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ABSTRACT training data. Sets of annotated or bracketed data are usually
referred to as treebanks, as the parsing annotation of each
We describe a method to represent, manipulate, structodévidual sentence is represented by a tree.

and aid in the design and development of NLU orient@tie set of nodes used in an NLU-system’s training treebank
parsers. Our method is based on the representation oftgpeally includes semantic and sometimes syntactic labels
semantic parser domain into a single directed graph showifghe domain. The set of leaves appearing in the treebank
the parser's labels and their immediate inter-relationshipg@sstitute the collection of words.
they exist in the annotated development corpofzurrently, there exist methods and tools to manipulate and
Furthermore, we present methods developed around dmisotate these treebanks while designing and constructing
representation illustrating how, a developer can visualitee parser for an NLU application. These tools present to the
manipulate, design and construct new applications simplydeyeloper each sentence and its corresponding parse tree
acting on the domain graph and sub-graphs. We alstividually, and the annotator sequentially navigates
describe how the graph representation method canthyeugh the treebank one sentence at a time and modifies
utilized in the reduction of the complexity of the parser hilyose trees or constructs new oneg( [2]).
identification and removal of nodes, edges and structuresnothis work we present a method in which the complete
the domain graph whose impact on attribute accuracyp@ser domain contained in the treebank can be
small. We present the following examples of applicationspdrsimoniously described in a directed acyclic graph. This
our technique: extension of an existing air travel informatiogpresentation can be utilized then to manipulate domains,
domain to include car rental reservation by manipulating tred it allows the developer to be presented with modules
corresponding graphs, structuring such graphs’ vertices ihtat can be processed simply by manipulating the domain
3-tiers, an example of a method for complex domaijmaph.  Additionally, we will demonstrate that this
decomposition into simpler sub-graphs, and experimentsr@presentation can be utlized to achieve parser
the reduction of a parser's complexity. Our technique csimplification. We also propose the use of structured graphs
serve as a foundation of GUI toolkits for NLU developmetd design new NLU applications: the first tier of nodes

built around these concepts. representing tasks, the second tier representing topics, and
the third tier representing named-entities. Such modular
1. INTRODUCTION graphs can easily be manipulated to construct novel domains

and combine existing ones.
Natural Language Understanding (NLU) technology is a
fundamental component of dialog-based automatic spee2hGRAPH REPRESENTATION OF NLU DOMAINS
understanding systems. Such systems are typically
implemented on telephony platforms and are used 2td. Directed acyclic graph representation
automate the communication process between humans and
machines through natural speech. An important componesttT denote an annotated treebank which is the set of

of such systems is the semantic parser whose purpose jgHbtated sentencds ={S,S,....S,} and let
recognize structures in the sentence, with the goal to

facilitate meaning extraction. L ={L,,..,L,} be the set of labels (or tags) occurringlin
Many of the currently used semantic parsers emplayirected graph (digraphp(V,E)describes or spark if,
statistical methods to perform their task and thus, need to be«  There is a one to one mapping between the
trained. The training of a parser normally requires the elements of the vertex s¥tand the elements af.
collection and annotation, or labeling, of large pools of
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* Anedgeg; in E will connect vertices; andy; if utterance§ and its associated parse tree are said to be a
there exists at least one adjoined co-occurrente realizationof G since the tree (minus the leaves) and the
viandyjin T. graph corresponding 1§ (or any other subset af) are

«  Aunique terminal edgEND s connected to all the subgraphs of G.
edges whose label realizationsTirencompass no Let us define a binary valued Random Variallevhich
other labels. takes the value 1 if a realizationd., a single sentence, for

We can further constrain the domain to avoid loops in the this specific case) o contains a vertey; ; and O if it
graph thus making the domain representable by a Directedoesn’t. Similarly, we can define another Random Variable
Acyclic Graph [6]. This implies that no node can have itself which will take values 0 or 1 depending on the existence
as an ancestor. of another vertex;. Based orG we can compute the Mutual
Information betweeiX andY, or Mi(v;,v;) as follows:
MI(X.Y) = HOO) = H (X Y) = 3 pv,.v, Ylog— oY)
: . ST ) p(v;)
It G(V,E)describes or sparis, an edges; in E can be The mutual information between these two vertices will be a
associated to a weight; using, _ . measure of their independence [3,4].

*  Counts The number of times; in T of adjoint  The random variableX andY cannot only be vertices (as

2.2. Associating weights to edges

co-occurrences of andy;. we have described), but they also can be edges, or, in

* Relative co-occurrencesThe above counts general, any subtree or structigigoccurring inG. We can,
normalized by the total number instances of for example, measure the mutual information between an
children leavingy in T. edges; and a vertex, andMI(e;, vi) reflecting the level of

probabilistic dependence between both structures. If we
2.3. Example: Air travel information domain annotate each sentenceTiwith their corresponding

semantic attributes, we can measure the mutual information
As an example we refer to figure 1.a, depicting a graph of @etween any graph structugeand the presence of a given
simple air travel domain in which a user can utter queries attributea;, i.e, MI(gi,a).
related to flights based on their dates, times and cities of
departure and arrival. Figure 1.c, shows the small 5-sentencey
annotated sample corpilighat generates graph 1.a. An edge / \
exists between the noder (meaning arrival) andatebut @ e
not betweerair-inf and datebecause in the corpus, the 7
labeldateoccurs immediately beloarr at least once, while @/
datedoesn't occur immediately undair-info, and so on.
In this way, we can represent in a single graph the labels
occurring in the corpus depicted in 1.c and their immediate b.
interrelationships. The root label ih(represented in this
case byS)) is the starting vertex of the graph. The terminal
labels (those whose children include no other labels, only
words) will correspond to vertices in the graph having a
single outgoing edge that will go to the ending node
(represented bEEND). In figure 1.b. the edges in the graph
are labeled with relative label co-occurrence information. C.
For example' the edge connecting the naaresandtimeis ['S! I want to know offair-inf any flights [dep departingicity New York city] [date
labeled with the weight 0.28, which corresponds to the rat todaydate] dep] Jair-inf] 'S1]
of the counts of the co-occurrences of those labels (2 cou [!S! Information on[air-inf flights [depfrom [city London city] dep] [arr to [city
over the total number of children of noder (7 counts), and Paris ciyl ar] air-inf] ]'SI]

so forth. [1S! Which[air-inf flights [arr get to [city Seattlecity ] [time before noontime ] [date
this Saturdaylate] arr] air-inf] ]!S!]
3. GRAPH-ELEMENT MUTUAL INFORMATION [!S! Are therefair-inf any flights [arr to [city Pittsburghcity ] arr] [dep from [city

Boston city] departing [date todaydate ][timeafter tentime] dep] air-inf] ]!S!]
CONDITIONED TO GRAPH STRUCTURES
[!S! [air-inf flights [depfrom [city Chicago city] dep] [arr to [city Houston city] arr]

[dep leaving [date this Sundaydate ][timemorningtime] dep] [arr arriving [time before

3.2 Graph-element mutual information noon time] arr] air-inf] 1'S!]
Consider now the grapB(V,E)representing an NLU Figure 1. (a) Graph representation of the air information domain
domain and spanning the treebahkAn annotated corpus (b) weighted graph (c) corresponding generating corpus.
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3.3. Graph-structure conditional mutual information

Similarly, we can also compute the mutual information a.
between graph-structuresand, conditioned on the value

tierl tier 2

of Z, where Z is also any graph-associated structie, ( %

edge, vertex, sub-graph, or attribute). The conditional
mutual information betweeg; and g; conditioned ong is
defined as:

p(g:.9;19,)
MI(X,Y|Z)= p(g,9;.9.)log :
Z "I (g, 19,) pg; 19))

Similarly to the case of the vertex based Mutual Information
described above, we consider graph-associated structures to
have binary values: with value 1 if the realizatircontains

O« and O if it doesn’t. The use of Mutual Information to
discover non-random associations in data patterns has beerz:
applied in other domaing(g, [3,5]). In the next section we )
describe the application of Mutual Information to the
simplification of domain graphs.

4. PRACTICAL APPLICATIONS
4.1. Synthesis of novel domains

Let G1(V4,E;) represent a domaify, andG,(V,,E,) represent
a different domairT,; we describe the following operations
and relationships betwedn andT,:
e Domain synthesis A new domain Gz can be
defined as the wunion ofG; and G, or

G, =G, 0 G,; where the edge and vertex sets of

the new domain are also the union of the simple
domain’s corresponding conforming sets. An
algebra of graphs can be similarly defined for the
intersection and the complement of domain graphs.
The union operation allows the developer to define
new domains using simple arithmetic expressions.

e Isomorphic domains G; and G, are said to be
isomorphic if there exists a one-to-one
correspondence between their vertex sets as well as
between their edge sets [6]. Isomorphisms across
NLU domains can be exploited for domain or

(=)

parser bootstrapping, at the parser level or at frigure 2. (a) Graph of a car rental domain, represented in 3 tiers.

treebank level by means of a simple remapping () Graph of a customer service support domain (c) Graph of the
labels and/or words union of the air-travel information, car rental and customer service

Canonical forms Rules and guidelines can bgupport domains. The final graph maintains the 3-tier topology.

established for the design of graphs in a way that ) .

allows modularity and reusability. Domain graph&'g“re 2 illustrates the above concepts; figure 2.a shows the
vertices can be then structured in well defindtjaph of a car rental domain in a 3-tier topology. It is easy to
layers €.g, a 3-tier topology: tasks layer topicgbserve its topological similitude with the air travel
layer, and named entities layer; described in tlpformation domain, particularly on the nodes pertaining

next paragraph) that will facilitate the existence ggte, time and location. Figure 2.b shows a general customer
isomorphic graphs. care support domain. Figure 2.c shows the union of these

domains with the air travels system shown in figure 1. One
can observe how, by designing graphs in a well structured
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way, the resulting domain preserves a reasonable topoleggs small. The combined reductions substantially
Thus, for this graph, the first tier of nodes after the rodiminished the complexity of the parser while preserving the
correspond to task related noddse( car-rental, air-inf, parser accuracy. Excessive tag and label removal, however,
customer care) the second tier correspond to semantic topgseases the presence of features able to trigger attributes:
(i.e, pickup, return, arrival, departure, car model) whi¢he last column shows how the Attribute-Value accuracy
usually are associated with the forms in a form based NEUffers (in the training set) if the label and tag set of the
system. The third tier shows general named entities whigrser, and thus the annotation style, is substantially
are usually task independent (city, time, date, rental locatisimplified. The number of arcs is reduced to less than half of
airline name, number). Designing a domain using suthoriginal size.

canonical topologies (task-topic-entity) permits easy domain

modularization and integration. 5. CONCLUSIONS

4.2. Analysis of existing domains We have introduced a method to represent an NLU domain
in a graph. Such representation facilitates the design,
Mutual Information can be computed between structurecomposition and analysis of novel and existing NLU parsers
the set of realizationdI of the graph and the semantiand applications. The application of Mutual Information
attributes associated with each tree realizatione., (an measurements to structures in the graph permitted further
attribute a; is associated with sentenc® if it contains analysis and simplification of the graphs; we demonstrated
information pertinent to slot). We then can rank thethis procedure by reducing the number of labels and arcs in
elements of the domain based on the Mutual Informati@rgraph substantially without major impact in the parser's
they share with a given attribute, then build a correspondagguracy. We believe that such graph representations,
subdomain graph by first selecting the subset of high rankomgmbined with the appropriate GUI tools and set of
vertices and then selecting the edge&ithat link them. established canonical parser fornesq, 3-tier graphs) and
A more straightforward approach selects the subseT ofuidelines for the design and structuring of such modular
whose sentences invoke the given attribute and then singidgnain graphs would simplify substantially the design and
construct the subdomain’s graph based on the labels dadelopment process of complex NLU applications.
trees of such subset. In either case, the resulting subgraph
represents a topic or subdomain of the overall domain, 6. REFERENCES
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4.3. Parser reduction techniques

Table 1. Domain simplification experiments based on graph pruning and vertex-based Mutual Information.

Number Number Number Avg. tree | Parser acc.| Attribute-Value

of tags of labels of arcs depth (sent. correct) | Accuracy (train set)
Baseline 123 177 569 5.0 3836 100% (ref)
Prune @ 0.045 123 98 232 2.7 3828 97%
Prune @ 0.060 123 88 211 - 3797 97%
Prune @ 0.075 123 70 175 - 3319 95%
Prune @ 0.045 + M. I. 72 98 232 2.7 3802 97%
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