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ABSTRACT

This paper presents a new approach to online speaker adaptation
based on transformation space model evolution. This approach
extends the previous idea of speaker space model evolution [11]
by applying the a priori knowledge of training speakers to the
speaker-dependent maximum likelihood linear regression (MLLR)
matrix parameters. A quasi-Bayes (QB) estimation algorithm is
devised to incrementally update the hyperparameters of the trans-
formation space model and the regression matrices simultaneously.
Experiments on supervised speaker adaptation demonstrate that
the proposed approach is more effective compared with the con-
ventional quasi-Bayes linear regression (QBLR) technique when a
small amount of adaptation data is available.

1. INTRODUCTION

Maximum likelihood linear regression (MLLR) [1] is consid-
ered as one of the most ef£cient methods for adapting continuous
density hidden Markov model (CDHMM) to the current speaker
and/or acoustic environment. MLLR is a transformation-based
adaptation scheme where the overall CDHMM parameters are adapted
via a set of linear regression functions estimated according to the
maximum likelihood (ML) criterion. MLLR can be successful
with a small amount of adaptation data and can operate in all adap-
tation modes including unsupervised adaptation as well as online
adaptation.

Since it is necessary to have suf£cient adaptation data to ro-
bustly estimate the MLLR parameters, various adaptation tech-
niques have been suggested to increase the robustness of MLLR
for rapid adaptation. The maximum a posteriori linear regression
(MAPLR) approach [2] is proposed to improve MLLR adaptation
by incorporating a prior distribution for the transformation param-
eters and estimating the parameters according to the maximum a
posteriori (MAP) criterion. Also, eigenspace-based MLLR and
MAPLR [3] [4] techniques are developed by introducing the a pri-
ori knowledge of training speakers to the speaker-speci£c MLLR
matrix parameters based on the principal component analysis (PCA)
[5] and probabilistic PCA (PPCA) [6]. Compared with MLLR and
MAPLR, These approach have been found to be more effective
when a very small amount of adaptation data is available.

Huo and Lee [7] applied the quasi-Bayes (QB) learning frame-
work to incrementally update both the CDHMM parameters and
the hyperparameters through a prior evolution procedure. Chien
[8] proposed the quasi-Bayes linear regression (QBLR) algorithm
for online linear regression adaptation of the CDHMMs and showed
that the QBLR is a general framework in which MLLR and MAPLR
are treated as special cases. Experimental results demonstrated

that the sequential adaptation technique using QBLR is ef£cient
and asymptotically converge to the batch learning methods such
as MLLR and MAPLR.

Recently, we proposed a rapid speaker adaptation technique
based on the PPCA and extended this approach to the latent vari-
able model such as factor analysis (FA) [9] to £nd the speaker
space model [10] [11]. Also, we suggested a new approach to
online adaptation of the CDHMM mean parameters based on the
speaker space model evolution [11].

In this paper, we further extend the ideas of the previous speaker
space model evolution technique by applying prior knowledge of
the training speakers to the speaker-dependent MLLR matrix pa-
rameters. Similar to the speaker space, the transformation space
model is established by extracting several principal components
among a set of speaker-speci£c transformation matrices. Experi-
ments on supervised speaker adaptation demonstrate that the pro-
posed approach is more effective compared with the QBLR tech-
nique when a small amount of adaptation data is available.

2. ONLINE ADAPTATION BASED ON
TRANSFORMATION SPACE MODEL EVOLUTION

2.1. Transformation Space Model

Consider an N -state CDHMM with K mixture components,
λ = {λj} = {wjk, µjk, Σjk}, j = 1, · · · , N, k = 1, · · · , K.
The state observation probability density function (pdf) of an ob-
servation vector xt is de£ned to be a mixture of multivariate Gaus-
sians

p(xt|λj) =

K∑
k=1

wjkN (xt; µjk, Σjk) (1)

where wjk is the weight for the mixture component k in state j

with
∑K

j=1 wjk = 1, µjk is the d-dimensional mean vector and
Σjk is the d × d covariance matrix.

With the MLLR adaptation technique, we try to adapt the CDHMM
mean vector by applying a d× (d+1) regression matrix W to the
(d + 1) × 1 extended mean vector ξjk = [1, µT

jk]T as follows:

µ̂jk = Wξjk . (2)

For notation simplicity, we assume that only a single global class
associated with the regression matrix W is used for rapid adap-
tation. The Gaussian distributions can be clustered into several
groups and a single transformation matrix is shared by all distribu-
tions which belong to the same group.

Let Wr, r ∈ {1, · · · , R} be a set of R well trained speaker-
dependent (SD) regression matrices, which can be obtained using

I - 3040-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



the standard MLLR technique. Let wr be a supervector of di-
mension D (= d(d+1)×1) created by collecting the row vectors
{Wri} of the regression matrix W such that wr = [Wr1, · · · , Wrd]T .
We assume that a set of SD transformation parameters, {wr} is
generated by a latent variable model such as FA or PPCA with
parameters φ = {U, w̄,Λ} such that

w = Uv + w̄ + ε (3)

where w̄ is the mean of the supervectors, v is a latent variable of
dimension P with p(v) ∼ N (0, I), U is a D × P matrix that
represents the subspace of the transformation parameters, and ε is
a Gaussian random noise, p(ε) ∼ N (0,Λ) independent of v. The
PPCA de£nes the noise covariance matrix to be isotropic, i.e., Λ =
σ2I. Based on the above assumption, we can derive the conditional
distribution of w given v by p(w|v) ∼ N (Uv + w̄,Λ) and
construct a prior pdf of w such that

g(w|φ) ∼ N (w̄,Λ + UUT ) . (4)

(3) de£nes the transformation space model which character-
izes the a priori knowledge of the training speakers associated with
a regression matrix W. That is, it describes the prior information
on the speaker variability by analyzing the transformation param-
eters related to each training speaker. It is noted that the transfor-
mation space model provides not only the key information of the
speaker characteristics but also the prior pdf corresponding to the
transformation parameters. This prior pdf enables us to employ
the MAP-based speaker adaptation scheme like MAPLR [2]. The
transformation space model parameters, φ can be estimated using
the iterative expectation maximization (EM) algorithm [6] [9].

2.2. QB Learning for Transformation Space Model

We brie¤y review the basic concept and formulation of QB learn-
ing for the linear regression parameters, w [7] [8]. Let Xn =
{X1,X2, · · · ,Xn} be a sequence of independent identically dis-
tributed observations statistically related to the regression matrix
w and CDHMM parameters λ. A recursive expression for the a
posteriori pdf of w is given by

p(w|Xn, λ) =
p(Xn|w, λ) · p(w|Xn−1, λ)∫

p(Xn|w, λ) · p(w|Xn−1, λ) dw
. (5)

This provides the basis for making a recursive Bayesian estimate of
w. However, the implementation of this type of recursive Bayesian
estimation technique has been found very dif£cult. To alleviate
this problem, an approach called the QB learning technique was
proposed in [7]. The QB procedure, at each step of recursive Bayes
learning, approximates the true posterior density p(w|Xn, λ) by
the closest tractable parametric prior density g(w|φ(n)) under the
criterion that both densities should have the same mode. Here,
φ(n) denotes the updated hyperparameters after observing Xn.

Let us assume that at time instant n, we are given a set of
observation vectors Xn = {x(n)

1 , · · · ,x
(n)
Tn

} and the approximate

prior pdf g(w|φ(n−1)). Since we assume that the transformation
parameter w is generated through a model given by (3), which has
a hidden variable v with the hyperparameter φ(n−1), the complete-
data likelihood for w can be easily de£ned. Let (Xn,Sn,Ln)

denote the complete-data for Xn in which Sn = {s(n)
t } represents

the state sequence and Ln = {l(n)
t } is the mixture component

sequence. We can update the approximate posterior density of the

current estimate w(n) and derive the new estimate w by repeating
the following EM steps:
E-step: Compute the auxiliary function

RQB(w|w(n), φ(n−1)) = E [ log p(Xn,Sn,Ln | w, λ)

+ ρ log g(w,v | φ(n−1)) | Xn,w(n)] .

(6)

M-step: Choose

ŵ = argmax
w

RQB(w|w(n), φ(n−1)) (7)

where 0 < ρ ≤ 1 is a forgetting factor to reduce the effect of
past observations Xn−1 relative to the new data Xn. By repeat-
ing the above EM iterations, we can get a series of approximate
pdf g(w|φ(n)) whose mode is approaching the mode of the true
posterior pdf p(w|Xn, λ). At the last EM iteration, the set of hy-
perparameters φ(n) is computed to satisfy

g(w|φ(n)) ∝ exp
{

RQB(w|w(n), φ(n−1))
}

. (8)

Finally the transformation parameters ŵ are updated by taking the
mode of g(w|φ(n)).

2.3. Transformation Space Model Evolution

In this subsection, we derive a formulation for the prior evolution
of the transformation space model. Under the speci£cation of the
transformation space model for w in (3), the auxiliary function in
the expectation step can be rewritten as

RQB(w|w(n), φ(n−1)) ∝
−1

2

∑
t

∑
j,k

γt(j, k)
[
(x

(n)
t − Wξjk)T Σ−1

jk (x
(n)
t − Wξjk)

]

+ ρE [−1

2
(w−U(n−1)v − w̄(n−1))T Λ−1,(n−1)

· (w − U(n−1)v − w̄(n−1)) | w(n) ]

(9)

where γt(j, k) = P (s
(n)
t = j, l

(n)
t = k|Xn,w(n)) is the pos-

terior probability of being in state j and mixture component k at
time t conditioned on that current transformation parameter w(n)

generates Xn. It is rewritten as

RQB(w|w(n), φ(n−1)) ∝
−1

2

∑
t

∑
j,k

γt(j, k)
[
(x

(n)
t − Cjkw)T Σ−1

jk (x
(n)
t − Cjkw)

]

+ ρE [−1

2
(w−U(n−1)v − w̄(n−1))T Λ−1,(n−1)

· (w − U(n−1)v − w̄(n−1)) | w(n) ]

(10)

where Cjk is a d× d(d + 1) matrix composed of the components
of the extended mean vector ξjk as shown at the top of the next
page [8]:

After some manipulation, the exponential of expectation func-
tion multiplied by a normalization constant C, i.e., C ·
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Cjk =




1 µjk1 · · · µjkd 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 µjk1 · · · µjkd · · · 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
. . .

...
... · · ·

...
0 0 · · · 0 0 0 · · · 0 · · · 1 µjk1 · · · µjkd


 .

exp {RQB(w|w(n), φ(n−1))} can be expressed in the normal dis-
tribution as follows:

C · exp
{

RQB(w|w(n), φ(n−1))
}
∝

exp

{
−1

2
(w − m)T Φ−1(w − m)

} (11)

where

m = Φ
∑

t

∑
j,k

γt(j, k)CT
jkΣ−1

jk Cjkx
(n)
t

+ ρ ΦΛ−1,(n−1)
(
U(n−1)v̂ + w̄(n−1)

) (12)

Φ =


∑

t

∑
j,k

γt(j, k)CT
jkΣ−1

jk Cjk + ρ Λ−1,(n−1)




−1

(13)

with

v̂ = E
[
v|w(n)

]

=
(
I + UT,(n−1)Λ−1,(n−1)U(n−1)

)−1

·

UT,(n−1)Λ−1,(n−1)
(
w(n) − w̄(n−1)

)
.

(14)

(11) belongs to the same distribution family as g(w|φ) in (4)
with w̄ = m and Λ+UUT = Φ. Here we assume that the hyper-
parameter U is £xed during prior evolution and the prior evolution
for Λ is approximated by Φ. As a result, g(w|φ(n)) in (8) can be
denoted with the hyperparameters φ(n) as follows:

w̄(n) = m

Λ(n) = Φ

U(n) = U(n−1)

(15)

such that the transformation space model is evolving accordingly.
For the prior evolution of the PPCA model, similar results are ob-
tained, w̄(n) = m and σ2,(n) = trace{Φ}/D with Λ(n−1) =

σ2,(n−1)I. After completing the transformation space model evo-
lution procedure, the QB estimated transformation parameter ŵ(n)

at time instance n is obtained by just taking the mode of the evolved
prior pdf as follows:

ŵ(n) = m . (16)

The proposed transformation space model evolution approach
is similar to the QBLR technique [8]. Compared with the QBLR
technique, it is noted in (12) that the parameter m is obtained by
incorporating the prior transformation model estimated within the
transformation space into the MLLR estimation procedure.

3. EXPERIMENTS AND RESULTS

3.1. Speech Database and Recognition System

Performance of the proposed online adaptation approach was eval-
uated with a number of supervised adaptation experiments on the
task of continuous Korean digit recognition. All the training and
test data used for building the baseline recognition system were
recorded in a quite environment. Utterances from 105 speakers
(68 males and 37 females) constructed the training data and those
from the other 35 speakers (25 males and 13 females) were used
for evaluation. Each speaker contributed 30∼40 sentences con-
sisting of 3∼7 digits and each sentence had an average length of
1.3 seconds. Each digit was modeled by a seven-state left-to-right
HMM without skips and the 3 silence types were modeled by a
one-state HMM. We trained the CDHMM parameters by varying
the number of Gaussian components in each state from one to two.
The speech signal was sampled at 8 kHz and segmented into 30
ms long frame at every 10 ms with 20 ms overlap. Each frame
was parameterized by a 24-dimensional feature vector consisting
of 12 mel-frequency cepstral coef£cients and their £rst-order time
derivatives. In the recognition experiments, we drew 1 ∼ 10 sen-
tences from each target speaker for adaptation, and performed the
recognition test on the remaining sentences. All the adaptation
procedures were performed in a supervised manner using an exact
transcription of each data. The speaker-independent (SI) system
with a single Gaussian and two mixture Gaussians produced 87.58
% and 89.60 % of word recognition rates, respectively.

To obtain the transformation space model by latent variable
models, we £rst trained a set of SI models over the speech from
all the training speakers. To obtain the 105 SD regression ma-
trices, the conventional MLLR adaptation approach with block-
diagonal matrix was performed for each training speaker with the
speaker-speci£c data. Considering the amount of adaptation data
available, only a single global regression class was speci£ed for
MLLR. Consequently, the transformation supervectors are of di-
mension D = {13 × 12 × 2} = 312. Before applying the latent
variable model techniques, the supervectors were normalized by
their standard deviation to prevent the variables with large absolute
value from dominating the analysis. We obtained the estimates of
the parameters for the latent variable model, {w̄,U,Λ} with di-
mension P = {30, 40, 50} for each transformation supervector
using the EM algorithm.

3.2. Evaluation of Batch Adaptation

First, we performed supervised batch speaker adaptation experi-
ments by using four different methods, ; 1) conventional MLLR
adaptation method [1], 2) MAPLR method [2], 3) PPCA-based
adaptation method (or eigenspace-based MAPLR) [4], 4) FA-based
adaptation method. Tables I and II show the performance of the
MLLR, MAPLR, PPCA and FA-based adaptation techniques for
the single Gaussian and two mixture Gaussian HMM’s, respec-
tively. Word recognition rates are displayed against the number of
adaptation sentences. Here “PPCA (P=40)” and “FA (P=30)” de-
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note the PPCA and FA methods with subspace dimension 40 and
30, respectively.

The MLLR approach performed poorly for a small adaptation
data size, but it improved the performance as more data became
available. The MAPLR performed better than MLLR because in-
corporating a prior density is helpful in the regression matrix esti-
mation when the adaptation data is very little. On the other hand,
the PPCA and FA-based approaches possess both the rapid and
consistent adaptation properties, and as a result they can ef£ciently
perform speaker adaptation not only for very little adaptation data
but also when a large amount of data is available.

Table I
Word recognition rate (%) for batch adaptation experiments in a

single Gaussian system.

no. of sent. 1 2 4 6 8 10
MLLR 49.22 79.61 87.87 90.32 90.38 90.36

MAPLR 87.39 89.16 90.16 90.51 90.34 90.63
PPCA (P=40) 89.30 89.91 90.51 90.95 90.70 91.01

FA (P=30) 89.18 90.07 90.45 90.92 90.72 90.84

Table II
Word recognition rate (%) for batch adaptation experiments in

two mixture Gaussian system.

no. of sent. 1 2 4 6 8 10
MLLR 68.25 85.82 90.41 91.22 91.65 91.73

MAPLR 89.55 90.72 91.30 91.51 91.90 92.03
PPCA (P=50) 90.84 91.24 91.65 91.92 91.92 92.11

FA (P=20) 90.68 91.09 91.57 91.80 92.03 92.07

3.3. Evaluation of Online Adaptation

We implemented the QBLR scheme to compare the performance
of the proposed online adaptation schemes. Fig. 1 shows the
performance of the QBLR, PPCA and FA-based online adapta-
tion techniques with various amount of adaptation data. For online
adaptation, the parameters were updated for each adaptation sen-
tence and the forgetting mechanism with ρ = 1 was applied. From
Fig. 1, we can £nd that the proposed online approaches perform
better than the QBLR and achieves a similar rapid adaptation per-
formance as that of the batch PPCA and FA approaches for a small
amount of adaptation data. Also it maintains a good asymptotic
convergence property as the data size grows. The experimental re-
sults show that the online adaptation approaches which are based
on the latent variable models perform well especially for a small
adaptation data size.

4. CONCLUSION

This paper has presented a novel online adaptation algorithm based
on transformation space model evolution. We have applied the la-
tent variable model to £nd the transformation space model associ-
ated with the MLLR matrix parameters as well as to obtain their
prior pdfs. We have extended the recursive QB learning approach
to online speaker adaptation using the transformation space model.
From the results of a set of online speaker adaptation experiments,
we can conclude that the proposed approach is effective in speaker
adaptation especially for sparse data.
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Fig. 1. Word recognition rate for online adaptation experiments in
a single Gaussian (m1) and two mixture Gaussian system (m2).
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