
 CONCEPT ACQUISITION IN EXAMPLE-BASED
GRAMMAR AUTHORING

Ye-Yi Wang and Alex Acero
Microsoft Research

Redmond, Washington 98052, USA

ABSTRACT
To facilitate the development of speech enabled applications and
services, we have been working on an example-based semantic
grammar authoring tool. Previous studies have shown that the tool
has not only significantly reduced the grammar development
effort but also yielded grammars of better qualities. However, the
tool requires extra human involvement when ambiguities exist in
the process of grammar rule induction. In this paper we present an
algorithm that is able to automatically resolve the segmentation
ambiguities, hence acquire the language expressions for the
concepts involved. Preliminary experiment results show that the
Expectation-Maximization algorithm we investigated has not only
eliminated the human involvement in ambiguity resolution but
also improved the overall spoken language understanding
accuracy.

1. INTRODUCTION
Semantic-based robust understanding is a successful technology
that has been widely used in research conversational systems [1-
4]. However, it is not very practical for regular developers to
implement a conversational system with the technology, to a
large extent due to the fact that such implementations have
relied on manual development of domain-specific grammars, a
task that is time-consuming, error-prone and requires a
significant amount of expertise.

To facilitate the development of speech enabled applications and
services, we introduced SGStudio, an example-based grammar
authoring tool that could greatly ease grammar development by
taking advantage of many different sources of prior information
[5, 6]. It allows a regular developer with little linguistic
knowledge to build a semantic grammar for spoken language
understanding. Experiment results have shown that good quality
semantic grammars can be derived semi-automatically with a
small amount of data --- the technique not only significantly
reduces the effort in grammar development, but also improves
the understanding accuracy across different domains.

While the tool has some basic learning capabilities, it often
resorts to users when ambiguities need to be resolved to induct
grammar rules. This makes it very intrusive and greatly slows
down the grammar development. This paper introduces an
automatic learning algorithm that eliminates the intrusive
questions raised by SGStudio.

1.1 Example Based Grammar Authoring

To build a grammar for a specific domain, SGStudio requires a
semantic schema that defines the semantics of the domain.
Semantic class is the basic element in a semantic schema. For
example, in the Personal Information Management domain,

semantic class “NewAppt” defines the semantics for meeting
scheduling:

 <command name=”NewAppt”>
 <slot type=”Person” name=”Attendee”/>
 <slot type=”Time” name=”StartTime”/>
 </command>

This simplified example of semantic class states that to schedule
a new meeting, a user can (optionally) specify the attendee and
the start time of the meeting (slots). The slots can be specified
with different ways to refer to a Person or Time (types of the
slots).

The semantics of a domain is language independent. A user can
successfully schedule a meeting by specifying the slots without
using speech or natural language. A semantic grammar relates
natural languages to the domain semantics. SGStudio semi-
automatically learns to produce such a grammar, such that a user
can fulfill the task with natural language or speech. It does so by
automatically incorporating the domain semantics defined in the
schema into an initial template grammar. Following is an
example of the template grammar for “NewAppt”, where
symbols inside braces are optional:

<C_NewAppt> <NewApptCmd> {<NewApptProperties>} (1)
<NewApptProperties> <NewApptProperty>
 {<NewApptProperties> } (2)
<NewApptProperty> <NewApptAttendeeProperty> |
 <NewApptStartTimeProperty> (3)
<NewApptAttendeeProperty>
 {<PreAttendee>} <T_Person> {<PostAttendee>} (4)
<NewApptStartTimeProperty>
 {<PreStartTime>} <T_Time> {<PostStartTime>} (5)

The template grammar models the language for appointment
scheduling with a command part and a properties part (1). The
properties part incorporates the slots in the schema (2, 3). It
brackets each slot with a preamble and a post-amble that serve
as hints for the slot. Initially the commands, preambles and post-
ambles (in general, concepts) are not defined. The language
expressions for these concepts will be learned from the
semantically annotated examples. (6) is an example annotation
for the sentence “New meeting with Peter at five”:
 <NewAppt> (6)
 <Attendee type=”Person”>Peter</Attendee>
 <StartTime type=”Time”>five</StartTime>
 </NewAppt>
In addition to the template grammar and training samples, the
tool also takes advantage of domain-independent library
grammar (for examples, rules for date and time expressions that
can be used for “<T_Time>”) and domain-dependent data like
contact names that can be used for “<T_Person>.”

I - 2840-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

1.2 Segmentation Ambiguities

A one-to-one mapping exists between the slots in a schema and
the non-terminals in the template grammar. Therefore, given a
semantic annotation, the annotated slots become the anchor
points in the semantic grammar parse tree, and the rest words in
the input can be aligned to the pre-terminals in the parse tree
according to their positions relative to the slots. For example,
given annotation (6), the word “at” has to align to the pre-
terminals <PostAttendee> or <PreStartTime>, the only two pre-
terminals that can appear between the two slots (<Attendee>
“Peter” and <StartTime> “five”). Since “at” is a preposition and
has to go with the phrase after it, the tool can induct the rule
<PreStartTime> at. Similarly, the words “New meeting with”
have to align to the pre-terminals in front of “Peter (T_Person)”,
i.e., <NewApptCmd> and <PreAttendee>. However, it is not
straightforward to decide which words should align to each pre-
terminal. Basically every position in the word sequence is a
potential candidate for the segmentation that separates it into
<NewApptCmd> and <PreAttendee> parts. The previous version
of the tool reported in [5, 6] would pop up a dialog window
(Figure 1) to solicit from the user for proper segmentation.

Figure 1. Dialog box of SGStudio that asks the user to select
the correct segmentation for “NewApptCmd” and “PreAttendee”.

This disambiguation solution has several disadvantages:

1. The interaction with users is intrusive and time-demanding.

2. It violates the design principle that users should only be
asked to annotate sentences semantically. While it is easy
to do semantic annotation, it is not as easy to segment the
expressions effectively without knowledge about the inner
working mechanism of the tool.

3. When there are more pre-terminals (this is possible with
hierarchical slot structures) and terminal words involved in
segmentation ambiguity, the question list will be huge, and
it is very hard (if not impossible) to effectively display all
the candidate segmentations and let the user pick the
correct one. In the tool reported in [5, 6], when the question

is too complicated to display, the tool simply skipped the
question and did not learning from the example. This is a
waste of the precious annotated data.

4. Since the template grammar is not linguistically motivated,
user’s segmentation according to their linguistic intuition
may not work in the best way with the template grammar
in a SLU system.

In the following sections, we will introduce an automatic
segmentation algorithm and present some experiment results.

2. EM ALGORITHM FOR CONCEPT
ACQUISITION

Segmentation ambiguity resolution can be formalized as the
problem of finding an m block partition 1 2, , ..., mπ α α α= for

the word sequence 1 2, , ..., nw w w w= , such that each block

aligns to a pre-terminal in the sequence 1 2, , ..., mNT NT NT= .
A block may contain 0 or more words from w.

If we model the joint probability of , and wπ with

1
(, ,) ()i i

m

i
P w P NTπ α

=
= →∏ (7)

Then given and w , the most likely segmentation can be
obtained as:

1= ,..., 1
ˆ argmax (, ,) argmax ()i i

m

m

i
P w P NT

π π α α
π π α

=
= →= ∏ (8)

Such a partition can be found with Viterbi search. Thus the only
problem left is to estimate the model parameter ()P NT α→
for every pre-terminal (concept) NT and word sequence .α This
could be straightforward with maximum likelihood (ML)
estimation if the training data is a list of pre-terminals paired
with a word sequence for each pre-terminal. However, the
training examples we obtained from the user via the authoring
tool are pairs of pre-terminal sequences and terminal sequences.
The partition is a hidden variable and unknown to the tool.

Expectation-Maximization (EM) algorithm [7] is often used for
ML estimation of model parameters when hidden variables exist
and only partial observations are available. It initially sets the
parameters Pφ for the model, and then iteratively modifies the

parameters to 'Pφ such that the likelihood of the observation D

increases.
To find such 'Pφ , we define the auxiliary function Q in (9):

'
'

,

(, ,)
(|) (,) (| ,) log

(, ,)w

P w
Q P P c w P w

P w

φ
φ φ φ

π φ

π
π

π
=∑ ∑ (9)

It is a lower bound of '(|) (|),L D P L D Pφ φ− the log-likelihood

difference of the training data between the two model
parameterizations [7]. The EM algorithm resets the parameters

I - 285

➡ ➡

'Pφ greedily by maximizing Q, subject to the constraints that the

probabilities of all possible rewriting rules for a pre-terminal
must sum to 1. Therefore, for each rule NT α→ , its new
probability can be obtained by solving (10):

''

'

((|) (() 1))

0
()

Q P P P NT

P NT
α

φφ φ

φ

λ α

α

∂ + → −
=

∂ →

∑
 (10)

Since ' '
,

(; , ,)
,() (),

NT

c NT w
wP P NTφ φ

α π

α
απ →

= →∏ ,

'

'

, '

(|)

()

(| ,) (; , ,)
 (,)

()
.

w

Q P P

P NT

P w c NT w
c w

P NT

φ φ

φ

φ

π φ

α

π α π
λ

α

→

∂
=

∂ →

−
→

=∑ ∑
 (11)

Therefore, the probability should be reset to the expected count
times the normalization factor 1 λ− :

'

,

()

(,) (| ,) (; , ,)1
w s

P NT

c w P w c NT w

φ

φ

α

π α πλ−

→ =

→∑ ∑ . (12)

To calculate the expected counts, note that

,

(; , ,)

(, ,)
(,)

() ()

(; , ,) ()

()

(, ,) (; , ,)

()

(| ,) (; , ,)

(,)
()

.

NT

c NT w

P w
P w

P NT P NT

c NT w P NT

P NT

P w c NT w

P NT

P w c NT w
P w

P NT

α

φ
φ π

φ φ

α π
φ

π φ

φ

π φ

φ
π

φ
φ

π

α α

α π α

α

π α π

α

π α π

α

→

∂
∂

=
∂ → ∂ →

→ →

=
→

→
=

→

→
=

→

∏

∑

∑

∑

∑

 (13)

(| ,) (; , ,)

() (,)

(,) ()

hence

.

P w c NT w

P NT P w

P w P NT

φ
π

φ φ

φ φ

π α π

α

α

→

→ ∂
=

∂ →

∑
 (14)

Let 1 1 1(, ..., , , ...,),i j n
k k
ij NTE w w w w− += ⇒ be the event

that in the process of rewriting the pre-terminal sequence to
the word sequence w, the rule NT α→ is used for the kth pre-

terminal in to generate the sub-sequence , ..., ,i jw wα = and

let (,)t
s p qλ be the probability that the pre-terminals from

position s to t in the sequence cover the terminal words

1, ...,p qw w − . Then

1
1 1

(,)

(1,) (1, 1) (, ...,)

k

ij
ij

k m
k

ij
i j

P w

i j n P NT w w

Eφ

φλ λ−
+ →+ +

= =

∑

∑
 (15)

1

1 1
: ,...,

(,)

()
(1,) (1, 1)k m

k
ij w wk i j

P w

P NT
i j nφ

φ αα
λ λ−

+
=

∂

∂ →
+ += ∑ (16)

Therefore if we can compute (,)t
s p qλ , we can combine (12),

(14) and (16) to obtain the expected counts and reset the model

parameters. In fact (,)t
s p qλ can be computed with dynamic

programming according to (17), where ε is the null string:

1

1

;

(,) (,) (,);

(, ...,) if
(,)

() if

p r q

s p q

s

t

t

t t
s s

s
s

p q p r r q

P NT w w p q
p q

P NT p q

φ

φ

λ λ

λ
ε

λ
≤ ≤

−

−=

→ <
=

→ =



∑
 (17)

Note that
1

(,) (1, 1)mP w n
φ

λ= + can be used in (14).

3. EXPERIMENTAL SETTING
We conducted experiments with the ATIS3 set A (sentences that
can be interpreted without context) data. We used the ATIS3
1993 set A test data for testing. Since there are some tasks in the
test data do not have any training data, we followed the practice
in [6] to augment the training set with nine sentences that we
collected for the experiments with the authoring tool.

As described in [6], we constructed the semantic schema for
ATIS by abstracting the CMU Phoenix grammar for ATIS.
Training and test sentences were annotated against the schema
like the one in (6). This was done by taking the CMU
Phoenix/ATIS parsing results and automatically converting them
into the semantic annotations with an XSL transformation. The
annotations were manually checked and corrected. The resulting
canonical meaning representations served as the targets for SLU
in our experiments. In doing so, we avoided building the module
that translates the meaning of sentences into SQL queries in the
original DARPA-sponsored end-to-end ATIS evaluation.

We used our robust parser [3, 8] with the learned grammar to
obtain the semantic representations for input sentences and
compared them with the manually corrected annotations. The
baseline grammar was the one produced with the tool reported in
[6] that asked users questions like the one in Figure 1.

4. EXPERIMENTAL RESULTS
We studied the topic classification (henceforth Topic ID) and
slot identification (henceforth Slot ID) performance of the two
grammars. Topic ID performance was measured by comparing
the parser-found frame/semantic class name of a sentence with
the manually labeled one. In slot ID evaluation, slots were
extracted by listing all the paths from the root to the pre-
terminals in the semantic parse tree, and the resulting list was
compared with that of the manual annotation. Hence a topic ID

I - 286

➡ ➡

error will cause all the slots in a parse tree to be incorrect in the
slot ID evaluation. The total insertion-deletion-substitution error
rates are reported for slot ID.

Table 1 compares the error rates between the grammar learned
with manual segmentation and the one learned with automatic
segmentation. The EM segmentation improves the Topic ID
accuracy by 60%. However, there is no change in Slot ID
accuracy.

 Manual Segmentation EM Segmentation

Topic ID 5.06 2.03
Slot ID 7.67 7.67

Table 1. Error rates of the grammars learned with manual segmentation
and automatic segmentation. Full paths from root to a leaf slot were
used in the calculation of the slot error rate.

As in [5, 6], we also investigated the effect of training data on
the performance. Figure 2 shows the Topic ID error rates of the
learned grammars relative to the amount of annotated training
data. Figure 3 illustrates the Slot ID performance of the same
grammars. As a reference, we also included the performance of
the Phoenix/ATIS system that used a manually authored
semantic grammar.

0

5

10

15

20

0 500 1000 1500

Number of Sentences

To
pi

c
ID

 E
rro

r

Figure 2. Topic ID error rate vs. amount of annotated training data. The
solid curve represents the grammar trained with manual segmentation;
the dashed curve represents the grammar trained with automatic
segmentation. The dashed horizontal line represents Phoenix/ATIS.

For the simpler problem of topic classification, with very few
training sentence, the error rate drop significantly. This is due to
the fact that the topic classification task mostly depends on the
command pre-terminals in the template grammar. Given that
there are only seven tasks, EM algorithm can fast learn the
command concepts, and robust parser can use them to identify
the correct classes. However, for the more complicated task of
slot ID, the accuracy from the EM-trained grammar is worse
than the one trained with manual segmentation with fewer
examples. This may due to the fact that much more non-
terminals exist for slot preambles and post-ambles, which
require more training data to achieve a decent performance.

0

5

10

15

20

25

0 500 1000 1500

Number of Sentences

Sl
ot

 ID
 E

rro
r

Figure 3. Slot error rate (ins-del-sub) vs. amount of annotated training
data. The solid curve represents the grammar trained with manual
segmentation; the dashed curve represents the grammar trained with
automatic segmentation. The dashed horizontal line represents
Phoenix/ATIS.

5. SUMMARY
In this paper we presented the EM algorithm for segmentation
disambiguation for the example-based grammar authoring tool.
Experiment results show that the automatic leaning procedure
not only eliminates the human involvement in ambiguity
resolution but also improves the overall understanding accuracy.

6. REFERENCES
1. Ward, W. Understanding Spontaneous Speech: the Phoenix

System. Proceedings of ICASSP. 1991. Toronto, Canada.
2. V. Zue, e.a., JUPITER: A Telephone-Based Conversational

Interface for Weather Information. IEEE Transactions on
Speech and Audio Processing, 2000. 8(1).

3. Wang, Y.-Y. Robust Spoken Language Understanding in
MiPad. Proceedings of Eurospeech. 2001. Aalborg,
Denmark.

4. Waibel, A., Interactive Translation of Conversational
Speech. Computer, 1996. 29(7).

5. Wang, Y.-Y. and A. Acero. Grammar Learning for Spoken
Language Understanding. IEEE workshop on Automatic
Speech Recognition and Understanding. 2001. Madonna di
Campiglio, Italy: IEEE.

6. Wang, Y.-Y. and A. Acero. Evaluation of Spoken
Language Grammar Learning in ATIS Domain.
Proceedings of ICASSP. 2002. Orlando, Florida.

7. Dempster, A.P., N.M. Laird, and D.B. Rubin, Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society B, 1977. 39: p. 1-
38.

8. Wang, Y.-Y. A Robust Parser for Spoken Language
Understanding. Proceedings of Eurospeech. 1999.
Budapest, Hungary: ESCA.

I - 287

➡ ➠

