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ABSTRACT S .
) o i Table 1. DAs and their distributions in the full bootstrap data.
Dialog act tagging is an important step toward speech understand+/pcabulary size is the total number of distinct words within a class

ing, yet training such taggers usually requires large amounts of j, the data. RFA stands for a request for acknowledgment and
data labeled by linguistic experts. Here we investigate the use of AcK stands for an acknowledgment.

unlabeled data for training HMM-based dialog act taggers. Three

techniques are shown to be effective for bootstrapping a tagger DA  Description Proportion  Vocab.
from very small amounts of labeled data: iterative relabeling and SS  Action statements 23.550% 211
retraining on unlabeled data; a dialog grammar to model dialog SF  Target location 15.86% 183
act context, and a model of the prosodic correlates of dialog acts. SH  Status reports 10.74% 74
On the SPINE dialog corpus, the combined use of prosodic infor- SO  All other statements 7.12% 304
mation and unlabeled data reduces the tagging error between 12% Q  Questions/RFA 7.98% 190
and 16%, compared to baseline systems using word information A Answers and ACKs 34.75% 86

and various amounts of labeled data only.

1. INTRODUCTION foragiver) task [8]. 'I_'his suggests that prosodic information could
be especially effective with little hand-labeled data, and when

Knowing the discourse function (dialog act, or DA) of an utterance combined with unlabeled training data. _
is useful in a number of applications, including speech recognition The paper is organized as follows. Section 2 describes the data
and understanding. Intuitively, we aim to classify utterances in di- We used and how it was partitioned in weakly supervised training.
alogs as “questions”, “requests”, “acknowledgments”, and the like, S_ectlon 3 desc_:rlbes the prosodic feature_s and m(_)del used._ Sec-
based upon which further semantic and pragmatic processing canion 4 summarizes the HMM-based tagging paradigm. Section 5
take place. Furthermore, DA modeling can constrain the languagedives and discusses our results. Section 6 concludes and suggests
models used in word recognition, improving word-level accuracy. future work.
We call a system that classifies utterances into a finite set of DA
categories dialog act tagger. Many methods for DA tagging have 2. DATA
been proposed, but the most commonly used ones rely on HMM
modeling [1, 2]. A survey of various approaches and how DA tag- Our experimental data derives from the SPINE (Speech in Noisy
ging integrates with speech recognition models can be found in Environments) corpus, which was created for developing speech
[3]. recognition in military noise environments [9]. The data set is
One pervasive problem for data-driven DA taggers is that they identical to the one used in [5]. However, the partitioning of the
rely heavily on lexical features, usually in the form of DA-specific data used here is different from that in the earlier study. The rea-
statistical language models (LMs). Such models require consid- son for repartitioning was mainly to enable the construction of a
erable amounts of training data to be effective, yet hand-labeling new partition of labeled data disjoint from both the bootstrap and
dialogs by DA annotation experts is time consuming, and highly evaluation sets to be used for tuning of variable parameters in our
domain-specific (meaning that models are not easy generalizedproposed method.
across tasks) [4]. To alleviate this problem we have begunto study = The SPINE corpus consists of a total of 44,412 DA units in
the use ofunlabeled training data to improve DA taggers, boot- 324 dialogs. Randomly selected contiguous dialog blocks aver-
strapping from only a very small amount of hand-labeled data. In aging about 32 dialog units each, from 89 randomly selected di-
previous work [5] we found that a purely word-based DA tagger alogs, were hand-labeled for DA classes by one of the authors.
could be improved considerably by an iterative automatic labeling Because of resource constraints, multiple annotations and inter-
and retraining on unlabeled data. We also found that statistical labeler agreements were not computed in this preliminary explo-
dialog grammars, which model the contextual constraints in DA rative study. Nevertheless, we took care to ensure that the inven-
sequences and which have a smaller vocabulary than word-basedory of discourse functions used for labeling was much more de-
DA LMs, can effectively boost accuracy even with small amounts tailed than was necessary here, in the hope that a continuation of
of hand-labeled training data. this work will find use for a larger set of dialog acts. For the exper-
Here we focus on the use of another knowledge source to im- iments reported in this paper, we mapped the detailed dialog acts
prove unsupervised training: prosody. Prosodic cues have beeninto a smaller set of six broad DA classes, which are listed in Ta-
shown effective for DA tagging in a supervised setting [6, 7], and ble 1. The 89 annotated dialog fragments were subsequently split
may require less training data than corresponding lexical modelsinto a 20-dialog set (632 utterances) for parameter tuning, a 32-
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better than the baseline. The subset of features we finally used was

Table 2. Various amounts of bootstrap data tested. The name of as follows:

the experiment in column 1 also indicates the number of dialogs
used for bootstrapping. Column 2 shows the total number of utter- 1. Difference between average stylized pitch in the first and
ances in all these dialogs, and column 3 shows what percentage of the last 20-ms windows.

the training data this amount would constitute. 2. Log-ratio of the last stylized pitch and the speaker’s floor

Expt. Utterances. % of Training pitch.

Boot-32 970 3.27% 3. Log-ratio of the first stylized pitch and the speaker’s floor

Boot-16 474 1.60% pitch.

Egg:'gi ﬁg 8232? 4. Log-ratio of the maximum stylized pitch in the last word
: 2970 and the speaker’s floor pitch.

Boot-02 57 0.19% P P

5. Location of the maximum stylized pitch normalized by total
duration.

dialog set (970 utterances) to use for bootstrapping the model, and

a 39-dialog set (1192 utterances) that was held out for evaluation

of the model. The remaining 235 dialogs which were unannotated

were split into a 209-dialog training set (29,471 utterances) and 7. Flag indicating speaker change.

a 26-dialog validation set (3274 utterances). Although the (unla-

beled) validation set was used here, it was set aside to make sure 4. MODEL

that we used the same training set as in [5]. Decisions regarding the '

values of tunable parameters were made via evaluation for accu-q; pa tagger model employs the widely used HMM tagging
racy on the 20-dialog held-out tuning set that was hand-annotatedparadigm to integrate lexical, prosodic, and contextual knowledge
for DA classes. Five different subsets of the 32-dialog bootstrap Set[3]. In this framework, HMM states represent individual DAs. The
were subsequently used for bootstrapping our model in five sets ofj,gjvidual utterances (words and/or prosody) correspond to the ob-

experiments. The experiments investigated the effect of diminish- geyations generated by the states. The theory behind our imple-
ing bootstrap data size on the performance of the classifier. Thesgyentation can be summarized as follows. t= D, --- D

five bootstrap data sets are shown in Table 2.

6. Pause duration from the last unit and the current unit of the
current speaker.

n

be the sequence of dialog acts associated witlethterances in
a given dialog. LetW = W, ... W, be the sequence of utter-
3. PROSODIC MODELING ances in the same dialog abd= F - - - F}, be the sequence of
prosodic feature vectors characterizing each ofsrtheterances.
We used three types of prosodic features in our model—duration, If we approximate the observations Byand W, then we seek
energy, and pitch. Duration features were extracted from the align-p — argmaxp, P(D, W, F). Making the standard Markov as-
ment information obtained from a speech recognizer. Energy fea- symptions, we can write
tures were estimated from frame-level energy information in the
signal. Pitch features were obtained from a postprocessed version n
of the pitch track obtained using an improved version of the ap- P(D,W,F) = H P(D;|Din)P (Wi, Fi| D)
proach in [10]. Pitch contours wesrtylized, octave errors were i=1
estimated, and, most importantly, a set of speaker-specific pitch . ) ) )
range parameters was computed. These parameters include a valu@hereDix is the h-length, possibly truncated, history of thi
that allows us to estimate a speakdier or lowest typical F0 DA in the sequence of DAs. We estimdteD;|D;y) in the stan-
value. We used some additional features to represent the duratiorflard way from counts of DAN-grams. To calcul&eV:, £i|D:),
between the end of the previous speaker's utterance and the onWe observe thab (W;, I';| ;) can be decomposed as follows:
set of the current speaker’s utterance as well as a flag to represent
speaker change between utterances. P(Wi, FilDi) = P(Wi| Di, Fi)P(Fil Di) @)
As in prior work [6, 8], CART-style decision trees were used as
the prosodic model. During eachiteration, a tree was trained on the
prosodic feature vectors by using the classifications obtained in the
preceding iteration. An automatic feature selection algorithm was
employed to choose the best subset of the full set of features. This P(W,, F|D:) = P(W:|D:)P(F:| D)
algorithm used a held-out subset of the training data for estimating e e e
this subset, subsequently rebuilding the tree with the full training Now the first term on the right hand side is straightforward to
set after the subset was identified. As the process of training thegstimate from a DA-specific language model trained only on sen-
trees was computationally very expensive, we calculated a coretences belonging to the particular DA. But we still face the prob-
subset ofssential featuresthat formed the set of features used in  |em of calculatingP(F;|D:). Here, suppose that we had some
all our experiments. This was done by using the largest bootstrapmeans of obtaining a posterior distribution over dialog acts given

set to obtain a set of trees (each of them using a different subsetne prosodic features. Then the problem becomes one of estimat-
of the full set of features) and subsequently keeping only those jng p( £;| D,) from P(D;| F;). By Bayes' rule,

features that had a highest average (subject to a threshold) feature
usage (as implied by the number of tree nodes at which that feature
was used to make a decision) among all the trees that performed

By assuming, not unreasonably, that the observed words are inde-
pendent of the prosodic features given the discourse category of
the sentence, we may simplify (1) to

Fi|Di)P(Dy)

P(Di|Fy = 2 b @)
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If we arranged things so th&(D), the prior probability of ob-
serving any particular DA, is independent of the DA itself, then
the posterior estimated by the above equation will reduce to a con-
stant multiple of?( 73| D;) sinceP ( F;) isitself independentofany £
particular DA. We thus obtailt ( D;| F;) = x;P(F;|D;) for some
non-negative constant; = 1/«a; or equivalentlyP(F;|D;) =
a;P(D;| F;). Substituting, we get o wl

~

D= arg{r)naxH P(D;|Din)P(Wi|D)P(Di|F)  (3)

im1 Fig. 1. Accuracy versus iteration for the Boot-32 and Boot-02 ex-
periments, respectively. Iteration O corresponds to the case where
which is considerably easier to compute(W;|D;) can be ob- training was performed with only the bootstrap data. For Boot-32

tained from DA-specific language models ah@D ;| F;) can be andy = 0, the best iteration was 2 and accuracy at that iteration
obtained from a decision tree. Still, in order for this scheme to was 82.38%. By best iteration, we mean the iteration at which the
work we must ensure that we have a uniform prior distribution validation set accuracy was highest. For 0.5, 0.75 and 1.0,
over DAs when using a classifier to generate the posterior. Fortu- the best iteration was 1 and the evaluation accuracies at this itera-
nately, this condition is easily met. We do this by resampling the tion were 84.14%, 84.48% and 84.65% respectively. For Boot-02,
tree training data to represent all DA classes equally well. A final corresponding numbers were 63.09% at iteration 2, 68.124 and
subtlety regarding the model is that since we estimate language67.87% at iteration 6 respectively.
model likelihoods and DA posteriors conditioned on the feature
vectors using two different paradigms, we ought to determine the
best way to combine the two values. To do this, we rewrite (3) as
Table 3. Summary of results.Baseline in column 2 shows the
~ i accuracy of the baseline model & 0). Columns 3 and 4 show
D = argmax | [ P(D:|Dn)P(Wi| D)P(Di| F)" (4) the value ofy and the iteration number at which validation set
A accuracy was the highest, respectively. Columns 5 and 6, show the
accuracy of the experiment after iteration 0, which represents the
performance of the system after training only on the bootstrap set
and at the best iteration.

where v is an exponent representing our intuitive notion of the
degree of importance we might attach to the DA posterior in rela-
tion to the language model likelihoods.+f= 0, then exactly the
model of [5] obtains since the exponentiated posterior is 1 and thus EXPT Basline ~ lter Iter-0  Best

the contribution of the prosodic feature vector to any discrimina- Boot-32 32.38 1.00 1 84.65 84.65
tion between DAs is nil. Withh < 4 < 1, the contribution of the Boot-16 79.70 0.80 4 79.03 80.96
prosodic feature vector to the discriminative power of the model Boot-08 78.78 050 3 76.09 77.94

is non-nil, but still attenuated, since by raising the posterior to a Boot-04 61.83 0.35 6 61.24 64.60
fractional power, we effectively make the resultant value closer to Boot-02 63.09 045 3 67.11 68.37

1. Conversely, withy > 1, the posterior’s contribution to the dis-
crimination is amplified. We estimated a near-optimal valug of
by a simple grid search, minimizing the DA classification error on the validation set perplexity was a good criterion for picking mod-
the tuning set. els with near optimal classification accuracies. Unfortunately, here
In all our experiments, we restricted ourselves to using tri- we are unable to use the same criterion for determining the values
grams both for the DA sequence LM (DA grammar) and for DA- of the tunable parameters <-and the iteration number. The rea-
specific LMs, as these were found to give the best results in [5]. son for this is that by substituti®( F;| D A;) with P(D A;| F;)”,
The rest of the procedure we followed is the same as describedwe lose the ability to obtain real probability estimates and thus
in the earlier work: an initial tagger is trained from the available the ability to calculate the perplexity of a given corpus that can be
labeled data (the bootstrap data); it is then used to tag the unla-meaningfully compared to the perplexity obtained with a different
beled training data, after which the model is retrained using all value ofy. Therefore, we use the 20-dialog held-out portion from
training data. The resulting tagger is presumably improved over the bootstrap set as our validation set on which we calculate the
the initial one that was trained on the bootstrap data alone; we classification accuracy at each iteration. The evaluation accuracies
should therefore iterate the training and relabeling. Any improve- we report in this paper are those from the iteration at which this
ment obtained after the first iteration is a result of incorporation of validation set accuracy was maximum.
the unlabeled data into the training procedure. As discussed in [5],
the repeated retr.aining p.rogedgre may bg seen as an approximate 5. RESULTSAND DISCUSSION
form of expectation-maximization [11] aimed at maximizing the

training data likelihood. We evaluated our framework for different amounts of bootstrap
data as shown in Table 2. The two extreme conditions for boot-

Evaluation metrics strap data were Boot-32 and Boot-02, with 970 and 57 utterances,
respectively. Because of space constraints we present graphical re-

In [5], the best iteration from which to obtain models was deter- sults in Figure 1 on only these two sets foe= 0,0.25,0.50 and

mined by calculating the language model perplexity on some held- 1.0, while, however, discussing the other results in text.

out data, referred to as thalidation set. In fact, it was found that Table 3 summarizes the results for all the bootstrap sets. The
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results can be summarized as follows. First, we confirmed that DA labeling systems, such as the Switchboard-DAMSL system de-
prosodic cues are effective in improving the baseline (iteration 0) veloped for conversational telephone speech [4]. This then raises
accuracies of the DA tagger. Second, we are always able to do bet-the question of whether unlabeled data can boost the effectiveness
ter than the accuracy at the end of iteration 0, even if by just one of DA taggers for improving speech recognition LMs beyond pre-
more iteration. This shows that learning from unlabeled training vious results, which showed only modest benefits [3]. Further-
examples is clearly of help, both with and without prosodic mod- more, it will be interesting to see if completely unsupervised DA
eling. Third, as one would expect, this addition of the unlabeled taggers (using DA categories defined only in terms of similarity in
training data is most helpful for the smallest bootstrap sets. How- some suitable feature space) might be effective for speech process-
ever, as in our previous work, we observed that it is better to use ing tasks.

all available labeled data for training whenever possible. That is,
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