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ABSTRACT
In this paper, we describe a multichannel method of noisy
speech recognition that can adapt to various in-car noise
situations during driving. The method allows us to esti-
mate the log spectrum of speech at a close-talking micro-
phone based on the multiple regression of the log spectra
(MRLS) of noisy signals captured by multiple distributed
microphones. Through clustering of the spatial noise dis-
tributions under various driving conditions, the regression
weights for MRLS are effectively adapted to the driving
conditions. The experimental evaluation shows an average
error rate reduction of 43 % in isolated word recognition
under 15 different driving conditions.

1. INTRODUCTION

Array-microphone signal processing is effective for spatially
selective signal capture, hence, noisy speech recognition
when the locations of the speaker and noise sources are pre-
determined. However, when the spatial configuration of the
speaker and noise sources is unknown or changes continu-
ously, it is not easy to steer the directivity adaptively to the
new environment [1], [2], [3].

In order to improve the robustness to a small pertur-
bation of the spatial distribution of the source and noise
signals, we have proposed multiple regression of log spec-
tra (MRLS), using log spectra of the signals captured by
distributed microphones to approximate that of the close-
talking microphone, through linear regression [4]. In the
previous study, we implemented MRLS for in-car speech
recognition and showed its effectiveness in improving the
accuracy of noisy speech recognition. Through the experi-
ments, we also found that further improvement of the recog-
nition accuracy can be achieved if the regression weights
are trained for each speaker and/or a particular in-car sound
condition that is mainly governed by car conditions, e.g.,
music playing, open window, and fan noise, as well as driv-
ing speed. However, while training regression weights for a
speaker at enrollment is not difficult, changing the weights
in order to adapt to the driving conditions is not easy.

The aim of this study is to improve the MRLS so that
regression weights can be changed adaptively to the in-car
noise conditions. For this purpose, we make use of the ad-
vantage ofdistributedmicrophones for capturing thespatial
distributionof noise sounds.

The rest of the paper is arranged as follows. First, in
Section 2, we describe the in-car speech corpus recorded
using distributed microphones. The basic idea of MRLS and
its extension to the adaptive method are described in Section
3 and Section 4, respectively. In Section 5, experimental
evaluations and their results are discussed. Section 6 is a
summary of this paper.

2. MULTIPLE REGRESSION OF LOG SPECTRA

The basic idea of MRLS is to approximate the log power
spectrum of speech recorded using a close-talking micro-
phone, by a linear combination of the log power spectra of
distributed distant microphones[4]. The approximation is
given by the following procedure.

Suppose thatX0(k) is the spectrum of the speech ob-
tained by the close-talking microphone at thekth spectral
channel, andXi(k), i=1,. . . , N, are the spectra of the speech
obtained by the distant microphones located at N different
positions. The log spectral regression is given by

log |X0 (k)| =
N∑

i=1

w̄i (k) log |Xi (k)|, (1)

wherew̄i(k) are the real numbers that give the minimum
regression error, i.e.,

w̄i (k) = arg min
wi(k)

E
[
d2

]
, (2)

where

d2 =
K∑

k=1

{
log |X0 (k)| −

N∑

i=1

wi (k) log |Xi (k)|
}2

. (3)
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Here, the expectation,E[], is calculated over all training
utterances.

Note that the minimization of regression errorE
[
d2

]
is equivalent to minimizing the cepstral distance between
the approximated and the target spectrum, because of the
orthogonality of the discrete time cosine transform (DCT)
matrix. Therefore, the MRLS has the same form as the max-
imum likelihood optimization of the filter-and-sum beam
former proposed in [5]. Applying the regression analysis
in the log spectrum domain has two further merits: (1) the
spectrum flooring due to over-subtraction can be avoided,
and (2) the target spectrum for a wider range of intensity
can be approximated.

3. ADAPTING MRLS TO THE AUTOMATICALLY
DETECTED NOISE CONDITIONS

In the previous report[4], we found that changing regres-
sion weights adaptively to the driving conditions is effec-
tive in improving the recognition accuracy. In this section,
we propose a method of discriminating in-car noise condi-
tions, which is mainly affected by driving conditions, using
spatial distributionof noise signals, and of controlling the
regression weights for MRLS. The basic procedure of the
proposed method is as follows. 1) Cluster the noise signals,
i.e., short-time nonspeech segments preceding utterances,
into several groups. 2) For each noise group, train optimal
regression weights for MRLS, using the speech segments.
3) Finally, for unknown input speech, find a corresponding
noise group from background noise, i.e., the nonspeech seg-
ments, and perform MRLS with the optimal weights for the
noise cluster.

If there is a significant change in the sound source lo-
cation, it greatly affects the relative intensity among dis-
tributed microphones. Therefore, in order to cluster the spa-
tial noise distributions, we have developed a feature vector
based on the relative intensity of the signals captured at the
different positions to that of the nearest distant microphone,
i.e.,

R = [R3(k), R4(k), R5(k), R7(k)] k = 4, 5, · · · 24,

whereRi(k) = Xi(k)/X6(k) is the relative power at the
kth mel-filterbank (MFB) channel calculated from theith

microphone signal. We do not use the lower frequency chan-
nel because the spectra of stationary car noise is concen-
trated in the lower frequency region. Thus,R is a vector
with 84 elements. As shown in Figure 1, the6th microphone
is the one nearest to the driver. Finally, the 84 elements are
normalized so that their mean and variance across elements
are 0 and 1.0, respectively. Prototypes of noise clusters are
obtained by applying the k-means algorithm to the feature
vectors extracted from the training set of noise signals.

Table 1. Distributions of the noise samples in the four clus-
ters.

(1)NORMAL (2)MUSIC (3)FAN LO. (4)FAN HI. (5)OPN WIN.

cluster 1
idle 545 10 0 0 232
city 784 69 130 8 100

express way 895 111 190 0 40
cluster 2

idle 328 873 7 0 3
city 109 827 1 2 1

express way 3 777 5 2 0
cluster 3

idle 24 15 890 900 28
city 0 2 769 886 5

express way 1 3 695 898 2
cluster 4

idle 3 2 3 0 637
city 7 2 0 0 794

express way 1 9 2 0 858

In Table 1, an example of the clustering results are listed.
The table shows how many samples of each driving condi-
tion each noise class contains when four clusters of noise
are learned. As seen from the table, clusters are naturally
formed for ’normal’, ’music playing’, ’fan’ and ’open win-
dow’ situations, regardless of the driving speeds. From the
results, it is expected that the relative power of the sound
signals at different microphone positions can be a good cue
for controlling MRLS weights.

4. DISTRIBUTED MICROPHONE
IN-CAR SPEECH CORPUS

The distributed microphone speech corpus is a part of the
CIAIR (Center for Integrated Acoustic Information Research)
in-car speech corpus collected at Nagoya University [6],
which contains 800 speaker’s speeches (isolated word utter-
ances, read phonetically balanced sentences and dialogues)
while driving. The data collection is performed using a spe-
cially designed data collection vehicle that has multiple data
acquisition capabilities of up to 16 channels of audio sig-
nals, three channels of video signals and other driving re-
lated information (car position, speed, engine speed, brake
and acceleration pedals and steering handle). Five micro-
phones are placed around the driver’s seat, as shown in Fig-
ure 1, where the top view and side view of the driver’s seat
is illustrated. In Figure 1, microphone positions are marked
by the black circles. Microphones #3 and #4 are located
on the dashboard; #5, #6 and #7 are attached to the ceiling.
Microphone #6 is the one nearest to the speaker. In addition
to these distributed microphones, the driver wears a headset
with a close-talking microphone (#1).
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Fig. 1. Microphone positions for data collection: Side view
(top) and top view (bottom).

In the most of the corpus, the speaker is driving in a city
area near Nagoya University, however, a part of the cor-
pus that we use in this study was collected under carefully
controlled driving conditions, i.e., combinations of three car
speeds (idle, driving in a city area and driving on an express-
way) and five car conditions (fan on (hi/lo), CD player on,
open window, and normal driving condition). For this part
of the corpus, 50 isolated word utterances of 20 speakers
were recorded under all combinations of driving speeds and
car conditions.

5. EXPERIMENTAL EVALUATIONS

5.1. Experimental Setup

Speech signals used in the experiments were digitized into
16 bits at the sampling frequency of 16 kHz. For the spectral
analysis, 24-channel mel-filterbank analysis is performed
by applying the triangular windows on the FFT spectrum
of the 25-ms-long windowed speech. This basic analysis
is realized through HTK standard MFB analysis [7]. The
regression analysis is performed on the logarithm of MFB
output. Since the power of the in-car noise signal is concen-
trated in the lower frequency region, the regression analy-
sis is performed for the range of 250-8kHz, i.e.,4th to 24th

spectral channels of the MFB. Then DCT is executed to con-
vert the log-MFB feature vector into the MFCC vector for
the speech recognition experiments.

Three different HMMs are trained: 1) “close-talking HMM”
is trained using the close-talking microphone speech, 2) “dis-
tant microphone HMM” is trained using the speech at the
nearest distant microphone, and 3) “MRLS HMM” is trained
using MRLS results. The regression weights optimized for
each training sentence are used for generating the training
data of MRLS HMM.

The structure of the three HMMs is fixed, i.e., 1) three-
state triphones based on 43 phonemes that share 1000 states;
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Fig. 2. Recognition performances averaged over various
driving conditions. Close-talking (CLS-TALK), MRLS
with optimized weights for a speaker (SPKER), with opti-
mized weights for a driving condition (DR), with optimized
weights for all training data (ALL), MLLR and distant mi-
crophone (DIST), from left to right.

2) each state has 16-component mixture Gaussian distribu-
tions; and 3) the feature vector is a 25 (12 MFCC + 12∆
MFCC + ∆ logpower)-dimensional vector. The total num-
ber of training sentences is about 8,000. 2,000 of which
were uttered while driving and 6,000 in an idling car.

5.2. Baseline Performance of MRLS

For the evaluation of the baseline performance of MRLS,
five recognition experiments are performed: (1) recognition
of close-talking speech using close-talking HMM (“CLS-
TALK”), (2) recognition of MRLS output optimized for each
speaker using MRLS HMM (“MRLS SPKER” ), (3) recog-
nition of MRLS output optimized for each driving condition
using the MRLS HMM (“MRLS DR”), (4) recognition of
MRLS output optimized for all training data using MRLS
HMM (“MRLS ALL”) and (5) recognition of nearest dis-
tant microphone speech by the distant microphone HMM
(“DIST.”),

The obtained recognition accuracies are listed in Table
2, and the average accuracies over fifteen driving condi-
tions are shown in Figure 2. It is found that MRLS outper-
forms the nearest distant microphone result even in “MRLS
ALL”, where a set ofuniversalweights are used for all con-
ditions. This result confirms the robustness of the MRLS to
the change of the location of the noise sources, because the
primary noise locations are different depending on driving
conditions. It is also found that the improvement is greater
when the performance of the distant microphone is lower.

5.3. MRLS Performance with Weight Adaptation

To evaluate the performance of MRLS with weight adapta-
tion, optimal regression weights for the four noise clusters
described in Section 3 are trained. Using a 200 ms non-
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Table 2. MRLS results obtained under various driving con-
ditions.

(1)CLS-TALK (2)MRLS SPKER (3)MRLS DR (4)MRLS ALL (5)DIST.

NORMAL

idle 99.67 99.67 99.56 99.89 99.56
city 99.78 98.67 98.78 98.33 98.22

ex. way 99.56 96.56 97.00 92.56 92.44
MUSIC PLAY

idle 99.33 88.78 95.22 90.89 84.00
city 99.00 90.56 93.22 90.22 85.56

ex. way 99.78 91.56 92.89 88.89 86.89
FAN LO.

idle 98.56 98.11 98.33 97.00 95.00
city 99.89 97.89 97.44 95.00 95.11

ex. way 99.44 95.33 95.33 89.44 90.78
FAN HI.

idle 98.89 75.22 76.22 59.44 53.89
city 98.55 78.79 79.58 65.51 61.38

ex. way 98.78 76.78 77.67 61.00 56.89
OPEN WINDOW

idle 99.56 95.67 95.44 92.56 88.33
city 98.89 86.22 85.56 77.11 75.78

ex. way 99.00 60.56 56.78 46.33 43.33

speech segment preceding the utterance, the nearest proto-
type of the noise cluster is searched, then, the utterance is
recognized after MRLS with the regression weights opti-
mized for the corresponding noise cluster. The same MRLS
HMM is used. The results of the experiments are shown in
Figure 3. As seen in Figure 3, the performance of the MRLS
using adaptive regression weights is as high as the results of
using the optimally trained weights for each driving con-
dition. Furthermore, the MRLS outperforms the MLLR
adaptation (five-word supervised adaptation) applied to the
close-talking speech [8]. Therefore, the effectiveness of the
proposed method is confirmed.

6. SUMMARY

In this paper, we described a multichannel method of noisy
speech recognition that can adapt to various in-car noise
conditions during driving. The method allows us to esti-
mate the log spectrum of speech at a close-talking micro-
phone based on the multiple regression of the log spectra
(MRLS) of noisy signals captured by multiple distributed
microphones. Through clustering of the spatial noise dis-
tributions under various driving conditions, the regression
weights for MRLS are effectively adapted to the driving
conditions. The experimental evaluation shows an error rate
reduction of 43 % in isolated word recognition under vari-
ous driving conditions.
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