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ABSTRACT

Weighted transducers provide a common representation for the
components of a speech recognition system. In previous work,
we showed that these components can be combined off-line into
a single compact recognition transducer that maps directly HMM
state sequences to word sequences [11]. The construction of that
recognition transducer and its efficiency of use critically depend
on the use of a general optimization algorithm,determinization.
However, not all weighted automata and transducers used in large-
vocabulary speech recognition are determinizable. We present a
general algorithm that can make an arbitrary weighted transducer
determinizable and generalize our previous optimization technique
for building an integrated recognition transducer to deal with ar-
bitrary weighted transducers used in speech recognition. We re-
port experimental results in a large-vocabulary speech recognition
task,How May I Help You (HMIHY), showing that our generalized
technique leads to a recognition transducer that performs as well as
our original solution in the case of classical�-gram models while
inserting less special symbols, and that it leads to a substantial im-
provement of the recognition speed, factor of���, in the same task
when using a class-based language model.

1. MOTIVATION

Weighted transducers are finite-state transducers in which each
transition carries a weight in addition to the usual input and output
symbols [14, 7]. They provide a common representation for sev-
eral components of a speech recognition system: language models,
pronunciation dictionaries, context-dependency and HMM models
[11].

General weighted transducer algorithms can be used to com-
bine and optimize these representations and to build off-line a sin-
gle efficient recognition transducer that integrates all of these com-
ponents, directly mapping from HMM state sequences to word se-
quences [11]. The size of that integrated recognition transducer is
practical since it has been shown empirically to be close to that of
the language model used.

The construction of that recognition transducer and its effi-
ciency of use critically depend on the use of a general optimiza-
tion algorithm,determinization [9, 12]. Determinization outputs
a transducer equivalent to the input that isdeterministic, i.e., one
that has a unique initial state and that has no two transitions leav-
ing the same state with the same input label. This considerably
reduces the number of paths needed to be explored by the decoder
and thus substantially improves the efficiency of recognition.

However, not all weighted automata and transducers used in
speech recognition are determinizable. A solution to this problem
was provided in the special case where�-gram statistical language
models are used [11]. But that solution does not cover some impor-
tant cases such as that of class-based language models which can
lead to non-determinizable weighted transducers. Other language
models created either directly or by approximation of weighted
context-free grammars can also create similar non-determinism
that could make our previous technique inapplicable.

We present a general algorithm that makes an arbitrary wei-
ghted transducer determinizable by inserting in it transitions la-

beled with special symbols just when needed and at the optimal
positions to fully benefit from the application of determinization.
Those special symbols can be removed, or mapped to the empty
string after application of determinization. The algorithm general-
izes our previous optimization technique for building an integrated
recognition transducer to deal with arbitrary weighted transducers
used in speech recognition.

Our experiments in a large-vocabulary speech recognition task,
How May I Help You (HMIHY), show that our new and general-
ized technique leads to a recognition transducer that performs as
well as our original solution in the case where classical�-gram
models are used, while inserting less special symbols. We also re-
port experiments with a class-based language model in the same
task using our generalized optimization technique. The experi-
ments show an improvement of the recognition speed by a factor
of ��� over the system used without application of determinization.

We first introduce some preliminary definitions and notation
necessary for the presentation of our symbol insertion algorithm
and experimental results.

2. PRELIMINARIES

2.1. Semirings

Weighted automata are automata in which the transitions carry in
addition to the usual alphabet symbols some weights elements of
a semiring [7]. A semiring is a ring that may lack negation. It
has two associative operations� and� with identity elements�
and�. � distributes over� and� is an annihilator. For example,
��� �� �� �� �� is a semiring.

The weights used in speech recognition often represent prob-
abilities. The appropriate semiring to use is then theprobability
semiring ����� �� �� ��. For numerical stability, implementations
often replace probabilities with log probabilities. The appropriate
semiring to use is then thelog semiring: �� ������������ ��,
with: ��� � � � � ���� � �� � � 	 �	
�����	�� � ����	���,
where by convention����	�� � �, and	 �	
��� ��. The log
semiring is the image by�	
 of the semiring����� �� �� ��. When
log probabilities are used and a Viterbi approximation is assumed,
�� is replaced by��
 and the appropriate semiring is thetropical
semiring ��� � ������
����� ��. The semiring abstraction
permits a generic definition of representations and algorithms in-
dependent of the underlying algebra.

2.2. Weighted Transducers

A weighted transducer � � ����� 	� 
� �� �� 
� �� over � is
a 7-tuple where� is a finite input alphabet,� is a finite output
alphabet,	 is a finite set of states,
 
 	 the set of initial states,
� 
 	 the set of final states,� 
 	� � �� � � �	 a finite
set of transitions,
 � 
 � � the initial weight function mapping

 to � , and� � � � � the final weight function mapping� to
� [14, 7]. Weighted automata can be defined in a similar way by
simply omitting the output labels.
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Given a transition� � �, we denote by���� its input label,
���� its origin or previous state and���� its destination state or
next state,���� its weight (weighted automata case), o[e] its output
label (transducer case). Given a state� � 	, we denote by����
the set of transitions leaving�.

A path � � �� � � � �� in � is an element of�� with consecu-
tive transitions:������� � �����, � � �� � � � � �. We extend� and
� to paths by setting:���� � ����� and���� � �����. We de-
note by� ��� ��� the set of paths from� to �� and by� ��� �� �� ���
the set of paths from� to �� with input label� � �� and output
� � ��. These definitions can be extended to subsets���� 
 	,
by: � ����� �� ��� �

�
���� ����� � ��� �� �� �

��. The labeling
functions� (and similarly�) and the weight function� can also be
extended to paths by defining the label of a path as the concatena-
tion of the labels of its constituent transitions, and the weight of a
path as the�-product of the weights of its constituent transitions:
���� � ����� � � � �����,���� � ������� � �������. We also extend
� to any finite set of paths� by setting:���� �

�
�������. A

transducer isfunctional or single-valued if it associates at most one
string to any input string�.

A successful path in a weighted transducer� is a path from
an initial state to a final state. A state� of � is accessible if � can
be reached from
. It is coaccessible if a final state can be reached
from �. A weighted transducer� is trim if there is no transition
with weight� in � and if all states of� are both accessible and
coaccessible.� is cycle-unambiguous if for any state� and any
string� there is at most one cycle in� labeled with�. � is unam-
biguous if for any string� � �� there is at most one successful
path with input label�. Thus, an unambiguous transducer is func-
tional.

2.3. Elements of Combinatorics on Words

We briefly introduce some elementary notions of combinatorics on
words [13] necessary for the definitions given in the next section.
Given two strings� and� in ��, we say that� is a suffix of �
if there exists� � �� such that� � �� and similarly that� is
a prefix of � if there exists� such that� � ��. We extend the
alphabet� by associating to each symbol� � � a new symbol
denoted by��� and define��� as: ��� � ���� � � � ��.
� � �������� is then the set of strings written over the alphabet
�� � ����. If we impose that���� � ���� � �, then� forms
a group called thefree group generated by � and is denoted by
����. Note that the inverse of a string� � �� � � � �� is then simply
��� � ���� � � � ���� .

3. ALGORITHMS

Our main symbol insertion algorithm is based on an efficient al-
gorithm for testing thetwins property used to check determiniz-
ability [2]. This section first briefly describes and illustrates the
determinization algorithm for weighted automata and transducers.
It then describes the twins property and our symbol insertion algo-
rithm for making transducers determinizable.

3.1. Determinization

A weighted automaton or transducer is said to bedeterministic if it
has a unique state and if no two transitions leaving the same state
have the same input label. There exists a general determinization
algorithm for weighted automata and transducers [8, 9]. The algo-
rithm is a generalization of the classical subset construction [1].

Figure 1 illustrates the determinization of a weighted automa-
ton. The states of the output weighted automaton correspond to
weighted subsets of the type����� ���� � � � � ���� ���� where each
�� � 	 is a state of the input machine, and�� a remainder weight.
The algorithm starts with the subset reduced to���� ��� where�
is an initial state and proceeds by creating a transition labeled with

0

1a/1

2

a/2

b/3

3/0

c/5

b/3 d/6 (0,0) (1,0),(2,1)a/1

b/3

(3,0)/0c/5
d/7

(a) (b)

Fig. 1. Determinization of weighted automata. (a) Weighted au-
tomaton over the tropical semiring�. (b) Equivalent weighted
automaton� obtained by determinization of�.
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Fig. 2. Determinization of finite-state transucers. (a) Finite-State
transducer� . (b) Equivalent transducer� � obtained by deter-
minization of� .

� � � and weight� leaving ����� ���� � � � � ���� ���� if there
exists at least one state�� admitting an outgoing transition la-
beled with�, � being defined by:� � ��
��� � ���� � � �
������ ���� � ��.

Similarly, figure 2 illustrates the determinization of a finite-
state transducer. Here, the states of the resulting transducer are
string subsets of the type����� ���� � � � � ���� ����, where each
�� � 	 is a state of the input machine, and�� a remainder string.
We refer the reader to [8, 9] for a more detailed presentation of
these algorithms.

Unlike the unweighted automata case, not all weighted au-
tomata or finite-state transducers aredeterminizable, that is the
determinization algorithm does not halt with some inputs. Fig-
ure 3 (a) shows an example of a non-determinizable weighted au-
tomaton and figure 3 (b) a non-determinizable finite-state trans-
ducer. Note that the automaton of figure 3 (a) differs from that of
figure 1 only by the weight of the self-loop at state�. The dif-
ference between that weight and that of the similar loop at state
� is the cause of the non-determinizability. There exists a gen-
eral characterization property and an efficient testing algorithm for
checking that property in very general cases [9, 2].

3.2. The twins property

The algorithm for testing the determinizability of finite-state trans-
ducers is based on atwins property introduced by [5, 6, 4]. The
twins property provides a characterization of determinizable finite-
state transducers [3]. The definition of the twins property and the
charaterization results were extended by [9] to the case of cycle-
unambiguous weighted automata.

Two states� and�� are said to besiblings when they can be
reached from the initial states
 by paths sharing the same input
label and when there exists a cycle at� and a cycle at�� labeled
with the same input. For example, states� and� are siblings in the
automata of Figure 1 (a) and figure 3 (a) since they can be reached
from the initial state� by paths labeled with� and admit cycles
with the same input label�. Similarly, states� and�, and states
� and� are siblings in the transducer of figure 2 (a) and that of
figure 3 (b).

Two sibling states� and�� of a weighted finite-state transducer
are said to betwins if the two following conditions:

����������� � �������������� (1)

���� � ����� (2)

hold for any paths� from 
 to � and�� from 
 to �� and for any
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Fig. 3. Non-determinizable cases. In both examples, states 1 and
2 are non-twin siblings. (a) Non-determinizable weighted automa-
ton defined over the tropical semiring. (b) Non-determinizable
functional transducer.
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Fig. 4. Insertion of special symbols to guarantee determinizability.
The insertion of the new transition labeled with�� or the one
labeled with�� is sufficient to guarantee the determinizability of:
(a) The automaton of figure 4 (a). (b) The finite-state transducer of
figure 4 (b).

cycles� in � and�� in �� such that���� � ����� and ���� � �����.
� is said to have thetwins property if any two siblings in� are
twins. Note that in that definition� can be equal to�� and that we
may have� � �� or � � ��, or that� or �� can be the empty path
if �, or ��, is the initial state.

In the case of a weighted automaton, only the condition on the
equality of the cycle weights (condition 2) is required, and in the
case of an unweighted transducer, only the condition on the output
labels (condition 1).

The twins property is a sufficient condition for the determiniz-
ability of weighted automata or weighted transducers over the trop-
ical semiring [5, 9]. It is a necessary and sufficient condition for
the determinizability of unweighted transducers and that of un-
ambiguous weighted automata or weighted transducers over the
tropical semiring [9, 2].

3.3. Symbol Insertion

We have designed an efficient algorithm for testing the twins prop-
erty for weighted automata and transducers [2]. The algorithm
can be used to detect non-twin sibling states such as those of fig-
ures 3 (a)-(b) and to locate the transitions that cause non-determin-
izability.

The key idea behind our algorithm for making an arbitrary
transducer determinizable is to insert transitions labeled with new
symbols along the paths corresponding to non-twin sibling states.
The definition of the twins property is based on the existence of
two distinct paths sharing the same input label. Thus, when the
conditions of the twins property, equations 1 and 2, do not hold for
these paths, we can insert a transition labeled with a special symbol
not in� along one of these paths. The paths are then labeled with
distinct input labels, which ensures that the twins property holds
and guarantees the determinizability of the transducer.

Figures 4 (a)-(b) illustrate this symbol insertion. The weighted
automaton of figure 3 (a) does not have the twins property because
of the two cycles with input label� at states� and� which have
different weights. These are detected by our algorithm for testing
the twins property. If we insert a transition with input label�� in
the cycle at state� or a new transition with input label�� in the
cycle at state�, the cycles have different labels and the resulting

0 1a/1 2

a/2
a/1
b/1
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3a/2

4a/1 2
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#2:ε

b/1

(a) (b)

Fig. 5. (a) Weighted automaton wihout the twins property: state
1 is a non-twin sibling with itself because of the cycles at state�
with the same input label�� but with distinct weights� and�. (b)
The farthest possible positions for symbol insertion are indicated.
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y:b
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3
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Fig. 6. (a) Non-determinizable finite-state transducer. State 1 is
a non-twin sibling with itself because there are two paths� and
�� from the initial state to state� with the same input label� and
distinct outputs� and �, and because there is a cycle� at state
� that violates condition 1 of the twins property:����������� �
���� 
� ������������� � �������� � ��������. (b) The only
possible positions where new symbols can be inserted along� or
�� are indicated in the figure.

automaton has the twins property. The finite-state transducer of
figure 3 (b) can be made determinizable in the same way.

The examples show that there are some degrees of freedom in
the choice of the position at which a new symbol is inserted: it can
be inserted on either one of the cycles and at any position along
that cycle. Our algorithm inserts new symbols only when needed
to ensure that the conditions of the twins property hold. The posi-
tion at which a transition labeled with a new symbol is inserted is
chosen carefully so that we can merge the longest possible prefixes
during the application of determinization and thereby benefit the
most from this optimization for decoding and other purposes. To
do so, we compute the level of the transitions where a new symbol
can be inserted with respect to the output of determinization and
choose to insert the symbol at the transition with the highest level.

It may appear at first sight that the best position for inserting
a new symbol is the end of a cycle as in figures 4 (a)-(b), how-
ever, this is not always possible since two cycles may share that
last transition. Figure 5 illustrates that situation. Similarly, in the
case of transducers, the cycles may coincide, thus the new symbol
cannot be inserted along the cycles. It can be inserted on the paths
with same input label that lead to the state� � ��, see figure 6.

In all cases, the new symbols inserted can be removed or re-
placed by the empty string after determinization to preserve the
weighted transduction defined by the original transducer.

3.4. Optimization of Recognition Transducers

In previous work, we showed that a single recognition transducer
� can be built from a weighted automaton� representing an�-
gram language model, a transducer� representing a pronunciation
dictionary, a context-dependency transducer and an HMM trans-
ducer! mapping sequences of distribution indices to context-
dependent phones [11]. Here, we generalize that construction to
the case of arbitrary transducers.

In general, the pronunciation transducer� is not determiniz-
able both because of the presence of homonyms and because the
pronunciation of a single word may coincide with that of a se-
quence of words. The language model� may also be non-deter-
minizable, this is in fact typical in the case of class-based language
models. Other transducer components may be non-determinizable
as well. But this is no longer a problem with our generalized algo-
rithm.

Using the symbol insertion algorithm described in the previ-
ous section, we can make an arbitrary language model automaton
� determinizable without any prior knowledge about it. We denote
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Fig. 7. Comparison of the technique based on symbol insertion
and determinization versus no optimization in the 5,500-word vo-
cabulary HMIHY 0300 task with a class-based language model.

by �� the result of the application of our symbol insertion algorithm
to�, and by�� the result after application to�. For any transducer
" , we also denote by
�"� the transducer" augmented with
extra transitions such that each new symbol on its input side is
mapped to some new and distinct output symbol. Then, our gen-
eralized recognition transducer� is constructed according to the
following formula:

�� � #�$�
�!� Æ #�$�
� � Æ #�$�
���� Æ �����

whereÆ denotes the composition [10] and#�$ the determiniza-
tion of weighted transducers [9]. The recognition transducer� is
obtained by replacing the new symbols inserted with the empty
string. This construction is similar to our previous construction in
the specific case of�-gram language models [11]. We use com-
position to combine the transducer components and apply deter-
minization after each composition step. But our symbol insertion
algorithm based on the twins property generalizes this construction
to the case of an arbitrary language model automaton.

4. EXPERIMENTAL RESULTS

We used the technique outlined in the previous section to construct
integrated optimized recognition transducers for a 5,500-word vo-
cabulary HMIHY 0300 task.

We first compared our new construction technique to the one
we had introduced for classical�-gram language models [11] us-
ing exactly the same recognition components. Our experiment
showed that the performance of the new construction matches ex-
actly that of the old one in that case: the plots showing accuracy
versus real-time factor with the old and new construction coincide.
However, with the new construction, we are inserting��� less
symbols in the lexicon transducer�.

We also measured the improvement of our new construction
technique over the construction of the integrated transducer with
no optimization in the same task. The same components were
used in both cases: a class-based trigram katz’s backoff language
model shrunk with an epsilon of� using the method of Seymore
and Rosenfeld [15] based on a class of 13 sentences and 42 words
– note that our previous optimization technique could not be used
with these non-determinizable class-based language models; an
acoustic model with 4,652 distinct HMM states, each associated
to a four-Gaussian mixture model; a triphonic context-dependency
transducer with 1,333 states and 10,2641 transitions.

Our experiments with the HMIHY 0300 5,500-word vocabu-
lary task using a simple general-purpose one-pass Viterbi decoder
show that the integrated optimized recognition transducer� sub-
stantially speeds up recognition when using that class-based lan-
guage model. Figure 7 gives recognition accuracy as a function
of recognition time, in multiples of real-time on a single processor

of a 1GHz Intel Pentium III linux cluster with 256 KB of cache
and 2 GB of memory. With our new construction method, the ac-
curacy achieved by the old non-optimized integrated transducer at
�� times real-time is reached by the new system using our opti-
mization at about��� times real-time, that is more than��� times
faster.

5. CONCLUSION

A general algorithm was presented that can make an arbitrary wei-
ghted transducer determinizable by inserting special symbols just
when needed and at the mostfavorable positions for the appli-
cation of determinization. The algorithm generalizes our previ-
ous optimization technique for building an integrated recognition
transducer to deal with arbitrary weighted transducers in speech
recognition [11] and was used to substantially improve the recog-
nition speed in a task where class-based language models are used.
The algorithm is general, it can be used in any other application
where weighted automata and transducers are used, in particular
other speech processing applications such as speech synthesis.
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