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ABSTRACT

In this paper, we attempt to decompose a state-of-the-art speech
recognition system into its components and define an
infrastructure that allows a flexible, efficient and effective
interaction among the components. Motivated by the success of
DARPA Communicator program, we select the open source
Galaxy architecture as our development test bed. It consists of
a hub that allows communication among servers connected to it
by message passing and supports the plug-and-play paradigm.
In addition to message passing it supports high bandwidth data
(binary or audio) transfer between servers via a brokering
scheme. For severa reasons, we believe that it is the right time
to stat developing a distributed framework for speech
recognition along with data and protocol standards supporting
interoperability. We present our work towards that goal using
the Colorado University (CU) Sonic recognizer. We divide
Sonic into a number of components and structure it around the
Hub. We describe the system in some detail and report on its
present status with some possibilities for future devel opment.

1. INTRODUCTION

Speech recognition software grows more complex as speech
scientists introduce new idess, develop new technologies and
incorporate them into their systems. For challenging tasks, like
speech recognition in noisy environments with a large pool of
speakers, it is not uncommon to have multiple speech
recognition systems with multiple passes and techniques
incorporated for environmental and voice activity detection,
speech enhancement, vocal tract and variance normalization,
speaker adaptation, confidence calculation and hypothesis
combination. Development and maintenance of these systems
are very difficult. Naturally, such a complexity raises the entry
barrier for new players, and the research area becomes
dominated by groups that have their own end-to-end systems.
Although, some research sites provide their systems for free for
research purposes, still it is difficult to get familiar with and
incorporate new ideas into those systems. In addition, people
are restricted to the technology available in those systems.
However, people might want to share some better component
technologies developed by others. Probably, lack of
compatibility will hinder those efforts. A solution is to bresk
apart the “monolithic” structure of speech recognition software
into a number of standard components and define a distributed
processing architecture with properly defined data and protocol
standards for component communication.
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Gadaxy architecture has been developed, and optimized for
spoken dialog systems (SDS) [1]. Initially MIT, and then
MITRE have spent significant amount of effort in developing
and making the system available as an open source. It has been
successfully used by the sites that participated in the DARPA
Communicator program [2]. MITRE has also demonstrated its
plug-and-play ability by intermixing the components that has
been developed at different sites [3]. The architecture has a
programmable Hub that alows a flexible control of interaction
among servers, and a set of libraries for rapid prototyping
including a graphical user interface for controlling and
monitoring the processes. We believe that the following major
functions of the Hub, which have been proved to be very useful
for developing SDS, are also very useful for decomposing a
speech recognizer into its components [4]:

* Routing: Handles message traffic among the distributed
Servers

e State Maintenance: Provides a means of storing and
accessing state information for all servers

e Flow control: Manages the progress of an utterance
through its processing stages, server by server

Modularization of speech recognition software around such a
central process has severa advantages:

e  Lowered entry barrier for new players

¢  Rapid portability

*  Flexible accommodation of new components

e Easy access to information needed for debugging

¢ Resource sharing

e Creation of market for components

*  Promoting standardization

e A nice educational tool for learning and teaching speech
recognition

e Easy extension to other input-output modalities (e.g. lip
reading, visual presentation)

*  Fair setup for the evaluation of component technologies

The paper is organized as follows. Section 2 describes the CU
Sonic recognizer as configured for the DARPA SPINE task. In
Section 3, we propose and describe a modular form of Sonic
within Galaxy architecture. We summarize what has been
implemented so far in Section 4. Our future plan regarding the
new architecture is presented in Section 5. Concluding remarks
are made in the final section.
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2. CU SONIC SPINE SYSTEM

The University of Colorado has previoudly participated in both
SPINE-I [5] and SPINE-II evaluations. Our efforts towards the
evaluation systems have focused on (1) the development of
new features for robust speech recognition, (2) improved model
adaptation methods and (3) an efficient, integrated approach to
joint speech detection and recognition for noisy environments.

Our most recent fielded evaluation system in 2001 (SPINE-II)
was based on Sonic: CSLR’s large vocabulary continuous
speech recognition system [6]. Sonic is based on continuous
density hidden Markov (CDHMM) acoustic models. Context
dependent acoustic models are clustered using decision trees.
Each model has three emitting states with gamma probability
density functions for duration modeling. Features are extracted
as 12 MFCCs, energy, and the first and second differences of
these parameters, resulting in a feature vector of dimension 39.
The search network is a reentrant static tree-lexicon. The
recognizer implements a two-pass search strategy. The first
pass consists of a time-synchronous, beam-pruned Viterbi
token-passing search. Cross-word acoustic models and 4-gram
language models (in an approximate way) are applied in the
first pass of search. The first pass creates a lattice of word
ends. During the second pass, the resulting word-lattice is
converted into a word-graph. Advanced language models (e.g.
dialog-act and concept based, long span) can be used to rescore
the word graph using an A* algorithm or to compute word-
posterior probabilities to provide word-level confidence scores.

Sonic provides an integrated environment that incorporates
voice activity detection (VAD); speech enhancement, speaker
adaptation and normalization methods such as minimum mean
sguared error (MMSE) speech enhancement [7], confidence
weighted Maximum Likelihood Linear Regression (MLLR)
[8], and Vocal Tract Length Normalization (VTLN) [9].
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Figure 1. Block diagram of Sonic SPINE system.

Our SPINE system consists of integrated speech detection and
multiple pass recognition search as shown in Figure 1. At each
iteration, a voice activity detector (VAD) is dynamicaly
constructed from the current adapted system acoustic models.
The VAD generates a segmentation of the noisy audio into
utterance units and LVCSR is performed on each detected
speech region.  The resulting output (a confidence tagged
lattice or word string) is then used to adapt the acoustic model
means and variances in an unsupervised fashion. The adapted
acoustic models are then reapplied to obtain an improved
segmentation, recognition hypothesis, and new set of adapted
system parameters. The integrated adaptation procedure is
repeated twice resulting in sequential improvements to both
segmentation and recognition hypotheses.
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Figure 2. A distributed architecture for a speech recognition
system that incorporates a Hub and eleven servers.

3. ADISTRIBUTED ARCHITECTURE

In this section we describe an appropriate decomposition of
Sonic SPINE system. The resulting configuration is exhibited in
Figure 2. We identified atotal of eleven servers:

e Audio Server

*  VoiceActivity Detection (VAD) server
e Environmental Classification Server
*  Speech Enhancement Server

*  Feature Extraction Server

*  Normalization Server

e Search Server

e Knowledge Base (KB) Server

*  Rescoring Server

*  Adaptation Server

e Confidence Server

We do not claim that thisis the best decomposition of a speech
recognition system. It should be noted that it is our initial
configuration and intended for speech recognition in noisy
environments.

3.1. Audio Server

We plan to have three versions of the audio server; namely,
live, wireless, and batch. The live audio server will provide
microphone and telephony interfaces, while the wireless audio
server is intended for a system in which the features are
directly transmitted to the recognizer from a handheld device.
The batch audio server reads speech from files. For the sake of
simplicity we have shown asingle audio server in Figure 2. .

Input: Audio signals or speech files or features transmitted
through awireless channel.

Output: Audio signal will be made available through a brokered
data connection to the voice activity detection, feature
extraction and speech enhancement servers. Decoded features
will be made available through a shared memory to the servers
that need those features.
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3.2. VoiceActivity Detector (VAD) Server

This server detects speech vs. non-speech regions in the audio.

Input: A continuous channel of audio is streamed via a direct-
brokered data connection from the audio server.

Output: The server outputs begin and end times of speech
activity to the Hub for use by the environmental classifier,
speech enhancement server, and search server.

3.3. Environmental Classification Server

This server is responsible of detecting, classifying and tracking
environmental changes. It passes this information to the servers
that need to adapt their behavior according to the type of
environment. Examples to these are the speech enhancement
and KB servers. The speech enhancement server might apply
different enhancement techniques depending on background
noise-shape and type, and the KB server might provide
environment dependent or adapted acoustic models to cope with
environmental changes.

Input: The input consists of features extracted from the feature
extraction server and begin/end times of speech/non-speech
regions from the VAD server.

Output: A symbolic representation or classification of the noise
type with time-markings. For example, in in-vehicle systems,
this might include car conditions (windows up, windows down,
car passing hoise, radio state, etc.).

3.4. Speech Enhancement Server

This server is essentia for the recognition of speech in noisy
environments. This server is responsible for tracking and
attenuating background noise present in the audio channel.

Input: The input to this server is the audio data channel and the
voice activity detection timing information from the VAD
server. The non-speech regions are used to update spectral
estimates of the noise.

Output: A noise attenuated audio channel is output for use by
the feature extraction module and search server.

3.5. Feature Extraction Server

This server extracts features from the audio channel and makes
them available to the search, adaptation, normalization,
rescoring and confidence servers, if needed, through shared
memory. We envision that this server will extract spectrally
motivated feature types (e.g.,, MFCC, PLP, Root Cepstrum) as
well as prosodic features (e.g., FO, degree of voicing, etc.).

Input: An audio channel from the speech enhancement or
directly from the audio server.

Output: A stream of feature vectors that can be accessed by
various modul es through a shared memory module.

3.6. Feature Normalization Server

The feature normalization server compensates for channel and
speaker conditions by applying various transformations on the
speech features. Examples types of normalization include
cepstral  mean subtraction (CMS), voca tract length
normalization (VTLN) and cepstra variance normalization.
This server will aso be responsible for accumulating statistics

needed for histogram equalization of the filter bank energiesin
MFCC calculation.

Input: Unnormalized features from feature extraction module
(potentialy through a shared memory access)

Output: Channel and speaker normalized features

3.7. Search Server

This server builds and searches the recognition network.
During search it generates a word lattice from which a word
graph can be created.

Input: time-synchronous stream of feature vectors
Output: word-lattice representation of the search space

3.8. Knowledge Base (KB) Server

This server provides access to knowledge sources needed by the
system. These include pronunciation lexicons, grammars,
language models and acoustic models.  The server interacts
with the search server by providing observation probabilities
from system Gaussians as well as language model probabilities.
The server is also responsible for dynamic switching of the
task-based language model, acoustic model and lexicon on
demand. It is aso responsible for applying transformations of
system parameters as dictated by the adaptation server.

Input: Environmental classification labels, transformation
matrices, knowledge base requests.

Output: Knowledge base information as lexical items, grammar
rules, acoustic and language model indices/probabilities.

3.9. Rescoring Server

This server is responsible of performing the second pass of
search. It accepts a compact representation of the search space
from the search server in the form of aword lattice. The lattice
is converted into a word graph and further refined through
rescoring using higher-order knowledge sources.

Input: word lattice from search server (could be accessed
through shared memory).

Output: An N-best list of word strings

3.10. Adaptation Server

Given the best string, or the word graph (possibly augmented
with confidence and model alignments), this server determines
sets of transformations to apply to the acoustic models to
minimize mismatch between training and testing conditions.

Input: N-best list or word-graph and access to extracted
features through shared memory.

Output: A set of transformations that can be applied to the
acoustic models (e.g., class-conditioned MLLR matrices).

3.11. Confidence Server

This server is responsible of generating confidence values at
different levels, namely, HMM-state, phone, word, concept and
sentence levels. For their portability and descent performance
we are in favor of confidence estimation methods based on the
posterior probabilities of word graph edges that can be easily
computed by aforward/backward like algorithm [11].
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Input: Word graph, possibly model marked, with acoustic and
language model scores from the rescoring server.

Output: Word graph annotated with posterior probabilities.

4. CURRENT IMPLEMENTATION

We have begun development of the system architecture
outlined in Section 3. The implementation uses version 4.0 of
the Gaaxy Communicator Infrastructure (GCI) [10] to
implement the Hub and server interaction. Currently the
distributed ASR system has been built for single-pass
recognition using file-based input (although it can easily be
extended to livemode interaction using the Galaxy
Communicator Infrastructure microphone based audio server).
The implementation consists of the Hub connected to the
following servers:

¢ Audio Server

e VoiceActivity Detector (VAD) server

¢ MMSE Speech Enhancement Server

e Feature Extraction & Normalization Server

e Search, Knowledge Base (KB), Adaptation Server

The implementation performs single pass recognition and
online incremental speaker adaptation using the MLLR
technique.  Specifically, the audio server reads recorded
utterances and streams the samples of audio via a brokered
connection to both the voice activity detection (VAD) server
and the speech enhancement server. The resulting speech
begin/end times from the VAD are then passed as input to the
speech enhancement server. The speech enhancement server
performs MMSE based signal estimation with knowledge of
the speech begin/end times for noise estimation. The enhanced
(noise attenuated) audio stream is then passed to the feature
extraction and normalization server via a direct brokered
connection. The feature extraction server computes a stream of
39-dimensional MFCC features that are normalized through
cepstral mean subtraction.  The features are then streamed to
the search server, which then performs a time-synchronous
token passing beam Viterbi beam search through a static
reentrant tree lexicon. The server sends the single best word
string to the Hub for logging. It aso performs incremental
online MLLR adaptation after each utterance and utilizes the
updated linear transform for decoding the next utterance.

Our current effort consists of refinement of the server modules
into smaller processing blocks as suggested in Section 3.
Based on the Sonic ASR engine, we fedl that the next step isto
separate the adaptation module from the search server. We will
also place the acoustic and language models into a separate
knowledge base server. It should be noted that converting
state-of-the-art speech recognition systems that have been
tightly integrated in the past does require significant
architectural changes. However, we feel that the distributed
and modular architecture has many benefits for future system
development.

5. CONCLUSION

We have described a speech recognition system that has been
decomposed into its components and configured using the
DARPA Galaxy Hub architecture that supports the plug-and-
play paradigm to rapidly develop efficient and effective
interfaces among the components. The complete
implementation of the system that we have mentioned in
Section 3 is still under development. However, we have shown
the feasibility of the proposed system by implementing an
initial system in which some servers have been collapsed into
single servers. We expect a complete system for demonstration
be available at the time of conference. Our goal is to invoke an
interest in an architecture that would define a standard for
speech recoghizer component interoperability.
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