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ABSTRACT beled with special symbols just when needed and at the optimal
. . . ositions to fully benefit from the application of determinization.
Weighted transducers provide a common representation for the[?’hose special Symbols can be removed, or mapped to the empty
components of a speech recognition system. In previous work,gyring after application of determinization. The algorithm general-
we showed that these components can be combined off-line intoj; ¢4 oy previous optimization technique for building an integrated

a single compact recognition transducer that maps directly HMM yq o nition transducer to deal with arbitrary weighted transducers
state sequences to word sequences [11]. The construction of thatsed'in speech recognition.

recognition transducer and its efficiency of use critically depend : g -

on tr?e use of a general optimization al)éorithdeterminizei{ionp Our experiments in a large-vocabulary speech recognition task,
: Py How May | Help You (HMIHY), show that our new and general-

However, not all weighted automata and transducers used in large- d techni lead P d h f

vocabulary speech recognition are determinizable. We present zg” ;escoﬂqugﬁ i?]gl Zé?ugorﬁﬁggtﬂglir;;;ar\;vsh;%eglgsast&rra%ms as

general algorithm that can make an arbitrary weighted transducer 9

[ : ; P - models are used, while inserting less special symbols. We also re-
determinizable and generalize our previous optimization technique ; o y ;
for building an integrated recognition transducer to deal with ar- port experiments with a class-based language model in the same

bitrary weighted transducers used in speech recognition. We re-taSk using our generalized optimization technique. The experi-

: . g -~ ments show an improvement of the recognition speed by a factor
E’glz %ngs ;\bln;)??ﬁlelr[?\s(gﬁgl{ﬁlgﬂ?esg g@?nb;{ﬁ% gﬂ?gg:] éf&?fend't'onof 2.6 over the system used without application of determinization.

technique leads to a recognition transducer that performs as wellas Ve first introduce some preliminary definitions and notation
our original solution in the case of classieagram models while necessary for the presentation of our symbol insertion algorithm

inserting less special symbols, and that it leads to a substantial im-2nd €xperimental results.

provement of the recognition speed, factoldf, in the same task

when using a class-based language model. 2 PRELIMINARIES

1. MOTIVATION 2.1. Semirings

Weighted transducers are finite-state transducers in which eachweighted automata are automata in which the transitions carry in
transition carries a weight in addition to the usual input and output addition to the usual alphabet symbols some weights elements of
symbols [14, 7]. They provide a common representation for sev- g semiring [7]. A semiring is a ring that may lack negation. It

eral components of a speech recognition system: language model it ; T ; D
pronunciation dictionaries, context-dependency and HMM modelsﬁ]as two associative operatioasand  with identity elements)

[11]. and1. ® distributes overp and0 is an annihilator. For example,

General weighted transducer algorithms can be used to com-(N: T ; 0, 1) is a semiring. o
bine and optimize these representations and to build off-line a sin-_,__The weights used in speech recognition often represent prob-
gle efficient recognition transducer that integrates all of these com-2abilities. The appropriate semiring to use is then phabability
ponents, directly mapping from HMM state sequences to word se-SEMiring (R, +,-,0,1). For numerical stability, implementations
quences [11]. The size of that integrated recognition transducer isofteén replace probabilities with log probabilities. The appropriate
practical since it has been shown empirically to be close to that of S€Miring to use is then theg semiring: (R U {cc}, @1, +, 00, 0),
the language model used. with: Va,b € RU {oco},a @ b = —log(exp(—a) + exp(—b)),

The construction of that recognition transducer and its effi- where by conventioazp(—oo) = 0, and—log(0) = co. The log
ciency of use critically depend on the use of a general optimiza- semiring is the image blg of the semiringR, +, -, 0, 1). When
tion algorithm, determinization [9, 12]. Determinization outputs  log probabilities are used and a Viterbi approximation is assumed,
a transducer equivalent to the input thatiéerministic, i.e., one @, is replaced bymin and the appropriate semiring is threpical
that has a unique initial state and that has no two transitions leav-semiring (R4 U {occ}, min, +, 00,0). The semiring abstraction
ing the same state with the same input label. This considerablypermits a generic definition of representations and algorithms in-
reduces the number of paths needed to be explored by the decodefependent of the underlying algebra.
and thus substantially improves the efficiency of recognition.

However, not all weighted automata and transducers used in
speech recognition are determinizable. A solution to this problem 2.2, Weighted Transducers
was provided in the special case whargram statistical language
models are used [11]. But that solution does not cover some impor-A weighted transducer T = (X,A,Q,I,F, E, A, p) overK is
tant cases such as that of class-based language models which can7-tuple wherez is a finite input alphabetA is a finite output
lead to non-determinizable weighted transducers. Other languagealphabet() is a finite set of stated, C @ the set of initial states,
models created either directly or by approximation of weighted F C @ the set of final statedy C @ x X x A x K x @ a finite
context-free grammars can also create similar non-determinismset of transitions) : I — K the initial weight function mapping
that could make our previous technique inapplicable. Ito K, andp : F — K the final weight function mapping’ to

We present a general algorithm that makes an arbitrary wei- K [14, 7]. Weighted automata can be defined in a similar way by
ghted transducer determinizable by inserting in it transitions la- simply omitting the output labels.
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Given a transitiore € E, we denote byi[e] its input label,
ple] its origin or previous state and|e] its destination state or
next statew[e] its weight (weighted automata case), o[e] its output
label (transducer case). Given a state @, we denote byF[q]
the set of transitions leaving

A pathw = ey --- e, in Ais an element of£” with consecu- (a) (b)

tive transitions:nfe;—1] = plei], i = 2,...,k. We extendn and . L . .
lei—1] = ple] Fig. 1. Determinization of weighted automata. (a) Weighted au-

p to paths by settingn[r] = nlex] andp[r] = ple1]. We de- : ;L ; )
tomaton over the tropical semiring. (b) Equivalent weighted
note byP(q, ¢') the set of paths from to ¢" and byP(¢, =, 4, q') automatonB obtainedpby determinizati(orz ot(.q ?

the set of paths from to ¢’ with input labelz € ¥* and output
€b
(Emy—=-

y € A*. These definitions can be extended to sub&et8 C Q,
by: P(R,z,y,R') = U,cp.yen P(a:7,9,4'). The labeling
functionsi (and similarlyo) and the weight functiom can also be
extended to paths by defining the label of a path as the concatena-
tion of the labels of its constituent transitions, and the weight of a(0)
path as thex-product of the weights of its constituent transitions:
i[r] = ier] - - - i[er], wr] = wle1]®- - - @wler]. We also extend
w to any finite set of pathBl by setting:w([IT] = @, .y w(7]. A
transducer iunctional or single-valued if it associates at most one (@) (b)
string to any input string:.

A successful path in a weighted transduceF is a path from Fig. 2. Determinization of finite-state transucers. (a) Finite-State
an initial state to a final state. A stajeof T is accessible if ¢ can transducer?’. (b) Equivalent transducef” obtained by deter-

be reached frond. It is coaccessible if a final state can be reached ~Minization ofT".

frc_)m q. _A w§|_ghted trapsducél’ is trim if there is no tra_nsmon a € ¥ and weightw leaving {(go, wo), - . ., (qn,wn)} if there

with weight0 in 7" and if all states ofl’ are both accessible and  exists at least one statg admitting an outgoing transition la-
coaccessibleT is cycle-unambiguous if for any stateq and any beled witha, w being defined byw = min{ws + wle] : e €
stringx there is at most one cycle inlabeled withz. T is unam- Elgy), ile] = a}.

blgttlfloustll’r for atf;ybstgngﬁ € X there t|>$ at motst ong SUCC.eSfoU' Similarly, figure 2 illustrates the determinization of a finite-

path with Input labek. Thus, an unambiguous transaucer IS TUNC- giate transducer. Here, the states of the resulting transducer are

tional. string subsets of the type{(qo, zo), .- -, (gn,z»)}, Where each
qr € Q is a state of the input machine, amg a remainder string.
2.3. Elements of Combinatorics on Words We refer the reader to [8, 9] for a more detailed presentation of

these algorithms.

We briefly introduce some elementary notions of combinatorics on Unlike the unweighted automata case, not all weighted au-
words [13] necessary for the definitions given in the next section. tomata or finite-state transducers al@erminizable, that is the
Given two stringse andy in X%, we say thaty is a suffix of x determinization algorithm does not halt with some inputs. Fig-
if there existsz € ¥ such thatr = zy and similarly thaty is ure 3 (a) shows an example of a non-determinizable weighted au-
a prefix of z if there existsz such thatr = yz. We extend the tomaton and figure 3 (b) a non-determinizable finite-state trans-
alphabet® by associating to each symbel€ ¥ a new symbol ducer. Note that the automaton of figure 3 (a) differs from that of
denoted bya~' and definex™" as: ¥7"' = {a”' : a € Z}. ;igure 1 lg))nly by thr? weig_hthof thde ﬁe”_l?oﬁ at _stz_1ite 'll'he dif-

_ 1y ; ; erence between that weight and that of the similar loop at state
X = (E_LIJZ ) |s_then the seto_flstrlngf.lwrltten over the alphabet 1 is the cause of the non-determinizability. There exists a gen-
(ZUX™). If we impose thatia™ = a™ a = ¢, thenX forms eral characterization property and an efficient testing algorithm for
a group called théree group generated by ¥ and is denoted by checking that property in very general cases [9, 2].

¥ Note that the inverse of a string= a1 - - - a,, is then simply
et =ay"- 3.2. Thetwinsproperty

The algorithm for testing the determinizability of finite-state trans-
3. ALGORITHMS ducers is based ontains property introduced by [5, 6, 4]. The
) ) ) ) ) o twins property provides a characterization of determinizable finite-
Our main symbol insertion algorithm is based on an efficient al- state transducers [3]. The definition of the twins property and the
gorithm for testing thewins property used to check determiniz-  charaterization results were extended by [9] to the case of cycle-
ability [2]. This section first briefly describes and illustrates the unambiguous weighted automata.
determinization algorithm for weighted automata and transducers. Ty statesy and g’ are said to baiblings when they can be
It then describes the twins property and our symbol insertion algo- reached from the initial statekby paths sharing the same input

rithm for making transducers determinizable. label and when there exists a cyclegaand a cycle at/ labeled
with the same input. For example, stateend2 are siblings in the

3.1. Determinization automata of Figure 1 (a) and figure 3 (a) since they can be reached
from the initial stated by paths labeled witla and admit cycles

A weighted automaton or transducer is said tal&erministic if it with the same input labél. Similarly, statesl and2, and states

has a unique state and if no two transitions leaving the same stat& and4 are siblings in the transducer of figure 2 (a) and that of
have the same input label. There exists a general determinizatiorfigure 3 (b).
algorithm for weighted automata and transducers [8, 9]. The algo-  Two sibling stateg andq’ of a weighted finite-state transducer
rithm is a generalization of the classical subset construction [1].  are said to béwins if the two following conditions:

Figure 1 illustrates the determinization of a weighted automa-

ton. The states of the output weighted automaton correspond to -1 _ -1 1 1
weighted subsets of the typef(qo, wo), - - -, (gn, wn )} Where each o] el O[Wf] ofmc] (1)
qr € Q is a state of the input machine, amgl a remainder weight. wle] = wlc¢] 2)

The algorithm starts with the subset reduced ¢p, 0)} wherep
is an initial state and proceeds by creating a transition labeled withhold for any pathsr from I to ¢ and«’ from I to ¢’ and for any
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Fig. 5. (a) Weighted automaton wihout the twins property: state
1 is a non-twin sibling with itself because of the cycles at state
ith the same input labedb but with distinct weight2 and3. (b)

(b)

Fig. 3. Non-determinizable cases. In both examples, states 1 and4’vhe farthest possible positions for symbol insertion are indicated.

2 are non-twin siblings. (a) Non-determinizable weighted automa-
ton defined over the tropical semiring. (b) Non-determinizable
functional transducer.

@)

Fig. 4. Insertion of special symbols to guarantee determinizability.
The insertion of the new transition labeled wigh or the one
labeled with#- is sufficient to guarantee the determinizability of:
(a) The automaton of figure 4 (a). (b) The finite-state transducer of
figure 4 (b).

(b)

cyclesc in ¢ andc’ in ¢ such thati[n] = i[«'] andi[c] = i[c].
T is said to have théwins property if any two siblings inT" are
twins. Note that in that definition can be equal tg' and that we
may haver = 7’ orc = ¢, or thatr or ' can be the empty path
if ¢, orq’, is the initial state.

In the case of a weighted automaton, only the condition on the
equality of the cycle weights (condition 2) is required, and in the
case of an unweighted transducer, only the condition on the outpu
labels (condition 1).

The twins property is a sufficient condition for the determiniz-
ability of weighted automata or weighted transducers over the trop-
ical semiring [5, 9]. It is a necessary and sufficient condition for
the determinizability of unweighted transducers and that of un-
ambiguous weighted automata or weighted transducers over th
tropical semiring [9, 2].

3.3. Symbol Insertion

We have designed an efficient algorithm for testing the twins prop-
erty for weighted automata and transducers [2]. The algorithm

(@) (b)

Fig. 6. (a) Non-determinizable finite-state transducer. State 1 is
a non-twin sibling with itself because there are two pathand

«' from the initial state to staté with the same input labet and
distinct outputsa and b, and because there is a cyelat state

1 that violates condition 1 of the twins propertyfx]~"o[x']
a b # 0[7TC]710[7T/C|1| = (ab) " 'bb = b 'a 'bb. (b) The only
possible positions where new symbols can be inserted atomgy
«' are indicated in the figure.

automaton has the twins property. The finite-state transducer of
figure 3 (b) can be made determinizable in the same way.

The examples show that there are some degrees of freedom in
the choice of the position at which a new symbol is inserted: it can
be inserted on either one of the cycles and at any position along
that cycle. Our algorithm inserts new symbols only when needed
to ensure that the conditions of the twins property hold. The posi-
tion at which a transition labeled with a new symbol is inserted is
chosen carefully so that we can merge the longest possible prefixes
during the application of determinization and thereby benefit the
most from this optimization for decoding and other purposes. To
do so, we compute the level of the transitions where a new symbol

€an be inserted with respect to the output of determinization and

choose to insert the symbol at the transition with the highest level.
It may appear at first sight that the best position for inserting
a new symbol is the end of a cycle as in figures 4 (a)-(b), how-
ever, this is not always possible since two cycles may share that
last transition. Figure 5 illustrates that situation. Similarly, in the

&ase of transducers, the cycles may coincide, thus the new symbol

cannot be inserted along the cycles. It can be inserted on the paths
with same input label that lead to the state- ¢, see figure 6.

In all cases, the new symbols inserted can be removed or re-
placed by the empty string after determinization to preserve the
weighted transduction defined by the original transducer.

can be used to detect non-twin sibling states such as those of fig3.4. Optimization of Recognition Transducers

ures 3 (a)-(b) and to locate the transitions that cause non-determin
izability.

The key idea behind our algorithm for making an arbitrary
transducer determinizable is to insert transitions labeled with new

symbols along the paths corresponding to non-twin sibling states.

The definition of the twins property is based on the existence of
two distinct paths sharing the same input label. Thus, when the
conditions of the twins property, equations 1 and 2, do not hold for

these paths, we can insert a transition labeled with a special symbol

In previous work, we showed that a single recognition transducer
T can be built from a weighted automatéhrepresenting am-
gram language model, a transduéerepresenting a pronunciation
dictionary, a context-dependency transdu€emd an HMM trans-
ducer H mapping sequences of distribution indices to context-
dependent phones [11]. Here, we generalize that construction to
the case of arbitrary transducers.

In general, the pronunciation transduders not determiniz-

not in X along one of these paths. The paths are then labeled withable both because of the presence of homonyms and because the

distinct input labels, which ensures that the twins property holds
and guarantees the determinizability of the transducer.
Figures 4 (a)-(b) illustrate this symbol insertion. The weighted

pronunciation of a single word may coincide with that of a se-
guence of words. The language modémay also be non-deter-
minizable, this is in fact typical in the case of class-based language

automaton of figure 3 (a) does not have the twins property becausenodels. Other transducer components may be non-determinizable

of the two cycles with input labél at statesl and2 which have
different weights. These are detected by our algorithm for testing
the twins property. If we insert a transition with input labggl in

the cycle at staté or a new transition with input labe#» in the
cycle at state, the cycles have different labels and the resulting

as well. But this is no longer a problem with our generalized algo-
rithm.

Using the symbol insertion algorithm described in the previ-
ous section, we can make an arbitrary language model automaton
G determinizable without any prior knowledge about it. We denote
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of a 1GHz Intel Pentium Il linux cluster with 256 KB of cache
and 2 GB of memory. With our new construction method, the ac-
curacy achieved by the old non-optimized integrated transducer at
.4 times real-time is reached by the new system using our opti-
mization at aboutl5 times real-time, that is more than6 times
faster.

70

Y65

60

5. CONCLUSION

Word Accurac

A general algorithm was presented that can make an arbitrary wei-
ghted transducer determinizable by inserting special symbols just
when needed and at the mdavorable positions for the appli-
cation of determinization. The algorithm generalizes our previ-
ous optimization technique for building an integrated recognition
transducer to deal with arbitrary weighted transducers in speech
recognition [11] and was used to substantially improve the recog-
nition speed in a task where class-based language models are used.
The algorithm is general, it can be used in any other application
where weighted automata and transducers are used, in particular
other speech processing applications such as speech synthesis.

55

a — Symbol Insertion & Det|
K D - No Optimization

50

0.0 0.2 0.4 0.6 0.8
Real-time Factor

Fig. 7. Comparison of the technique based on symbol insertion
and determinization versus no optimization in the 5,500-word vo-
cabulary HMIHY 0300 task with a class-based language model.

by G the result of the application of our symbol insertion algorithm

to G, and byL the result after application tb. For any transducer
M, we also denote by (M) the transduce/ augmented with
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eralized recognition transduc@r is constructed according to the
following formula:

T = det(I(H) o det(I(C) o det(I(L) o G)))

[1]
whereo denotes the composition [10] antkt the determiniza- 2]
tion of weighted transducers [9]. The recognition transddcés
obtained by replacing the new symbols inserted with the empty
string. This construction is similar to our previous construction in [3]

the specific case af-gram language models [11]. We use com-
position to combine the transducer components and apply deter-
minization after each composition step. But our symbol insertion
algorithm based on the twins property generalizes this construction [4]
to the case of an arbitrary language model automaton.

[5]

4. EXPERIMENTAL RESULTS

6
We used the technique outlined in the previous section to construct el
integrated optimized recognition transducers for a 5,500-word vo-
cabulary HMIHY 0300 task. [7

We first compared our new construction technique to the one

we had introduced for classicatgram language models [11] us-
ing exactly the same recognition components. Our experiment [8]
showed that the performance of the new construction matches ex-
actly that of the old one in that case: the plots showing accuracy

versus real-time factor with the old and new construction coincide. [9]
However, with the new construction, we are insertéigt less
symbols in the lexicon transducét [10]

We also measured the improvement of our new construction
technique over the construction of the integrated transducer with
no optimization in the same task. The same components were
used in both cases: a class-based trigram katz's backoff Ianguag?
model shrunk with an epsilon of using the method of Seymore 11]
and Rosenfeld [15] based on a class of 13 sentences and 42 words
— note that our previous optimization technique could not be used
with these non-determinizable class-based language models; aﬁz]
acoustic model with 4,652 distinct HMM states, each associated
to a four-Gaussian mixture model; a triphonic context-dependency
transducelC' with 1,333 states and 10,2641 transitions.

Our experiments with the HMIHY 0300 5,500-word vocabu-
lary task using a simple general-purpose one-pass Viterbi decode{m
show that the integrated optimized recognition transddcsub-
stantially speeds up recognition when using that class-based Ian-15
guage model. Figure 7 gives recognition accuracy as a function[ ]
of recognition time, in multiples of real-time on a single processor

(3]
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help with the experiments.
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