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Abstract
It is widely believed that strong correlations exist across an ut-
terance as a consequence of time-invariant characteristics of
speaker and acoustic environments. It is verified in this pa-
per that the first primary eigendirections of the utterance co-
variance matrix are speaker dependent. Based on this obser-
vation, a fast speaker adaptation algorithm entitled Eigenspace
Mapping (EigMap) is proposed and described. EigMap rapidly
adapts the speaker independent models by constructing discrim-
inative acoustic models in the test speaker’s eigenspace. Un-
supervised adaptation experiments show that EigMap is effec-
tive in improving baseline models using very limited amounts
of adaptation data with superior performance to conventional
adaptation technique such as block diagonal MLLR. A relative
improvement of 18.4% over baseline recognizer is achieved us-
ing EigMap with only about 4.5 seconds of adaptation data. It
is also demonstrated that EigMap is additive to MLLR by en-
compassing the speaker dependent discrimination information.
A significant relative improvement of 24.6% over baseline is
observed by combining MLLR and EigMap techniques.

1. Introduction
With advances in applying speech technology to different tasks,
many speech applications require rapid deployment of speech
recognition with minimal resources. In such speech systems,
it is desirable that the acoustic model can be dynamically im-
proved based only on the baseline model and a very limited
amount of adaptation data (i.e., no training data, no speaker
dependent models or any speaker clustering information is de-
manded for adaptation, and the computational and storage over-
head of the adaptation process should be inexpensive). In this
paper, we describe a rapid speaker adaptation algorithm entitled
EigMap to meet these requirements.

It is widely known that correlations exist across an utterance
as a consequence of time-invariant characteristics of speaker
and/or acoustic environments. Given a sequence of observa-
tion feature frames from an utterance, there are at least two
types of correlation that exist over the observations: the tem-
poral correlation between feature frames, and the correlation
between feature components. However, state-of-the-art speech
recognition technologies ignore such correlations. For exam-
ple, it is usually assumed that observations are independent in
both acoustic model training and decoding. The use of dynamic
feature components partly captures some correlation between
feature frames, but it is limited to neighboring frames. On the
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other hand, for many practical considerations, such as storage
and computation, acoustic models typically assume diagonal
covariance. This assumption ignores the correlations between
feature components. It is expected that bringing these correla-
tions into consideration should produce more accurate acous-
tic modeling. For example, linear discriminant analysis (LDA)
[4, 7] and maximum likelihood linear transform (MLLT) [2]
have been used to improve acoustic model training. The focus
of this paper is to introduce a method that dynamically incorpo-
rates the correlation at the decoding phase for rapid model adap-
tation. It is noted that directly modeling of correlation is too
expensive and not computationally practical. Alternatively, the
proposed method constrains model parameters implicitly based
on correlation.

The question of how to capture speaker information from
limited amounts of adaptation data, and how to impose the
speaker information appropriately into baseline acoustic models
are the key problems investigated in this paper. The existence
of strong correlation within an utterance has long been noted by
researchers in the literature [1]. The motivation for using long
distance correlation for rapid speaker adaptation is that the cor-
relation should be speaker dependent. Intuitively, the manner
by which speech frames affect each other is highly related to
the vocal tract movement and speaking styles, which are largely
dependent on the speaker [6]. In Sec. 2, a set of experiments
are designed to verify this claim. As one might expect, it is
observed from our experiments that the first primary eigendi-
rections of the utterance covariance matrix encodes significant
speaker information.

If every component Gaussian distribution in the acoustic
model is viewed as a class, then a well-trained baseline model
can be assumed to maintain a fair discrimination power be-
tween different Gaussians, in the sense of providing a reason-
able between-class covariance ��. �� can be decomposed into
the sum of variances along its different eigendirections. Among
them, the variances that belong to the first primary eigendirec-
tion reflect the dominant power for discrimination. This paper
proposes an algorithm to construct the discriminative acoustic
models for the test speaker, by reserving dominant discriminat-
ing power from baseline model along the test speaker’s first pri-
mary eigendirection of the specific speaker’s between-class co-
variance �� . Other constraints are also imposed on the adapted
means to minimize the shift from baseline model due to insuf-
ficient observations of adaptation data in rapid adaptation. The
adaptation process is performed through a linear transformation
in the model space using a method entitled Eigenspace Mapping
(EigMap). Based on the similar idea of EigMap, we have pre-
viously formulated an algorithm for rapid speaker adaptation
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entitled Structural Maximum Likelihood Eigenspace Mapping
(SMLEM) [8, 9].

Experimental results from this paper show that EigMap is ef-
fective in improving the baseline model using limited amounts
of adaptation data with superior performance to MLLR. More-
over, EigMap is highly additive to MLLR by bringing additional
discrimination information into the adapted acoustic model that
maximizes the adaptation data likelihood.

The remainder of this paper is organized as follows: Sec. 2
investigates the speaker information in utterances, and shows
that the first primary eigendirections of the observation covari-
ance matrix encode significant speaker information; Sec. 3 de-
scribes the eigenspace mapping algorithm and points out the
relationship between EigMap and LDA; Sec. 4 evaluates the
EigMap algorithm using multiple experiments; Sec. 5 summa-
rizes the paper contributions.

2. Speaker Information In Utterances
Previous work by other researchers have shown that the covari-
ance of observation frames from a specific speaker encapsulates
a range of speaker dependent information. Statistics based on
the covariance matrix have been applied successfully in speaker
identification and tracking [3].

Typically, dependence in feature observations exist between
more than two feature components, and Principal Compo-
nent Analysis (PCA) can help extract the most important axes
of variations. In our study, we claim that the first primary
eigendirections encode more significant speaker information
than phonemic information. We design experiments to ver-
ify our claim. First, we select a set of speakers, � �
���� ��� � � � � ���, and randomly select an identical set of ut-
terances � � ���� ��� � � � � ��� produced by each speaker in
�. For each utterance � of each speaker, we estimate the co-
variance matrix �� of the observation frames in the standard
MFCC feature domain. The covariances are estimated indepen-
dently for the static cepstrum (12 MFCC plus energy), delta,
and double delta feature streams. Next, the first � eigendirec-
tions �	��� 	��� � � � � 	��� of �� are derived using PCA. A well-
trained WSJ acoustic model � with ���K component Gaussians
is used to represent the acoustic space. To measure the rela-
tive position of an eigenvector 	�� in this space, each Gaussian
mean 
� in � was projected onto it to obtain an inner prod-
uct ���� � 
� � 	��. Next, the ���, variance of ���� across
speaker set S, and the ���, variance across utterance set U, are
estimated. The goal is to compare 
� and 
�, the averaged vari-
ances of ��� and ��� across all component Gaussian projections,
respectively. If the claim is correct, and the eigendirections of
utterance covariance matrix are more likely to be speaker de-
pendent, one might expect to observe that the former should be
higher than the latter.

Part (a) and (b) in Fig. 1 compare the averaged projection
variances onto the first and second eigendirections respectively.
Clearly, the averaged variance across different speakers with the
same utterance, 
�, is higher than the averaged variance across
different utterances from the same speakers, 
�. This observa-
tion strongly supports the claim that the first primary eigendi-
rections are more likely to be speaker dependent and are less af-
fected by the phoneme contexts in utterances. It is interesting to
note that the ratio 
��
� are in different ranges for each feature
stream (i.e., the ratio is more than five for the static features,
above two for the delta stream, while only slightly above one
for double delta), as indicated in the lower part of Fig. 1. This
again verifies the observation that the static feature stream car-
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Figure 1: Comparison of averaged Gaussian mean projec-
tion variances across speaker set � and across utterance set
� : (a) Variances of projection onto 1st PCA of speaker’s
eigenspace, (b) Variances of projection onto 2nd PCA of
speaker’s eigenspace, and (c) comparison of 
��
� for differ-
ent feature streams.

ries the most significant speaker traits. The experimental results
in Fig. 1 also suggest that the feature streams should be treated
separately in such eigenspace processing, to assure that we are
extracting appropriate speaker information from each stream.

3. Eigenspace Mapping (EigMap)
For the task of model adaptation, the improved model is
achieved by adjusting the baseline model parameters based on
adaptation data. From the previous section, it is assumed that
the speaker dependent information can be learned from the first
primary eigendirections. On the other hand, a well-trained base-
line model � is assumed to maintain a fair model discrimination
between Gaussian means �
��� � �� �� � � � � ��, in the sense of
providing a reasonable between-class covariance ��:

�� �
�
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���


�



� � �
�

 (1)

where every component Gaussian is treated as a single class,
and �
 � �
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��� 
�. �� can be decomposed as the sum of
variations along its eigendirections �	��� 	��� � � � � 	���:
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where � is the Gaussian dimension, and �� � �� � � � � �
�� � � are the rank ordered eigenvalues of the symmetric
semi-positive definite matrix ��. The variance of the ��� prin-
cipal component is ��, and in a loose sense, this component “ac-
counts for” a proportion ���

��

��� �� of the total variances. It
is assumed that � � � is the number of primary eigenvalues
that contribute dominant variations, and hence the variations
along the corresponding eigendirections �	��� 	��� � � � � 	���
provide the most significant discrimination power, among any
� eigendirections, in the sense of maximizing the Fisher ratio:
� � ����
�

����� �
, where � is the averaged within-class covariance

matrix.
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3.1. EigMap

The basic idea of EigMap is to maintain the between-class
variances (i.e, the discrimination power) of the baseline Gaus-
sian means unchanged along the first primary eigendirections
in test speaker’s eigenspace. Given the primary eigendirections
�	��� 	��� � � � � 	��� of test speaker’s observation covariance
matrix ��, the adapted Gaussian means ����� � �� �� � � � � ��
should satisfy:

��

���

���	��� �
��

���


��	��� � � � �� � � � � �� (3)

For every component Gaussian 
� in the model �, all possi-
ble adapted means �� that satisfies Eq. (3) form a �� � ��-
dimensional subplane � in the acoustic space that is given by:

� � ����
��

���

���	��� �
��

���


��	��� �� � �� � � � � ��� (4)

In the task of rapid model adaptation where observation data is
sparse, aggressive assumptions based on insufficient adaptation
data often tend to be unreliable. Alternatively, a more conser-
vative approach is to minimize the shift from the well-trained
baseline model parameters, given the constraint of no loss of
discrimination power along the first dominant eigendirections
in the test speaker eigenspace:

� � argmin
� � �

�
� ��
 �
� ��� (5)

By substituting Eq. (4) into Eq. (5) and minimizing the objec-
tive function using the Lagrange Multiplier method, the adapted
mean � can be obtained from 
 using a linear transformation:
� � 	� 
 	�� � � ��
� � �
, with � an � � � nonsingular
matrix given by:

� � �� �

��

���

���������	
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where �� is ��� identity matrix. Considering the orthogonality
between eigenvectors (i.e., 	�� �	�� � �� �� 
� �), one can show
that � � ��

����, where,

���� � �	
��� 	
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��� (7)

and,
�� � �	��� � � � � 	��� 	���	��� � � � � 	���


 � (8)

After transforming the baseline model mean 
 into � using
Eq. (6), the discrimination information is assumed to be mostly
encapsulated in the first � dimensions, where � � � � �, hence
the last � � � dimensions of � can be discarded. In the model
space, this is equivalent to setting the last � � � rows of � to
zeros:

�� � ������ ���������

 (9)

It should be noted that following the observation from previous
section, we treat each feature stream separately in estimating ��.

Our previously proposed algorithm, SMLEM, incorporates
concepts found in EigMap. In SMLEM, all the component
Gaussian means of the well-trained baseline model are clus-
tered into a binary tree. A structural eigenspace mapping ap-
proach was employed to allow hierarchical mapping, and at the
levels determined by the amount and distribution of adaptation
data, the EigMap processing is applied to adapt the component

Gaussians within this class. This is motivated by the fact that
the discrimination in a smaller class of more similar Gaussian
means should be more valuable in pattern recognition than the
discrimination in a global space. An eigenspace bias � is also
introduced in SMLEM, with the adapted mean � obtained as:

� � �
���
��� (10)

where � is derived in a manner that maximizes the adaptation
data likelihood  �!���. The accumulation equation for esti-
mating the bias � based on the EM algorithm is given in [9].

3.2. Between-Class Variances Estimation

One of the key points in the EigMap scheme is how to estimate
the between-class variances�� for the test speaker, and accord-
ingly, �� for the baseline model given the adaptation data. One
approach is based on Viterbi forced alignment. In this approach,
the best state sequence of the adaptation data is found through
Viterbi alignment:

"���� � � � � ��� � argmax
��� � � � � ��

# ���� � � � � ��� $�� � � � � $����� (11)

�� is directly computed from observed adaptation speech
frames $�:

�� � �� �
�

�

��

���

$�$


� � �$�$
 � (12)

where � is the number of observed speech frames, and �$ �
�
�

��

��� $�. At the baseline model side, a “simulated” obser-
vation from the perspective of baseline models is, given the best
state �� at each time �:

�$� �
�

��
�

%���
���� � � �� �� � � � � �� (13)

where%��� is the mixture weight of state �� with the constraint:�
� %��� � �. Next, �� is estimated from these “simulated”

observations, with ��$ � �
�

��

��� �$�:

�� �
�

�

��

���

�$� �$�

 � ��$��$
 � (14)

3.3. EigMap and LDA

LDA, or more recently, HDA [4], is used by many researchers to
improve acoustic model discrimination before ML model train-
ing. The goal of LDA is to find the linear transformation � in
the feature space to maximize the following objective function:

&��� �

�� ����
 �

�	�����
 �
� (15)

However, EigMap seeks a linear transformation � in the model
space for rapid model adaptation, and therefore no training data
is required. If the Gaussian variance is not adapted, then the
within-class covariance � is unchanged after EigMap trans-
formation. In this sense, the EigMap transformation � can be
viewed as a solution that maximizes the same objective function
in Eq. (15) with the constraint that discrimination is obtained
through the speaker’s first primary eigendirections.
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Table 1: WER (%) of native speaker (WSJ Spoke4) testing with
4 seconds of adaptation data in average.

Speaker 4o6 4o7 4o8 4o9 Avg.

Baseline 4.4 3.8 8.0 6.2 5.6
BD-MLLR 5.1 3.7 8.3 5.3 5.6

EigMap 4.0 3.3 7.6 5.9 5.2

4. Experiments and Results
4.1. Experimental Setup

The adaptation experiments reported here are all conducted
in an unsupervised manner, on the DARPA WSJ Spoke3
and Spoke4 corpus. The baseline system has 6275 context-
dependent tied states and ���K diagonal mixture component
Gaussians. The baseline system uses a feature of 39 dimen-
sions with 13 static cepstral coefficients plus delta and double-
delta. The Spoke4 corpus is collected from � native speakers of
American English with balanced gender. The Spoke3 data con-
sists of non-native speakers. Each speaker of Spoke3 provides
a set of adaptation utterances, and another set of 40 utterances
for testing. We select the last 6 speakers from Spoke3 for our
experiments 1 (approximately 3900 words in the test set). For
Spoke4, all speakers and all the 50 test utterances from group
G of each speaker are used in the evaluation (approximately
3300 words in the test set). Since we are primarily interested
in rapid adaptation, only a single adaptation utterance is used
to improve the baseline model. To account for variability in the
small amount of data, and to obtain statistically representable
results, � randomly selected adaptation utterances are identi-
cally used for each test speaker in adaptation. The adaptation
data ranges from ��� to � seconds of speech for different ut-
terances and speakers. All experimental results presented are
obtained by averaging all open experiments.

The EigMap algorithm was compared with the block diago-
nal MLLR (BD-MLLR) scheme, since the amount of adaptation
data is very limited, and it is shown from experiments that BD-
MLLR achieves better performance than conventional MLLR
[9] due to the reduced parameters to be estimated. For the same
reason, one global regression class is used for BD-MLLR adap-
tation. For a fair comparison, EigMap also constructs only a
global eigenspace for both test speaker and baseline model for
the mapping. In our experiments, � � �� for static, delta and
double-delta streams, and the �, � are determined automatically
for each stream based on the adaptation data distribution.

4.2. Experimental Results

Table 1 shows the performance comparison using Spoke4 cor-
pus with about 4 seconds of adaptation data. In average, BD-
MLLR achieves no improvement over baseline, while EigMap
obtains consistent improvements for all speakers, with an av-
erage of 7% relative improvement from baseline. This obser-
vation suggests that even the test data matches the acoustic
model well, the discrimination introduced by EigMap is still
able to improve the acoustic model for more accurate classifi-
cation. The experimental results using Spoke3 corpus are sum-
marized in Table 2. It clearly shows that EigMap effectively

1The first four speakers demonstrate a relatively high Word Error
Rate (WER) that is above 65% for the baseline system. We believe this
may be in conflict with our assumption for the EigMap algorithm that
the SI models are reasonably well-trained for the test speakers. There-
fore, we exclude the first 4 speakers.

Table 2: WER (%) of non-native speaker (WSJ Spoke3) testing
with 4.5 seconds of adaptation data in average, where BDM
stands for the BD-MLLR.

Spkr Baseline BDM EigMap BDM+EigMap

4n5 23.5 20.2 21.4 20.2
4n8 16.4 13.0 13.6 13.3
4n9 21.6 18.9 16.7 15.0
4na 11.9 10.3 8.0 7.5
4nb 32.0 28.3 25.8 25.8
4nc 18.7 13.6 15.9 11.6
Avg 20.7 17.4 16.9 15.6

Rel. Imp – 15.9% 18.4% 24.6%

enhances the baseline by a relative improvement of 18.4% with
only about 4.5 seconds of adaptation data, when BD-MLLR
achieves a 15.9% relative improvement. Moreover, EigMap is
highly additive to MLLR by bringing additional discrimination
information into the adapted acoustic model that maximizes the
adaptation data likelihood. By applying EigMap to the MLLR
adapted model, a significant relative improvement of 24.6% is
observed in the experiments.

5. Conclusions
This paper has introduced the Eigenspace Mapping (EigMap)
algorithm for constructing a discriminative acoustic model for
rapid speaker adaptation. EigMap preserves the discrimination
power of the baseline model in the test speaker’s eigenspace
with constraints. Unsupervised adaptation experiments show
that EigMap can effectively improve the baseline model with
very limited amounts of adaptation data. Moreover, EigMap is
able to provide additional performance gain to MLLR. Combin-
ing MLLR and EigMap, a significant 24.6% relative improve-
ment is achieved with only about 4.5 seconds of adaptation data.
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