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ABSTRACT 
To facilitate the development of speech enabled applications and 
services, we have been working on an example-based semantic 
grammar authoring tool. Previous studies have shown that the tool 
has not only significantly reduced the grammar development 
effort but also yielded grammars of better qualities. However, the 
tool requires extra human involvement when ambiguities exist in 
the process of grammar rule induction. In this paper we present an 
algorithm that is able to automatically resolve the segmentation 
ambiguities, hence acquire the language expressions for the 
concepts involved.  Preliminary experiment results show that the 
Expectation-Maximization algorithm we investigated has not only 
eliminated the human involvement in ambiguity resolution but 
also improved the overall spoken language understanding 
accuracy. 

1. INTRODUCTION 
Semantic-based robust understanding is a successful technology 
that has been widely used in research conversational systems [1-
4]. However, it is not very practical for regular developers to   
implement a conversational system with the technology, to a 
large extent due to the fact that such implementations have 
relied on manual development of domain-specific grammars, a 
task that is time-consuming, error-prone and requires a 
significant amount of expertise.  

To facilitate the development of speech enabled applications and 
services, we introduced SGStudio, an example-based grammar 
authoring tool that could greatly ease grammar development by 
taking advantage of many different sources of prior information 
[5, 6]. It allows a regular developer with little linguistic 
knowledge to build a semantic grammar for spoken language 
understanding. Experiment results have shown that good quality 
semantic grammars can be derived semi-automatically with a 
small amount of data --- the technique not only significantly 
reduces the effort in grammar development, but also improves 
the understanding accuracy across different domains. 

While the tool has some basic learning capabilities, it often 
resorts to users when ambiguities need to be resolved to induct 
grammar rules. This makes it very intrusive and greatly slows 
down the grammar development. This paper introduces an 
automatic learning algorithm that eliminates the intrusive 
questions raised by SGStudio.  

1.1 Example Based Grammar Authoring 

To build a grammar for a specific domain, SGStudio requires a 
semantic schema that defines the semantics of the domain. 
Semantic class is the basic element in a semantic schema. For 
example, in the Personal Information Management domain, 

semantic class “NewAppt” defines the semantics for meeting 
scheduling: 

   <command name=”NewAppt”> 
          <slot type=”Person” name=”Attendee”/> 
          <slot type=”Time” name=”StartTime”/> 
   </command> 

This simplified example of semantic class states that to schedule 
a new meeting, a user can (optionally) specify the attendee and 
the start time of the meeting (slots). The slots can be specified 
with different ways to refer to a Person or Time (types of the 
slots).  

The semantics of a domain is language independent. A user can 
successfully schedule a meeting by specifying the slots without 
using speech or natural language. A semantic grammar relates 
natural languages to the domain semantics. SGStudio semi-
automatically learns to produce such a grammar, such that a user 
can fulfill the task with natural language or speech. It does so by 
automatically incorporating the domain semantics defined in the 
schema into an initial template grammar. Following is an 
example of the template grammar for “NewAppt”, where 
symbols inside braces are optional: 

<C_NewAppt>  <NewApptCmd> {<NewApptProperties>}       (1) 
<NewApptProperties>   <NewApptProperty>                            
                                          {<NewApptProperties> }                     (2)                     
<NewApptProperty>  <NewApptAttendeeProperty> |              
                                      <NewApptStartTimeProperty>                (3) 
<NewApptAttendeeProperty>     
             {<PreAttendee>} <T_Person> {<PostAttendee>}            (4) 
<NewApptStartTimeProperty>     
             {<PreStartTime>} <T_Time> {<PostStartTime>}             (5) 
 
The template grammar models the language for appointment 
scheduling with a command part and a properties part (1). The 
properties part incorporates the slots in the schema (2, 3). It 
brackets each slot with a preamble and a post-amble that serve 
as hints for the slot. Initially the commands, preambles and post-
ambles (in general, concepts) are not defined. The language 
expressions for these concepts will be learned from the 
semantically annotated examples. (6) is an example annotation 
for the sentence “New meeting with Peter at five”:  
     <NewAppt>                                                                            (6) 
          <Attendee type=”Person”>Peter</Attendee>                     
          <StartTime type=”Time”>five</StartTime> 
     </NewAppt> 
In addition to the template grammar and training samples, the 
tool also takes advantage of domain-independent library 
grammar (for examples, rules for date and time expressions that 
can be used for “<T_Time>”) and domain-dependent data like 
contact names that can be used for “<T_Person>.” 
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1.2  Segmentation Ambiguities 

A one-to-one mapping exists between the slots in a schema and 
the non-terminals in the template grammar. Therefore, given a 
semantic annotation, the annotated slots become the anchor 
points in the semantic grammar parse tree, and the rest words in 
the input can be aligned to the pre-terminals in the parse tree 
according to their positions relative to the slots. For example, 
given annotation (6), the word “at” has to align to the pre-
terminals <PostAttendee> or <PreStartTime>, the only two pre-
terminals that can appear between the two slots (<Attendee> 
“Peter” and <StartTime> “five”). Since “at” is a preposition and 
has to go with the phrase after it, the tool can induct the rule 
<PreStartTime>  at.  Similarly, the words “New meeting with” 
have to align to the pre-terminals in front of “Peter (T_Person)”, 
i.e., <NewApptCmd> and <PreAttendee>. However, it is not 
straightforward to decide which words should align to each pre-
terminal. Basically every position in the word sequence is a 
potential candidate for the segmentation that separates it into 
<NewApptCmd> and <PreAttendee> parts. The previous version 
of the tool reported in [5, 6] would pop up a dialog window 
(Figure 1) to solicit from the user for proper segmentation. 

 

Figure 1. Dialog box of SGStudio that asks the user to select 
the correct segmentation for “NewApptCmd” and “PreAttendee”. 

This disambiguation solution has several disadvantages: 

1. The interaction with users is intrusive and time-demanding. 

2. It violates the design principle that users should only be 
asked to annotate sentences semantically. While it is easy 
to do semantic annotation, it is not as easy to segment the 
expressions effectively without knowledge about the inner 
working mechanism of the tool. 

3. When there are more pre-terminals (this is possible with 
hierarchical slot structures) and terminal words involved in 
segmentation ambiguity, the question list will be huge, and 
it is very hard (if not impossible) to effectively display all 
the candidate segmentations and let the user pick the 
correct one. In the tool reported in [5, 6], when the question 

is too complicated to display, the tool simply skipped the 
question and did not learning from the example. This is a 
waste of the precious annotated data. 

4. Since the template grammar is not linguistically motivated, 
user’s segmentation according to their linguistic intuition 
may not work in the best way with  the template grammar 
in a SLU system. 

In the following sections, we will introduce an automatic 
segmentation algorithm and present some experiment results. 

2. EM ALGORITHM FOR CONCEPT 
ACQUISITION  

Segmentation ambiguity resolution can be formalized as the 
problem of finding an m block partition 1 2, , ..., mπ α α α=  for 

the word sequence 1 2, , ..., nw w w w= , such that each block 

aligns to a pre-terminal in the sequence 1 2, , ..., mNT NT NT= . 
A block may contain 0 or more words from w. 

If we model the joint probability of ,  and wπ with 

1
( , , ) ( )i i

m

i
P w P NTπ α

=
= →∏                  (7) 

Then given and w , the most likely segmentation can be 
obtained as: 

1= ,..., 1
ˆ argmax ( , , ) argmax (  )i i

m

m

i
P w P NT

π π α α
π π α

=
= →= ∏     (8) 

Such a partition can be found with Viterbi search. Thus the only 
problem left is to estimate the model parameter ( )P NT α→  
for every pre-terminal (concept) NT and word sequence .α  This 
could be straightforward with maximum likelihood (ML) 
estimation if the training data is a list of pre-terminals paired 
with a word sequence for each pre-terminal. However, the 
training examples we obtained from the user via the authoring 
tool are pairs of pre-terminal sequences and terminal sequences. 
The partition is a hidden variable and unknown to the tool. 
 
Expectation-Maximization (EM) algorithm [7] is often used for 
ML estimation of model parameters when hidden variables exist 
and only partial observations are available. It initially sets the 
parameters Pφ for the model, and then iteratively modifies the 

parameters to 'Pφ such that the likelihood of the observation D 

increases.  
To find such 'Pφ , we define the auxiliary function Q in (9): 

'
'

,

( , , )
( | ) ( , ) ( | , ) log

( , , )w

P w
Q P P c w P w

P w

φ
φ φ φ

π φ

π
π

π
=∑ ∑   (9)                

It is a lower bound of '( | ) ( | ),L D P L D Pφ φ−  the log-likelihood 

difference of the training data between the two model 
parameterizations [7]. The EM algorithm resets the parameters 
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'Pφ greedily by maximizing Q, subject to the constraints that the 

probabilities of all possible rewriting rules for a pre-terminal 
must sum to 1. Therefore, for each rule NT α→ , its new 
probability can be obtained by solving (10): 

''
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0
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P NT
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Therefore, the probability should be reset to the expected count 
times the normalization factor 1 λ− : 

'
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To calculate the expected counts, note that 
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Let 1 1 1( , ..., , , ..., ),i j n
k k
ij NTE w w w w− += ⇒  be the event 

that in the process of rewriting the pre-terminal sequence to 
the word sequence w, the rule NT α→ is used for the kth pre-

terminal in to generate the sub-sequence , ..., ,i jw wα =  and 

let ( , )t
s p qλ be the probability that the pre-terminals from 

position s to t in the sequence  cover the terminal words 

1, ...,p qw w − .  Then 
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Therefore if we can compute ( , )t
s p qλ , we can combine (12), 

(14) and (16) to obtain the expected counts and reset the model 

parameters. In fact ( , )t
s p qλ  can be computed with dynamic 

programming according to (17), where ε is the null string: 

1
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Note that
1

( , ) (1, 1)mP w n
φ

λ= + can be used in (14). 
 

3. EXPERIMENTAL SETTING 
We conducted experiments with the ATIS3 set A (sentences that 
can be interpreted without context) data. We used the ATIS3 
1993 set A test data for testing. Since there are some tasks in the 
test data do not have any training data, we followed the practice 
in [6] to augment the training set with nine sentences that we 
collected for the experiments with the authoring tool. 

As described in [6], we constructed the semantic schema for 
ATIS by abstracting the CMU Phoenix grammar for ATIS. 
Training and test sentences were annotated against the schema 
like the one in (6). This was done by taking the CMU 
Phoenix/ATIS parsing results and automatically converting them 
into the semantic annotations with an XSL transformation. The 
annotations were manually checked and corrected. The resulting 
canonical meaning representations served as the targets for SLU 
in our experiments. In doing so, we avoided building the module 
that translates the meaning of sentences into SQL queries in the 
original DARPA-sponsored end-to-end ATIS evaluation. 

We used our robust parser [3, 8] with the learned grammar to 
obtain the semantic representations for input sentences and 
compared them with the manually corrected annotations. The 
baseline grammar was the one produced with the tool reported in 
[6] that asked users questions like the one in Figure 1.  

4. EXPERIMENTAL RESULTS 
We studied the topic classification (henceforth Topic ID) and 
slot identification (henceforth Slot ID) performance of the two 
grammars. Topic ID performance was measured by comparing 
the parser-found frame/semantic class name of a sentence with 
the manually labeled one. In slot ID evaluation, slots were 
extracted by listing all the paths from the root to the pre-
terminals in the semantic parse tree, and the resulting list was 
compared with that of the manual annotation. Hence a topic ID 
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error will cause all the slots in a parse tree to be incorrect in the 
slot ID evaluation. The total insertion-deletion-substitution error 
rates are reported for slot ID. 
 
Table 1 compares the error rates between the grammar learned 
with manual segmentation and the one learned with automatic 
segmentation. The EM segmentation improves the Topic ID 
accuracy by 60%. However, there is no change in Slot ID 
accuracy. 
 

 Manual Segmentation EM Segmentation 

Topic ID 5.06 2.03 
Slot ID 7.67 7.67 

Table 1. Error rates of the grammars learned with manual segmentation 
and automatic segmentation.  Full paths from root to a leaf slot were 
used in the calculation of the slot error rate. 

As in [5, 6], we also investigated the effect of training data on 
the performance. Figure 2 shows the Topic ID error rates of the 
learned grammars relative to the amount of annotated training 
data. Figure 3 illustrates the Slot ID performance of the same 
grammars. As a reference, we also included the performance of 
the Phoenix/ATIS system that used a manually authored 
semantic grammar. 
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Figure 2. Topic ID error rate vs. amount of annotated training data. The 
solid curve represents the grammar trained with manual segmentation; 
the dashed curve represents the grammar trained with automatic 
segmentation. The dashed horizontal line represents Phoenix/ATIS. 

For the simpler problem of topic classification, with very few 
training sentence, the error rate drop significantly. This is due to 
the fact that the topic classification task mostly depends on the 
command pre-terminals in the template grammar. Given that 
there are only seven tasks, EM algorithm can fast learn the 
command concepts, and robust parser can use them to identify 
the correct classes. However, for the more complicated task of 
slot ID, the accuracy from the EM-trained grammar is worse 
than the one trained with manual segmentation with fewer 
examples. This may due to the fact that much more non-
terminals exist for slot preambles and post-ambles, which 
require more training data to achieve a decent performance. 
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Figure 3. Slot error rate (ins-del-sub) vs. amount of annotated training 
data. The solid curve represents the grammar trained with manual 
segmentation; the dashed curve represents the grammar trained with 
automatic segmentation. The dashed horizontal line represents 
Phoenix/ATIS. 

5. SUMMARY 
In this paper we presented the EM algorithm for segmentation 
disambiguation for the example-based grammar authoring tool. 
Experiment results show that the automatic leaning procedure 
not only eliminates the human involvement in ambiguity 
resolution but also improves the overall understanding accuracy. 
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