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ABSTRACT 

In this paper, we attempt to decompose a state-of-the-art speech 
recognition system into its components and define an 
infrastructure that allows a flexible, efficient and effective 
interaction among the components. Motivated by the success of 
DARPA Communicator program, we select the open source 
Galaxy architecture as our development test bed.  It consists of 
a hub that allows communication among servers connected to it 
by message passing and supports the plug-and-play paradigm. 
In addition to message passing it supports high bandwidth data 
(binary or audio) transfer between servers via a brokering 
scheme. For several reasons, we believe that it is the right time 
to start developing a distributed framework for speech 
recognition along with data and protocol standards supporting 
interoperability.  We present our work towards that goal using 
the Colorado University (CU) Sonic recognizer. We divide 
Sonic into a number of components and structure it around the 
Hub. We describe the system in some detail and report on its 
present status with some possibilities for future development.   

1. INTRODUCTION 

Speech recognition software grows more complex as speech 
scientists introduce new ideas, develop new technologies and 
incorporate them into their systems. For challenging tasks, like 
speech recognition in noisy environments with a large pool of 
speakers, it is not uncommon to have multiple speech 
recognition systems with multiple passes and techniques 
incorporated for environmental and voice activity detection, 
speech enhancement, vocal tract and variance normalization, 
speaker adaptation, confidence calculation and hypothesis 
combination. Development and maintenance of these systems 
are very difficult. Naturally, such a complexity raises the entry 
barrier for new players, and the research area becomes 
dominated by groups that have their own end-to-end systems. 
Although, some research sites provide their systems for free for 
research purposes, still it is difficult to get familiar with and 
incorporate new ideas into those systems. In addition, people 
are restricted to the technology available in those systems. 
However, people might want to share some better component 
technologies developed by others. Probably, lack of 
compatibility will hinder those efforts. A solution is to break 
apart the “monolithic” structure of speech recognition software 
into a number of standard components and define a distributed 
processing architecture with properly defined data and protocol 
standards for component communication.  

 

Galaxy architecture has been developed, and optimized for 
spoken dialog systems (SDS) [1]. Initially MIT, and then 
MITRE have spent significant amount of effort in developing 
and making the system available as an open source. It has been 
successfully used by the sites that participated in the DARPA 
Communicator program [2]. MITRE has also demonstrated its 
plug-and-play ability by intermixing the components that has 
been developed at different sites [3]. The architecture has a 
programmable Hub that allows a flexible control of interaction 
among servers, and a set of libraries for rapid prototyping 
including a graphical user interface for controlling and 
monitoring the processes.  We believe that the following major 
functions of the Hub, which have been proved to be very useful 
for developing SDS, are also very useful for decomposing a 
speech recognizer into its components [4]: 
 

• Routing: Handles message traffic among the distributed 
servers 

• State Maintenance: Provides a means of storing and 
accessing state information for all servers 

• Flow control: Manages the progress of an utterance 
through its processing stages, server by server  

     

Modularization of speech recognition software around such a 
central process has several advantages:  
 

• Lowered entry barrier for new players 
• Rapid portability 
• Flexible accommodation of new components 
• Easy access to information needed for debugging 
• Resource sharing 
• Creation of market for components 
• Promoting standardization 
• A nice educational tool for learning and teaching speech 

recognition 
• Easy extension to other input-output modalities (e.g. lip 

reading, visual presentation) 
• Fair setup for the evaluation of component technologies 

  

The paper is organized as follows. Section 2 describes the CU 
Sonic recognizer as configured for the DARPA SPINE task. In 
Section 3, we propose and describe a modular form of Sonic 
within Galaxy architecture. We summarize what has been 
implemented so far in Section 4.  Our future plan regarding the 
new architecture is presented in Section 5. Concluding remarks 
are made in the final section. 
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2. CU SONIC SPINE SYSTEM 

The University of Colorado has previously participated in both 
SPINE-I [5] and SPINE-II evaluations.  Our efforts towards the 
evaluation systems have focused on (1) the development of 
new features for robust speech recognition, (2) improved model 
adaptation methods and (3) an efficient, integrated approach to 
joint speech detection and recognition for noisy environments. 

Our most recent fielded evaluation system in 2001 (SPINE-II) 
was based on Sonic: CSLR’s large vocabulary continuous 
speech recognition system [6]. Sonic is based on continuous 
density hidden Markov (CDHMM) acoustic models. Context 
dependent acoustic models are clustered using decision trees.  
Each model has three emitting states with gamma probability 
density functions for duration modeling.  Features are extracted 
as 12 MFCCs, energy, and the first and second differences of 
these parameters, resulting in a feature vector of dimension 39. 
The search network is a reentrant static tree-lexicon. The 
recognizer implements a two-pass search strategy.  The first 
pass consists of a time-synchronous, beam-pruned Viterbi 
token-passing search. Cross-word acoustic models and 4-gram 
language models (in an approximate way) are applied in the 
first pass of search.  The first pass creates a lattice of word 
ends. During the second pass, the resulting word-lattice is 
converted into a word-graph.  Advanced language models (e.g. 
dialog-act and concept based, long span) can be used to rescore 
the word graph using an A* algorithm or to compute word-
posterior probabilities to provide word-level confidence scores. 

Sonic provides an integrated environment that incorporates 
voice activity detection (VAD); speech enhancement, speaker 
adaptation and normalization methods such as minimum mean 
squared error (MMSE) speech enhancement [7], confidence 
weighted Maximum Likelihood Linear Regression (MLLR) 
[8], and Vocal Tract Length Normalization (VTLN) [9].   

 
 
 
 
 
 
 
 
 
Figure 1. Block diagram of Sonic SPINE  system. 
 
Our SPINE system consists of integrated speech detection and 
multiple pass recognition search as shown in Figure 1.  At each 
iteration, a voice activity detector (VAD) is dynamically 
constructed from the current adapted system acoustic models.  
The VAD generates a segmentation of the noisy audio into 
utterance units and LVCSR is performed on each detected 
speech region.   The resulting output (a confidence tagged 
lattice or word string) is then used to adapt the acoustic model 
means and variances in an unsupervised fashion.  The adapted 
acoustic models are then reapplied to obtain an improved 
segmentation, recognition hypothesis, and new set of adapted 
system parameters.  The integrated adaptation procedure is 
repeated twice resulting in sequential improvements to both 
segmentation and recognition hypotheses. 

 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  A distributed architecture for a speech recognition 
system that incorporates a Hub and eleven servers. 

3. A DISTRIBUTED ARCHITECTURE 

In this section we describe an appropriate decomposition of 
Sonic SPINE system. The resulting configuration is exhibited in 
Figure 2. We identified a total of eleven servers: 
 

• Audio Server 
• Voice Activity Detection (VAD) server 
• Environmental Classification Server 
• Speech Enhancement Server 
• Feature Extraction Server 
• Normalization Server 
• Search Server 
• Knowledge Base (KB) Server 
• Rescoring Server 
• Adaptation Server 
• Confidence Server 
 

We do not claim that this is the best decomposition of a speech 
recognition system. It should be noted that it is our initial 
configuration and intended for speech recognition in noisy 
environments. 
 

3.1. Audio Server 

We plan to have three versions of the audio server; namely, 
live, wireless, and batch. The live audio server will provide 
microphone and telephony interfaces, while the wireless audio 
server is intended for a system in which the features are 
directly transmitted to the recognizer from a handheld device. 
The batch audio server reads speech from files. For the sake of 
simplicity we have shown a single audio server in Figure 2. .     

Input:  Audio signals or speech files or features transmitted 
through a wireless channel.  
 

Output: Audio signal will be made available through a brokered 
data connection to the voice activity detection, feature 
extraction and speech enhancement servers. Decoded features 
will be made available through a shared memory to the servers 
that need those features.  
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3.2. Voice Activity Detector (VAD) Server 

This server detects speech vs. non-speech regions in the audio. 
 

Input:  A continuous channel of audio is streamed via a direct-
brokered data connection from the audio server.  
 

Output: The server outputs begin and end times of speech 
activity to the Hub for use by the environmental classifier, 
speech enhancement server, and search server.  

3.3. Environmental Classification Server 

This server is responsible of detecting, classifying and tracking 
environmental changes. It passes this information to the servers 
that need to adapt their behavior according to the type of 
environment.  Examples to these are the speech enhancement 
and KB servers.  The speech enhancement server might apply 
different enhancement techniques depending on background 
noise-shape and type, and the KB server might provide 
environment dependent or adapted acoustic models to cope with 
environmental changes.     
 

Input:  The input consists of features extracted from the feature 
extraction server and begin/end times of speech/non-speech 
regions from the VAD server. 
 

Output:  A symbolic representation or classification of the noise 
type with time-markings.  For example, in in-vehicle systems, 
this might include car conditions (windows up, windows down, 
car passing noise, radio state, etc.). 

3.4. Speech Enhancement Server 

This server is essential for the recognition of speech in noisy 
environments.  This server is responsible for tracking and 
attenuating background noise present in the audio channel. 
 

Input:  The input to this server is the audio data channel and the 
voice activity detection timing information from the VAD 
server.  The non-speech regions are used to update spectral 
estimates of the noise. 
 

Output:  A noise attenuated audio channel is output for use by 
the feature extraction module and search server. 

3.5. Feature Extraction Server 

This server extracts features from the audio channel and makes 
them available to the search, adaptation, normalization, 
rescoring and confidence servers, if needed, through shared 
memory.  We envision that this server will extract spectrally 
motivated feature types (e.g., MFCC, PLP, Root Cepstrum) as 
well as prosodic features (e.g., F0, degree of voicing, etc.). 
 

Input:  An audio channel from the speech enhancement or 
directly from the audio server. 
 

Output:  A stream of feature vectors that can be accessed by 
various modules through a shared memory module. 

3.6. Feature Normalization Server 

The feature normalization server compensates for channel and 
speaker conditions by applying various transformations on the 
speech features.  Examples types of normalization include 
cepstral mean subtraction (CMS), vocal tract length 
normalization (VTLN) and cepstral variance normalization.  
This server will also be responsible for accumulating statistics 

needed for histogram equalization of the filter bank energies in 
MFCC calculation. 
 

Input: Unnormalized features from feature extraction module 
(potentially through a shared memory access) 
 

Output:  Channel and speaker normalized features 

3.7. Search Server 

This server builds and searches the recognition network.  
During search it generates a word lattice from which a word 
graph can be created. 
 

Input: time-synchronous stream of feature vectors 
 

Output:  word-lattice representation of the search space 

3.8. Knowledge Base (KB) Server 

This server provides access to knowledge sources needed by the 
system. These include pronunciation lexicons, grammars, 
language models and acoustic models.   The server interacts 
with the search server by providing observation probabilities 
from system Gaussians as well as language model probabilities.  
The server is also responsible for dynamic switching of the 
task-based language model, acoustic model and lexicon on 
demand.  It is also responsible for applying transformations of 
system parameters as dictated by the adaptation server. 
 

Input: Environmental classification labels, transformation 
matrices,  knowledge base requests. 
 

Output: Knowledge base information as lexical items, grammar 
rules, acoustic and language model indices/probabilities.   

3.9. Rescoring Server 

This server is responsible of performing the second pass of 
search.  It accepts a compact representation of the search space 
from the search server in the form of a word lattice.  The lattice 
is converted into a word graph and further refined through 
rescoring using higher-order knowledge sources. 
 

Input:  word lattice from search server (could be accessed 
through shared memory). 
 

Output:   An N-best list of word strings 

3.10. Adaptation Server 

Given the best string, or the word graph (possibly augmented 
with confidence and model alignments), this server determines 
sets of transformations to apply to the acoustic models to 
minimize mismatch between training and testing conditions.   
 

Input:  N-best list or word-graph and access to extracted 
features through shared memory. 
 

Output:   A set of transformations that can be applied to the 
acoustic models (e.g., class-conditioned MLLR matrices). 

3.11. Confidence Server 

This server is responsible of generating confidence values at 
different levels; namely, HMM-state, phone, word, concept and 
sentence levels. For their portability and descent performance 
we are in favor of confidence estimation methods based on the 
posterior probabilities of word graph edges that can be easily 
computed by a forward/backward like algorithm [11]. 
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Input:  Word graph, possibly model marked, with acoustic and 
language model scores from the rescoring server. 
 

Output: Word graph annotated with posterior probabilities. 

4.  CURRENT IMPLEMENTATION 

We have begun development of the system architecture 
outlined in Section 3.  The implementation uses version 4.0 of 
the Galaxy Communicator Infrastructure (GCI) [10] to 
implement the Hub and server interaction.  Currently the 
distributed ASR system has been built for single-pass 
recognition using file-based input (although it can easily be 
extended to live-mode interaction using the Galaxy 
Communicator Infrastructure microphone based audio server).  
The implementation consists of the Hub connected to the 
following servers: 
 

• Audio Server 
• Voice Activity Detector (VAD) server 
• MMSE Speech Enhancement Server 
• Feature Extraction  & Normalization Server 
• Search, Knowledge Base (KB), Adaptation Server 

 

The implementation performs single pass recognition and 
online incremental speaker adaptation using the MLLR 
technique.  Specifically, the audio server reads recorded 
utterances and streams the samples of audio via a brokered 
connection to both the voice activity detection (VAD) server 
and the speech enhancement server.  The resulting speech    
begin/end times from the VAD are then passed as input to the 
speech enhancement server.  The speech enhancement server 
performs MMSE based signal estimation with knowledge of 
the speech begin/end times for noise estimation.  The enhanced 
(noise attenuated) audio stream is then passed to the feature 
extraction and normalization server via a direct brokered 
connection.  The feature extraction server computes a stream of 
39-dimensional MFCC features that are normalized through 
cepstral mean subtraction.  The features are then streamed to 
the search server, which then performs a time-synchronous 
token passing beam Viterbi beam search through a static 
reentrant tree lexicon.  The server sends the single best word 
string to the Hub for logging.  It also performs incremental 
online MLLR adaptation after each utterance and utilizes the 
updated linear transform for decoding the next utterance.   
 
Our current effort consists of refinement of the server modules 
into smaller processing blocks as suggested in Section 3.  
Based on the Sonic ASR engine, we feel that the next step is to 
separate the adaptation module from the search server.  We will 
also place the acoustic and language models into a separate 
knowledge base server.  It should be noted that converting 
state-of-the-art speech recognition systems that have been 
tightly integrated in the past does require significant 
architectural changes.  However, we feel that the distributed 
and modular architecture has many benefits for future system 
development. 
 
 

.  

5. CONCLUSION 

We have described a speech recognition system that has been 
decomposed into its components and configured using the 
DARPA Galaxy Hub architecture that supports the plug-and-
play paradigm to rapidly develop efficient and effective 
interfaces among the components. The complete 
implementation of the system that we have mentioned in 
Section 3 is still under development. However, we have shown 
the feasibility of the proposed system by implementing an 
initial system in which some servers have been collapsed into 
single servers. We expect a complete system for demonstration 
be available at the time of conference. Our goal is to invoke an 
interest in an architecture that would define a standard for 
speech recognizer component interoperability.  
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