, Colorado, U.S.A.,
September 2002.

[5] T. Hazen, I. Hetherington, and A. Park, “FST-Based Recog-
nition Techniques for Multi-Lingual and Multi-Domain
Spontaneous Speech,” in Proc. Eurospeech ’2001, Aalborg,
Denmark, September 2001.

[6] I. Bazzi and J. Glass, “Learning Units for Domain-
Independent Out-of-Vocabulary Word Modelling,” in Proc.
Eurospeech ’2001, Aalborg, Denmark, September 2001.

[7] S. Kanthak, H. Ney, M. Riley, and M. Mohri, “A Compari-
son of Two LVR Search Optimization Techniques,” in Proc.
ICSLP ’2002, Denver, Colorado, U.S.A., September 2002.

[8] D. Caseiro and I. Trancoso, “On Integrating the Lexicon with
the Language Model,” in Proc. Eurospeech ’2001, Aalborg,
Denmark, September 2001.

[9] D. Caseiro and I. Trancoso, “Using Dynamic WFST Com-
position for Recognizing Broadcast News,” in Proc. ICSLP
’2002, Denver, Colorado, U.S.A., September 2002.

[10] D. Caseiro and I. Trancoso, “Transducer Composition for
“On-the-Fly” Lexicon and Language Model Integration,”
in Proc. ASRU ’2001 Workshop, Madonna di Campiglio,
Trento, Italy, December 2001.

[11] F. Brugnara and M. Cettolo, “Improvements in Tree-Based
Language Model Representation,” in Proc. Eurospeech ’95,
Madrid, Spain, September 1995, pp. 2133–2136.

[12] M. Mohri, “Finite-State Transducers in Language and
Speech Processing,” Computational Linguistics, vol. 23, no.
2, pp. 269–311, June 1997.

[13] H. Meinedo, N. Souto, and J. Neto, “Speech Recognition
of Broadcast News for the European Portuguese Language,”
in Proc. ASRU ’2001 Workshop, Madonna di Campiglio,
Trento, Italy, December 2001.

[14] H. Meinedo and J. Neto, “Combination of Acoustic Mod-
els in Continuous Speech Recognition Hybrid Systems,” in
Proc. ICSLP ’2000, Beijing, China, October 2000.

I - 359

➡ ➠

