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ABSTRACT

A distributed framework for implementing automatic
speech recognition (ASR) services on wireless mobile de-
vices is presented. The framework is shown to scale easily
to support a large number of mobile users connected over
a wireless network and degrade gracefully under peak
loads. The importance of using robust acoustic modeling
techniques is demonstrated for situations when the use of
specialized acoustic transducers on the mobile devices is
not practical. It is shown that unsupervised acoustic nor-
malization and adaptation techniques can reduce speech
recognition word error rate (WER) by 30 percent. It is
also shown that an unsupervised paradigm for updating
and applying these robust modeling algorithms can be ef-
ficiently implemented within the distributed framework.

1 INTRODUCTION

This paper describes and evaluates a distributed ASR
framework for mobile ASR services. The framework is
evaluated in terms of its ability to support a large num-
ber of simulated clients simultaneously using a limited
set of ASR decoders. The framework currently supports
directory retrieval ASR applications for users of Compaq
iPAQ mobile devices over an IEEE 802.11 wireless lo-
cal area network [5]. An experimental study is presented
demonstrating the effect of unsupervised speaker and en-
vironment compensation algorithms in improving ASR
performance when user utterances are spoken through
the standard iPAQ device mounted microphone.

There are a large number of applications for mobile
devices that include automatic speech recognition (ASR)
as a key component of the user interface. These include
mutlimodal dialog applications [3], voice form filling ap-
plications [5], and value added applications that provide
short-cuts to user interface functions. Speech recogni-
tion is generally just one part of a multi-modal dialog ar-
chitecture for these mobile applications whose functional
components can be distributed in different ways between
computing resources residing in the network and on the
mobile device.

While there are a range of potential distributed ASR
architectures that have been proposed for these appli-
cations, one can make qualitative arguments for when
either fully embedded ASR implementations or network
based implementations are most appropriate. It is gen-
erally thought that fully embedded implementations are
most appropriate for value added applications like name
dialing or digit dialing, largely because no network con-
nectivity is necessary when ASR is implemented locally
on the device [6]. Distributed or network based ASR im-
plementations are considered appropriate for ASR based
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services that require access to large application specific
databases where issues of database security and integrity
make it impractical to distribute representations of the
database to all devices [5]. Network based implementa-
tions also facilitate porting the application to multiple
languages and multiple applications without having to
affect changes to the individual devices in the network.

Acoustic variability in mobile domains is considered
here to be a very important problem that distinguishes
ASR in mobile domains from generic ASR domains. The
main issue is that users of mobile devices will be using
them in a wider variety of continuously varying acous-
tic environments making the expected conditions far dif-
ferent than one would expect in wire-line telephone or
desk-top applications. However, the use of personal-
ized devices and personalized services facilitates a new
paradigm for implementing robust algorithms. Speaker,
channel, and environment representations can be ac-
quired through normal use of the device all of which can
be applied to feature space and model space transfor-
mation in ASR. The feature domain speaker normaliza-
tion/transformation algorithms described in Section 3 are
applied and evaluated under this paradigm.

The paper is composed of two major parts. The first
part, given in Section 2, will present a description of
the framework along with simulations demonstrating the
ability of the framework to scale to a large number of
clients. The second part, given in Section 3, discusses
the implementation of speaker specific feature space nor-
malizations and transformations from user state infor-
mation acquired and stored by the software framework
in the network. The results of the simulations will be
summarized in Section 4.

2 MOBILE ASR FRAMEWORK

Modern multi-user applications are often challenged by
the need to scale to a potentially large number of users
while minimizing the degradation in service response
even under peak load conditions. Scaling multi-modal
applications that include ASR as an input modality
presents an additional hurdle as there is typically a great
disparity between the number of potentially active users
and a system’s limited ability to provide computation-
ally intensive ASR services. This section provides an
overview of a proposed distributed speech enabling mid-
dleware (DSEM) framework that is used to efficiently im-
plement multi-modal applications that maximize perfor-
mance under normal loads and are well conditioned under
peak loads. The section is comprised of two parts. First,
the framework rationale and design are briefly described.
The second part of the section presents an experimental
study demonstrating the throughput of the framework
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in the context of hundreds of simulated mobile clients si-
multaneously accessing a system equipped with a limited
number of ASR decoders.

2.1

Traditional non-ASR server implementations that assign
a thread or process per client suffer from greatly de-
graded performance as the number of clients approaches
and exceeds a server’s peak capacity [7]. This degrada-
tion, typically the result of context switching and syn-
chronization overhead, is accelerated by the high IO ac-
tivity necessary to support ASR services. To combat this
performance loss the proposed DSEM framework uses an
event-driven, non-blocking I0 model which requires only
a single thread to manage a large number of concurrently
connected clients. In addition, an ASR decoder cache is
employed to effectively share limited decoder resources
among active clients.
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Figure 1: DSEM server framework.

The basic functional components of the framework can
be introduced by way of the example illustrated by the
block diagram in Figure 1. Figure 1 illustrates a typi-
cal interaction between a DSEM server and one of many
clients. The interaction involves a mobile user making
a voice query to an application running on the DSEM
server, the decoded ASR result for the associated utter-
ance being used to issue a HT'TP query to a web server,
and the result of this query being returned to the mobile
client. The interaction begins with the client initiating a
speech request and streaming audio to its session on the
DSEM server using a custom protocol. The DSEM server
dispatcher, responsible for detecting and routing all the
system’s IO events, notifies the session object associated
with the client of the arrival of the stream. The ses-
sion object serves two purposes. First, the session object
is responsible for analyzing the request stream to deter-
mine the type of application—specific handler necessary
to process it. Second, it is used as a repository for any
client state that spans the duration of a client’s session
(e.g., transient acoustic information is stored here). The
session can then instantiate the handler and pass it the
stream for further processing.

Upon activation, the handler performs any required
initialization, and attempts to acquire a decoder proxy
from the decoder proxy cache. Decoder proxies act as
local representations of decoder processes residing on re-
mote dedicated compute servers. As each portion of the
audio stream arrives from the client they are processed
by the handler which performs cepstrum feature analysis
and implements the acoustic feature space normalizations
and transformations that are described in Section 3. If
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the handler was successful in its attempt to acquire a
decoder proxy, then the computed cepstrum vectors are
streamed directly to a decoding process. If it was not suc-
cessful, the computed cepstrum vectors are buffered and
transmitted as soon as a decoder proxy becomes avail-
able. After processing the current audio fragment, the
handler returns control to the DSEM dispatcher which
can then service other clients.

When the ASR decoder process obtains a recognition
result, it issues a reply to its associated proxy. The
dispatcher detects this event and notifies the decoder
proxy so that it may read the ASR decoder’s reply. The
proxy then calls the handler with the recognized phrase
or an optional failure code. After receiving the decoded
string, the handler uses it to perform a query to a HTTP
server. The prototype application implemented in this
work uses this technique to retrieve employee information
from AT&T’s intranet site. The handler instantiates a
DSEM HTTP object, issues an HT'TP request and waits
for a reply from the HTTP server. When the HTML re-
sponse arrives, the handler can process it and send an
appropriate message to the waiting mobile client.

One of the key assumptions of the above framework
is that it is impractical to permanently assign an ASR
decoder to a specific client. In fact, in order to support
a large user population, identically configured decoder
instances are stored in the cache shown in Figure 1, as-
signed only to an individual recognition request from a
client, and then returned to the cache. As a result it is
very difficult to adapt the acoustic models in the decoder
itself to the user, environment, or channel associated with
a particular client. The solution to this problem is to im-
plement all acoustic modeling techniques for user config-
uration as feature space normalizations/transformations
in the DSEM server. This issue is addressed further in
Section 3.

2.2 Performance Evaluation

An experimental study was performed to demonstrate
the throughput of the framework described in Section 2.1.
The goal of the study was to measure both the through-
put maintained by the DSEM server and the latencies
that would be observed by users of the associated mobile
ASR services as the number of users making simultaneous
requests increases into the hundreds of users. The study
was performed by having many simulated clients perform
the following interaction. Each client generated a speech
request to the DSEM server where acoustic feature anal-
ysis was performed, features were eventually streamed to
an available ASR decoder and the decoded result was re-
turned to the waiting client. The infrastructure used for
the study included eight 1GHz Linux ASR servers with
each server running four instances of the AT&T Watson
ASR decoder and a single 1GHz Linux DSEM server with
256Mb of RAM.

Figure 2a illustrates the effect on response latency as
the number of concurrent clients increases. Response la-
tency was calculated as the interval in seconds between
the time that the speech request was generated by the
client and the time that the recognition result was re-
turned to the client by the DSEM server. The plot in
Figure 2a shows a relatively constant latency when the
number of clients is less than 128 and a gracefully degrad-
ing response latency as the number of clients is increased.
This increase in latency is due to the delay imposed on
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Figure 2: DSEM server performance: a) Average re-
sponse latency b) Average server throughput

clients by the DSEM decoder wait queue which throttles
access to available decoders and to increased pressure on
the DSEM server itself.

Figure 2b illustrates the effect on server throughput
as the number of concurrent clients increases. Through-
put was calculated as the number of completed recog-
nition transactions per second. The plot in Figure 2b
demonstrates that throughput gradually increases until
the server’s peak capacity is reached at a point corre-
sponding to 128 clients and remains constant even as the
number of clients far exceeds this peak capacity.

3 ROBUST MODELING

This section describes the application of normalization
and transformation algorithms in the context of the mo-
bile ASR framework described in Section 2. These algo-
rithms are applied to compensating utterances spoken by
users of Compaq iPAQ hand-held devices. In Section 1,
the notion of acquiring representations of the speaker, en-
vironment, and transducer associated with a given client
from utterances spoken during the normal use of the de-
vice was discussed. The algorithms that are applied here
under this paradigm include frequency warping based
speaker normalization [4], constrained model adaptation
(CMA) and speaker adaptive training (SAT) [2], and cep-
strum and variance normalization.

There are two major constraints that are placed on
acoustic compensation algorithms both by the framework
described in Section 2 and by the anticipated applications
described in Section 1. The first constraint is that all ro-
bust acoustic algorithms are applied in the feature space
rather than by adapting or transforming the acoustic
HMM model. This constraint is dictated by the dynamic
assignment of decoders to individual utterances by the
DSEM server making it difficult to configure the model
parameters of these decoders to a particular user. The
second constraint is that acoustic compensation param-
eters are estimated off-line from dedicated adaptation
utterances rather than from the recognition utterances
themselves. In addition to the fact that personalized ser-
vices can be well suited to this paradigm, there are two
motivations for this constraint. The first is that input
utterances can be very short, sometimes single word, ut-
terances that are spoken to fill in “voice fields” appear-
ing on the display of the hand-held device [5]. These
short utterances can be insufficient for robust parame-
ter estimation. Second, the computational complexity
associated with estimating frequency warping and CMA
parameters could overwhelm the DSEM if performed at
recognition time.
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3.1 Algorithms

This section describes the robust acoustic compensation
algorithms used for this task. They will be applied
to compensating utterances spoken into a far-field de-
vice mounted microphone with respect to acoustic HMM
models that were trained in a mis-matched acoustic envi-
ronment. Normalization/transformation parameters are
estimated using anywhere from approximately one sec-
ond to one minute of speech obtained from previous ut-
terances spoken by the user of the device.

The first technique is frequency warping based speaker
normalization [4]. This was performed by selecting a sin-
gle linear warping function using the adaptation utter-
ances for a given speaker to maximize the likelihood of
the adaptation speech with respect to the HMM. Then,
during speech recognition for that speaker, the warping
factor is retrieved and applied to scaling the frequency
axis in mel-frequency cepstrum coefficient (MFCC) based
feature analysis [4]. A “warped HMM?” is trained by es-
timating optimum warping factors for all speakers in the
training set and retraining the HMM model using the
warped utterances.

There are several regression based adaptation algo-
rithms that obtain maximum likelihood estimates of
model transformation parameters. The techniques dif-
fer primarily in the form of the transformations. Con-
strained model space adaptation (CMA) is investigated
here [2]. CMA estimates a model transformation {A,b}
to an HMM, A, with means and variances y and X,

fi=Ap—b 3 =AnAT,
in order to maximize the likelihood of the adaptation
data, X, P(X|\, A,b). The term “constrained” refers to
the fact that the same transformation is applied to both
the model means and covariances. Since the variances
are transformed under CMA, it is generally considered to
have some effect in compensating the HMM with respect
to environmental variability as well as speaker variability.

An important implementational aspect of CMA is that
this model transformation is equivalent to transforming
the feature space, #; = Ax;+b. It is applied during recog-
nition to the 39 component feature vector composed of
cepstrum observations and the appended first and second
order difference cepstrum. A speaker adaptive training
(SAT) HMM is trained by estimating an optimum CMA
transform for each speaker in the training set and retrain-
ing the HMM model using the transformed utterances.

Cepstrum mean normalization (CMN) and cepstrum
variance normalization (CVN) were also applied under a
similar scenario as the algorithms described above. Nor-
malization vectors were computed from adaptation ut-
terances for each speaker and then used to initialize esti-
mates of normalization vectors for each input utterance.
The incorporation of additional speech data provided by
this simple modification to standard cepstrum normal-
ization procedures had a significant impact on ASR per-
formance.

3.2 Experimental Study

The feature normalization/adaptation algorithms de-
scribed in Section 3.1 were used to reduce acoustic mis-
match between task independent HMM models and ut-
terances spoken through a Compaq iPAQ hand-held de-
vice over the distributed framework described in Sec-
tion 2. This section describes the scenario under which




the algorithms were evaluated, the speech database, and
the experimental study.

The dataset for the study included a maximum of 400
utterances of proper names per speaker from a population
of six speakers. The utterances were spoken through the
device mounted microphone on the hand-held device in
an office environment. Since the data collection scenario
also involved interacting with the display on the hand-
held device, a distance of from approximately 0.5 to 1.0
meters was maintained between the speaker and the mi-
crophone. The first 200 utterances for each speaker were
used for estimating the parameters of the normalizations
and transformations described in Section 3.1. After au-
tomatic endpointing, this corresponded to an average of
3.5 minutes of speech per speaker. The remaining 1200
utterances, corresponding to isolated utterances of last
names, were used as a test set for the experimental study
described below.

A baseline acoustic hidden Markov model (HMM) was
trained from 18.4 hours of speech which corresponds to
35,900 utterances of proper names and general phrases
spoken over wire-line and cellular telephone channels. Af-
ter decision tree based state clustering, the models con-
sisted of approximately 3450 states and 23,500 Gaussian
densities.

The baseline WER on the above test set was found
to be 41.5 percent. This can be compared to a WER
of 26.1 percent obtained on the same task for a different
population of speakers speaking into a close-talking noise
cancelling microphone [5]. The goal of the robust com-
pensation algorithms applied here is to close the gap be-
tween these two scenarios. It was also shown in previous
work that by combining lattices obtained from utterances
spoken separately in response to first name and last name
fields and rescoring them with a language model that de-
scribes the constraints between those fields, a WER of
10.1 percent could be obtained [5].

Table 1 displays the results for the experimental study
as the word error rate (WER) resulting from the use
of each of the individual algorithms where parameters
are estimated using adaptation data of varying length.
Columns 2 through 5 of Table 1 correspond to the WER
obtained when 1.3, 6.8, 13.4, and 58.2 seconds of speech
data are used for speaker dependent parameter estima-
tion.

Compensation | Ave. Adaptation Data Dur. (sec)
Algorithm 13 [ 68 [ 134 582

Baseline 41.5 | 41.5 | 41.5 41.5

N 40.2 | 37.2 | 36.8 36.8

N+W 36.7 | 33.8 | 33.6 33.3

N+W+C - 35.0 | 32.3 29.8

N+W+C+SAT - 344 | 31.5 28.9

Table 1: WER obtained using unsupervised estima-
tion of mean and variance normalization (N), fre-
quency warping (W), and constrained model adapta-
tion (C) parameters from varying amounts adaptation
data.

There are several observations that can be made from
Table 1. First, by comparing rows 1 and 2, it is clear
that simply initializing mean and variance normalization
estimates using the adaptation data (N) results in a sig-
nificant decrease in WER across all adaptation data sets.
Second, frequency warping (W) is also shown to provide
significant reduction in WER with the most dramatic re-
duction occurring for the case where an average of only
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1.3 seconds of adaptation data per speaker is used to es-
timate warping factors. Third, by observing rows 4 and
5 of Table 1, it is clear that constrained model adapta-
tion (C) actually increases WER when the transforma-
tion matrix is estimated from less than 13.4 seconds of
adaptation data. However, significant WER rate reduc-
tions were obtained as the adaptation data length was
increased. It is important to note that the over-training
problem observed here for adaptation algorithms result-
ing from insufficient adaptation data is well known. Fu-
ture work will investigate the use of procedures that pre-
vent over-training by interpolating counts estimated on
a small adaptation set with those obtained from other
sources of data [1].

4 CONCLUSIONS

Two developments associated with the implementation
of robust mobile ASR services on hand-held devices have
been presented. The first is an efficient framework for dis-
tributed mobile ASR based services. The DSEM server,
presented in Section 2, was shown in Figure 2 to maintain
acceptable response latencies with simultaneous ASR ac-
cesses from many hundreds of simulated mobile clients.
The second is an efficient means for implementing robust
acoustic compensation algorithms when there is little op-
portunity to influence the audio specifications of the de-
vice and little opportunity to sample all possible environ-
ments in HMM training. A set of acoustic compensation
procedures, described in Section 3, were applied in an
unsupervised user configuration scenario. These proce-
dures, which include frequency warping based speaker
normalization, constrained model adaptation, and off-
line CMN and CVN, were shown in Table 1 to reduce
word error rate by 30 percent.
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