
GRAPH-BASED REPRESENTATION AND
TECHNIQUES FOR NLU APPLICATION DEVELOPMENT

Juan M. Huerta and David Lubensky

IBM T. J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY, 10598
{huerta,davidlu}@us.ibm.com

ABSTRACT

We describe a method to represent, manipulate, structure
and aid in the design and development of NLU oriented
parsers. Our method is based on the representation of the
semantic parser domain into a single directed graph showing
the parser's labels and their immediate inter-relationships as
they exist in the annotated development corpora.
Furthermore, we present methods developed around this
representation illustrating how, a developer can visualize,
manipulate, design and construct new applications simply by
acting on the domain graph and sub-graphs. We also
describe how the graph representation method can be
utilized in the reduction of the complexity of the parser by
identification and removal of nodes, edges and structures of
the domain graph whose impact on attribute accuracy is
small. We present the following examples of applications of
our technique: extension of an existing air travel information
domain to include car rental reservation by manipulating the
corresponding graphs, structuring such graphs’ vertices into
3-tiers, an example of a method for complex domain
decomposition into simpler sub-graphs, and experiments on
the reduction of a parser’s complexity. Our technique can
serve as a foundation of GUI toolkits for NLU development
built around these concepts.

1. INTRODUCTION

Natural Language Understanding (NLU) technology is a
fundamental component of dialog-based automatic speech
understanding systems. Such systems are typically
implemented on telephony platforms and are used to
automate the communication process between humans and
machines through natural speech. An important component
of such systems is the semantic parser whose purpose is to
recognize structures in the sentence, with the goal to
facilitate meaning extraction.
Many of the currently used semantic parsers employ
statistical methods to perform their task and thus, need to be
trained. The training of a parser normally requires the
collection and annotation, or labeling, of large pools of

training data. Sets of annotated or bracketed data are usually
referred to as treebanks, as the parsing annotation of each
individual sentence is represented by a tree.
The set of nodes used in an NLU-system’s training treebank
typically includes semantic and sometimes syntactic labels
of the domain. The set of leaves appearing in the treebank
constitute the collection of words.
Currently, there exist methods and tools to manipulate and
annotate these treebanks while designing and constructing
the parser for an NLU application. These tools present to the
developer each sentence and its corresponding parse tree
individually, and the annotator sequentially navigates
through the treebank one sentence at a time and modifies
those trees or constructs new ones (e.g., [2]).
In this work we present a method in which the complete
parser domain contained in the treebank can be
parsimoniously described in a directed acyclic graph. This
representation can be utilized then to manipulate domains,
and it allows the developer to be presented with modules
that can be processed simply by manipulating the domain
graph. Additionally, we will demonstrate that this
representation can be utilized to achieve parser
simplification. We also propose the use of structured graphs
to design new NLU applications: the first tier of nodes
representing tasks, the second tier representing topics, and
the third tier representing named-entities. Such modular
graphs can easily be manipulated to construct novel domains
and combine existing ones.

2. GRAPH REPRESENTATION OF NLU DOMAINS

2.1. Directed acyclic graph representation

Let T denote an annotated treebank which is the set of

annotated sentences },..,,{ 21 mSSST = and let

},..,{ 1 nLLL = be the set of labels (or tags) occurring inT.

A directed graph (digraph)G(V,E)describes or spansT if,
• There is a one to one mapping between the

elements of the vertex setV and the elements ofL.

I - 2880-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

• An edgeeij in E will connect verticesvi andvj if
there exists at least one adjoined co-occurrenceof
vi andvj in T.

• A unique terminal edgeEND is connected to all the
edges whose label realizations inT encompass no
other labels.

We can further constrain the domain to avoid loops in the
graph thus making the domain representable by a Directed
Acyclic Graph [6]. This implies that no node can have itself
as an ancestor.

2.2. Associating weights to edges

If G(V,E)describes or spansT , an edgeeij in E can be
associated to a weightwi j using,

• Counts: The number of timescij in T of adjoint
co-occurrences ofvi andvj.

• Relative co-occurrences: The above counts
normalized by the total number instances of
children leavingvi in T.

2.3. Example: Air travel information domain

As an example we refer to figure 1.a, depicting a graph of a
simple air travel domain in which a user can utter queries
related to flights based on their dates, times and cities of
departure and arrival. Figure 1.c, shows the small 5-sentence
annotated sample corpusT that generates graph 1.a. An edge
exists between the nodearr (meaning arrival) anddatebut
not betweenair-inf and datebecause in the corpus, the
labeldateoccurs immediately belowarr at least once, while
datedoesn't occur immediately underair-info, and so on.
In this way, we can represent in a single graph the labels
occurring in the corpus depicted in 1.c and their immediate
interrelationships. The root label inT (represented in this
case by!S!) is the starting vertex of the graph. The terminal
labels (those whose children include no other labels, only
words) will correspond to vertices in the graph having a
single outgoing edge that will go to the ending node
(represented byEND). In figure 1.b. the edges in the graph
are labeled with relative label co-occurrence information.
For example, the edge connecting the nodesarr andtime is
labeled with the weight 0.28, which corresponds to the ratio
of the counts of the co-occurrences of those labels (2 counts)
over the total number of children of nodearr (7 counts), and
so forth.

3. GRAPH-ELEMENT MUTUAL INFORMATION
CONDITIONED TO GRAPH STRUCTURES

3.2 Graph-element mutual information

Consider now the graphG(V,E)representing an NLU
domain and spanning the treebankT . An annotated

utteranceSi and its associated parse tree are said to be a
realizationof G since the tree (minus the leaves) and the
graph corresponding toSi (or any other subset ofT) are
subgraphs of G.
Let us define a binary valued Random VariableX which
takes the value 1 if a realization (i.e., a single sentence, for
this specific case) ofG contains a vertexvi ; and 0 if it
doesn’t. Similarly, we can define another Random Variable
Y which will take values 0 or 1 depending on the existence
of another vertexvj. Based onG we can compute the Mutual
Information betweenX andY, or MI(vi,vj) as follows:

ÿ=−=
ji vv ji

ji
ji vpvp

vvp
vvpYXHXHYXMI

,)()(

),(
log),()|()(),(

The mutual information between these two vertices will be a
measure of their independence [3,4].
The random variablesX andY cannot only be vertices (as
we have described), but they also can be edges, or, in
general, any subtree or structuregk occurring inG. We can,
for example, measure the mutual information between an
edgeeij and a vertexvk andMI(eij,vk) reflecting the level of
probabilistic dependence between both structures. If we
annotate each sentence inT with their corresponding
semantic attributes, we can measure the mutual information
between any graph structuregi and the presence of a given
attributeaj, i.e., MI(gi,aj).

Figure 1. (a) Graph representation of the air information domain
corpus (b) weighted graph (c) corresponding generating corpus.

!S! END

city

air-inf arr

dep time

date

[!S! I want to know of[air-inf any flights [dep departing[city New York city] [date
todaydate] dep]]air-inf] !S!]

[!S! Information on [air-inf flights [dep from [city London city] dep] [arr to [city
Paris city] arr] air-inf]]!S!]

[!S! Which [air-inf flights [arr get to [city Seattlecity] [time before noontime] [date
this Saturdaydate] arr] air-inf]]!S!]

[!S! Are there[air-inf any flights [arr to [city Pittsburghcity] arr] [dep from [city
Boston city] departing [date todaydate][timeafter ten time] dep] air-inf]]!S!]

[!S! [air-inf flights [dep from [city Chicago city] dep] [arr to [city Houston city] arr]
[dep leaving [date this Sundaydate][timemorningtime] dep] [arr arriving [time before
noon time] arr] air-inf]]!S!]

!S! END

city

air-inf arr

dep time

date
1.0

1.0

1.0

1.0
0.5

0.5

0.57

0.14

0.28

0.12

0.37

0.5

a.

b.

c.

I - 289

➡ ➡

3.3. Graph-structure conditional mutual information

Similarly, we can also compute the mutual information
between graph-structuresX andY, conditioned on the value
of Z, where Z is also any graph-associated structure (i.e.,
edge, vertex, sub-graph, or attribute). The conditional
mutual information betweengi and gj conditioned ongk is
defined as:

ÿ=
kji ggg kjki

kji
kji ggpggp

gggp
gggpZYXMI

,,)|()|(

)|,(
log),,()|,(

Similarly to the case of the vertex based Mutual Information
described above, we consider graph-associated structures to
have binary values: with value 1 if the realizationTj contains
gk, and 0 if it doesn’t. The use of Mutual Information to
discover non-random associations in data patterns has been
applied in other domains (e.g., [3,5]). In the next section we
describe the application of Mutual Information to the
simplification of domain graphs.

4. PRACTICAL APPLICATIONS

4.1. Synthesis of novel domains

Let G1(V1,E1) represent a domainT1, andG2(V2,E2) represent
a different domainT2; we describe the following operations
and relationships betweenT1 andT2:

• Domain synthesis: A new domain G3 can be
defined as the union of G1 and G2, or

213 GGG ∪= ; where the edge and vertex sets of

the new domain are also the union of the simple
domain’s corresponding conforming sets. An
algebra of graphs can be similarly defined for the
intersection and the complement of domain graphs.
The union operation allows the developer to define
new domains using simple arithmetic expressions.

• Isomorphic domains: G1 and G2 are said to be
isomorphic if there exists a one-to-one
correspondence between their vertex sets as well as
between their edge sets [6]. Isomorphisms across
NLU domains can be exploited for domain or
parser bootstrapping, at the parser level or at the
treebank level by means of a simple remapping of
labels and/or words.

• Canonical forms: Rules and guidelines can be
established for the design of graphs in a way that
allows modularity and reusability. Domain graphs’
vertices can be then structured in well defined
layers (e.g., a 3-tier topology: tasks layer, topics
layer, and named entities layer; described in the
next paragraph) that will facilitate the existence of
isomorphic graphs.

Figure 2. (a) Graph of a car rental domain, represented in 3 tiers.
(b) Graph of a customer service support domain (c) Graph of the
union of the air-travel information, car rental and customer service
support domains. The final graph maintains the 3-tier topology.

Figure 2 illustrates the above concepts; figure 2.a shows the
graph of a car rental domain in a 3-tier topology. It is easy to
observe its topological similitude with the air travel
information domain, particularly on the nodes pertaining
date, time and location. Figure 2.b shows a general customer
care support domain. Figure 2.c shows the union of these
domains with the air travels system shown in figure 1. One
can observe how, by designing graphs in a well structured

!S! END

location

Car-
rental

pick
up

return time

date

a.

b.

c.

car-
model

!S! ENDUser PIN

Freq-
flier Airline

name

Num

!S! END

location

Car-
rental

pick
up

return time

date

car-
model

city

air-inf
arr

dep

User PIN

Freq-
flier Airline

name

Num

tier1 tier 2 tier 3

I - 290

➡ ➡

way, the resulting domain preserves a reasonable topology.
Thus, for this graph, the first tier of nodes after the root
correspond to task related nodes (i.e., car-rental, air-inf,
customer care) the second tier correspond to semantic topics
(i.e., pickup, return, arrival, departure, car model) which
usually are associated with the forms in a form based NLU
system. The third tier shows general named entities which
are usually task independent (city, time, date, rental location,
airline name, number). Designing a domain using such
canonical topologies (task-topic-entity) permits easy domain
modularization and integration.

4.2. Analysis of existing domains

Mutual Information can be computed between structures in
the set of realizationsT of the graph and the semantic
attributes associated with each tree realization (i.e., an
attribute ai is associated with sentenceSj if it contains
information pertinent to sloti). We then can rank the
elements of the domain based on the Mutual Information
they share with a given attribute, then build a corresponding
subdomain graph by first selecting the subset of high ranking
vertices and then selecting the edges inG that link them.
A more straightforward approach selects the subset ofT

whose sentences invoke the given attribute and then simply
construct the subdomain’s graph based on the labels and
trees of such subset. In either case, the resulting subgraph
represents a topic or subdomain of the overall domain,
which is a modular representation of the subtopic.

4.3. Parser reduction techniques

We conducted domain reduction experiments based on the
graph of the IBM 401k NLU system [1]. This application
contains a parser employing 123 word tags and 177 labels.
The graph of such domain has 569 arcs, and the average
tree depth is 5 nodes deep. We pruned first the vertices
below the threshold value, and then removed the edges that
became disconnected from the root edge. Table 1 shows the
effect of different thresholds on parser size and accuracy
(total test set is approx 4100 sentences). We also reduced
the number of tags (associated with words) in the domain by
removing tags whose average MI with the set of attributes

was small. The combined reductions substantially
diminished the complexity of the parser while preserving the
parser accuracy. Excessive tag and label removal, however,
decreases the presence of features able to trigger attributes:
the last column shows how the Attribute-Value accuracy
suffers (in the training set) if the label and tag set of the
parser, and thus the annotation style, is substantially
simplified. The number of arcs is reduced to less than half of
its original size.

5. CONCLUSIONS

We have introduced a method to represent an NLU domain
in a graph. Such representation facilitates the design,
composition and analysis of novel and existing NLU parsers
and applications. The application of Mutual Information
measurements to structures in the graph permitted further
analysis and simplification of the graphs; we demonstrated
this procedure by reducing the number of labels and arcs in
a graph substantially without major impact in the parser’s
accuracy. We believe that such graph representations,
combined with the appropriate GUI tools and set of
established canonical parser forms (e.g., 3-tier graphs) and
guidelines for the design and structuring of such modular
domain graphs would simplify substantially the design and
development process of complex NLU applications.

6. REFERENCES

[1] Balchandran, R.et al. “A Statistical Mixed-initiative Dialog System
for 401k Management", Demonstration presentation in Human Language
Technology Conference 2002, San Diego.
[2] Brew, C. “An extensible visualization tool to aid Treebank

exploration” in H. Uszkoreit, editor, Linguistically Interpreted Corpora,
Bergen. EACL Post-conference workshop.
[3] Butte, A. J. and Kohane, I.S.“Mutual Information Relevance
Networks: Functional Genomic Clustering using Pairwise Entropy
Measurements”, Pac. Symp. Biocomput, 2000.
[4] Cover, T. M. and Thomas, J. A.Elements of information theory, John

Wiley and Sons Inc.
[5] Meng, H. “Semiautomatic Acquisition of Semantic Structures for
Understanding Domain-Specific Natural Language Queries”, in IEEE
Transactions on Knowledge and Data Engineering Vol. 14 No. 1 Jan-Feb
2002.
[6] Swamy, N.M.S. and Thulasiramant, K.“Graphs, Networks and
Algorithms”, John Wiley and Sons Inc.

Number
of tags

Number
of labels

Number
of arcs

Avg. tree
depth

Parser acc.
(sent. correct)

Attribute-Value
Accuracy (train set)

Baseline 123 177 569 5.0 3836 100% (ref)

Prune @ 0.045 123 98 232 2.7 3828 97%

Prune @ 0.060 123 88 211 - 3797 97%

Prune @ 0.075 123 70 175 - 3319 95%

Prune @ 0.045 + M. I. 72 98 232 2.7 3802 97%

Table 1. Domain simplification experiments based on graph pruning and vertex-based Mutual Information.

I - 291

➡ ➠

