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ABSTRACT

Dialog act tagging is an important step toward speech understand-
ing, yet training such taggers usually requires large amounts of
data labeled by linguistic experts. Here we investigate the use of
unlabeled data for training HMM-based dialog act taggers. Three
techniques are shown to be effective for bootstrapping a tagger
from very small amounts of labeled data: iterative relabeling and
retraining on unlabeled data; a dialog grammar to model dialog
act context, and a model of the prosodic correlates of dialog acts.
On the SPINE dialog corpus, the combined use of prosodic infor-
mation and unlabeled data reduces the tagging error between 12%
and 16%, compared to baseline systems using word information
and various amounts of labeled data only.

1. INTRODUCTION

Knowing the discourse function (dialog act, or DA) of an utterance
is useful in a number of applications, including speech recognition
and understanding. Intuitively, we aim to classify utterances in di-
alogs as “questions”, “requests”, “acknowledgments”,and the like,
based upon which further semantic and pragmatic processing can
take place. Furthermore, DA modeling can constrain the language
models used in word recognition, improving word-level accuracy.
We call a system that classifies utterances into a finite set of DA
categories adialog act tagger. Many methods for DA tagging have
been proposed, but the most commonly used ones rely on HMM
modeling [1, 2]. A survey of various approaches and how DA tag-
ging integrates with speech recognition models can be found in
[3].

One pervasive problem for data-driven DA taggers is that they
rely heavily on lexical features, usually in the form of DA-specific
statistical language models (LMs). Such models require consid-
erable amounts of training data to be effective, yet hand-labeling
dialogs by DA annotation experts is time consuming, and highly
domain-specific (meaning that models are not easy generalized
across tasks) [4]. To alleviate this problem we have begun to study
the use ofunlabeled training data to improve DA taggers, boot-
strapping from only a very small amount of hand-labeled data. In
previous work [5] we found that a purely word-based DA tagger
could be improved considerably by an iterative automatic labeling
and retraining on unlabeled data. We also found that statistical
dialog grammars, which model the contextual constraints in DA
sequences and which have a smaller vocabulary than word-based
DA LMs, can effectively boost accuracy even with small amounts
of hand-labeled training data.

Here we focus on the use of another knowledge source to im-
prove unsupervised training: prosody. Prosodic cues have been
shown effective for DA tagging in a supervised setting [6, 7], and
may require less training data than corresponding lexical models

Table 1. DAs and their distributions in the full bootstrap data.
Vocabulary size is the total number of distinct words within a class
in the data. RFA stands for a request for acknowledgment and
ACK stands for an acknowledgment.

DA Description Proportion Vocab.
SS Action statements 23.55% 211
SF Target location 15.86% 183
SH Status reports 10.74% 74
SO All other statements 7.12% 304
Q Questions/RFA 7.98% 190
A Answers and ACKs 34.75% 86

for a given task [8]. This suggests that prosodic information could
be especially effective with little hand-labeled data, and when
combined with unlabeled training data.

The paper is organized as follows. Section 2 describes the data
we used and how it was partitioned in weakly supervised training.
Section 3 describes the prosodic features and model used. Sec-
tion 4 summarizes the HMM-based tagging paradigm. Section 5
gives and discusses our results. Section 6 concludes and suggests
future work.

2. DATA

Our experimental data derives from the SPINE (Speech in Noisy
Environments) corpus, which was created for developing speech
recognition in military noise environments [9]. The data set is
identical to the one used in [5]. However, the partitioning of the
data used here is different from that in the earlier study. The rea-
son for repartitioning was mainly to enable the construction of a
new partition of labeled data disjoint from both the bootstrap and
evaluation sets to be used for tuning of variable parameters in our
proposed method.

The SPINE corpus consists of a total of 44,412 DA units in
324 dialogs. Randomly selected contiguous dialog blocks aver-
aging about 32 dialog units each, from 89 randomly selected di-
alogs, were hand-labeled for DA classes by one of the authors.
Because of resource constraints, multiple annotations and inter-
labeler agreements were not computed in this preliminary explo-
rative study. Nevertheless, we took care to ensure that the inven-
tory of discourse functions used for labeling was much more de-
tailed than was necessary here, in the hope that a continuation of
this work will find use for a larger set of dialog acts. For the exper-
iments reported in this paper, we mapped the detailed dialog acts
into a smaller set of six broad DA classes, which are listed in Ta-
ble 1. The 89 annotated dialog fragments were subsequently split
into a 20-dialog set (632 utterances) for parameter tuning, a 32-
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Table 2. Various amounts of bootstrap data tested. The name of
the experiment in column 1 also indicates the number of dialogs
used for bootstrapping. Column 2 shows the total number of utter-
ances in all these dialogs, and column 3 shows what percentage of
the training data this amount would constitute.

Expt. Utterances. % of Training
Boot-32 970 3.27%
Boot-16 474 1.60%
Boot-08 245 0.83%
Boot-04 116 0.39%
Boot-02 57 0.19%

dialog set (970 utterances) to use for bootstrapping the model, and
a 39-dialog set (1192 utterances) that was held out for evaluation
of the model. The remaining 235 dialogs which were unannotated
were split into a 209-dialog training set (29,471 utterances) and
a 26-dialog validation set (3274 utterances). Although the (unla-
beled) validation set was used here, it was set aside to make sure
that we used the same training set as in [5]. Decisions regarding the
values of tunable parameters were made via evaluation for accu-
racy on the 20-dialog held-out tuning set that was hand-annotated
for DA classes. Five different subsetsof the 32-dialog bootstrap set
were subsequently used for bootstrapping our model in five sets of
experiments. The experiments investigated the effect of diminish-
ing bootstrap data size on the performance of the classifier. These
five bootstrap data sets are shown in Table 2.

3. PROSODIC MODELING

We used three types of prosodic features in our model—duration,
energy, and pitch. Duration features were extracted from the align-
ment information obtained from a speech recognizer. Energy fea-
tures were estimated from frame-level energy information in the
signal. Pitch features were obtained from a postprocessed version
of the pitch track obtained using an improved version of the ap-
proach in [10]. Pitch contours werestylized, octave errors were
estimated, and, most importantly, a set of speaker-specific pitch
range parameters was computed. These parameters include a value
that allows us to estimate a speaker’sfloor or lowest typical F0
value. We used some additional features to represent the duration
between the end of the previous speaker’s utterance and the on-
set of the current speaker’s utterance as well as a flag to represent
speaker change between utterances.

As in prior work [6, 8], CART-style decision trees were used as
the prosodic model. During each iteration, a tree was trained on the
prosodic feature vectors by using the classificationsobtained in the
preceding iteration. An automatic feature selection algorithm was
employed to choose the best subset of the full set of features. This
algorithm used a held-out subset of the training data for estimating
this subset, subsequently rebuilding the tree with the full training
set after the subset was identified. As the process of training the
trees was computationally very expensive, we calculated a core
subset ofessential features that formed the set of features used in
all our experiments. This was done by using the largest bootstrap
set to obtain a set of trees (each of them using a different subset
of the full set of features) and subsequently keeping only those
features that had a highest average (subject to a threshold) feature
usage (as implied by the number of tree nodes at which that feature
was used to make a decision) among all the trees that performed

better than the baseline. The subset of features we finally used was
as follows:

1. Difference between average stylized pitch in the first and
the last 20-ms windows.

2. Log-ratio of the last stylized pitch and the speaker’s floor
pitch.

3. Log-ratio of the first stylized pitch and the speaker’s floor
pitch.

4. Log-ratio of the maximum stylized pitch in the last word
and the speaker’s floor pitch.

5. Location of the maximum stylized pitch normalized by total
duration.

6. Pause duration from the last unit and the current unit of the
current speaker.

7. Flag indicating speaker change.

4. MODEL

Our DA tagger model employs the widely used HMM tagging
paradigm to integrate lexical, prosodic, and contextual knowledge
[3]. In this framework, HMM states represent individual DAs. The
individual utterances (words and/or prosody) correspond to the ob-
servations generated by the states. The theory behind our imple-
mentation can be summarized as follows. LetD � D� � � �Dn

be the sequence of dialog acts associated with then utterances in
a given dialog. LetW � W� � � �Wn be the sequence of utter-
ances in the same dialog andF � F� � � �Fn be the sequence of
prosodic feature vectors characterizing each of then utterances.
If we approximate the observations byF andW, then we seekbD � argmax

D
P�D�W�F�. Making the standard Markov as-

sumptions, we can write

P�D�W�F� �

nY
i��

P�DijDih�P�Wi� FijDi�

whereDih is theh-length, possibly truncated, history of theith
DA in the sequence of DAs. We estimateP�DijDih� in the stan-
dard way from counts of DA N-grams. To calculateP�Wi� FijDi�,
we observe thatP�Wi� FijDi� can be decomposed as follows:

P�Wi� FijDi� � P�WijDi� Fi�P�FijDi� (1)

By assuming, not unreasonably, that the observed words are inde-
pendent of the prosodic features given the discourse category of
the sentence, we may simplify (1) to

P�Wi� FijDi� � P�WijDi�P�FijDi�

Now the first term on the right hand side is straightforward to
estimate from a DA-specific language model trained only on sen-
tences belonging to the particular DA. But we still face the prob-
lem of calculatingP�FijDi�. Here, suppose that we had some
means of obtaining a posterior distribution over dialog acts given
the prosodic features. Then the problem becomes one of estimat-
ingP�FijDi� from P�DijFi�. By Bayes’ rule,

P�DijFi� �
P�FijDi�P�Di�

P�Fi�
(2)
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If we arranged things so thatP�D�, the prior probability of ob-
serving any particular DA, is independent of the DA itself, then
the posterior estimated by the above equation will reduce to a con-
stant multiple ofP�FijDi� sinceP�Fi� is itself independentof any
particular DA. We thus obtainP�DijFi� � �iP�FijDi� for some
non-negative constant�i � ���i or equivalentlyP�FijDi� �
�iP�DijFi�. Substituting, we get

bD � argmax
D

nY
i��

P�DijDih�P�WijDi�P�DijFi� (3)

which is considerably easier to compute.P�WijDi� can be ob-
tained from DA-specific language models andP�D ijFi� can be
obtained from a decision tree. Still, in order for this scheme to
work we must ensure that we have a uniform prior distribution
over DAs when using a classifier to generate the posterior. Fortu-
nately, this condition is easily met. We do this by resampling the
tree training data to represent all DA classes equally well. A final
subtlety regarding the model is that since we estimate language
model likelihoods and DA posteriors conditioned on the feature
vectors using two different paradigms, we ought to determine the
best way to combine the two values. To do this, we rewrite (3) as

bD � argmax
D

nY
i��

P�DijDh�P�WijDi�P�DijFi�
� (4)

where� is an exponent representing our intuitive notion of the
degree of importance we might attach to the DA posterior in rela-
tion to the language model likelihoods. If� � �, then exactly the
model of [5] obtains since the exponentiated posterior is 1 and thus
the contribution of the prosodic feature vector to any discrimina-
tion between DAs is nil. With� � � � �, the contribution of the
prosodic feature vector to the discriminative power of the model
is non-nil, but still attenuated, since by raising the posterior to a
fractional power, we effectively make the resultant value closer to
1. Conversely, with� � �, the posterior’s contribution to the dis-
crimination is amplified. We estimated a near-optimal value of�
by a simple grid search, minimizing the DA classification error on
the tuning set.

In all our experiments, we restricted ourselves to using tri-
grams both for the DA sequence LM (DA grammar) and for DA-
specific LMs, as these were found to give the best results in [5].
The rest of the procedure we followed is the same as described
in the earlier work: an initial tagger is trained from the available
labeled data (the bootstrap data); it is then used to tag the unla-
beled training data, after which the model is retrained using all
training data. The resulting tagger is presumably improved over
the initial one that was trained on the bootstrap data alone; we
should therefore iterate the training and relabeling. Any improve-
ment obtained after the first iteration is a result of incorporation of
the unlabeled data into the training procedure. As discussed in [5],
the repeated retraining procedure may be seen as an approximate
form of expectation-maximization [11] aimed at maximizing the
training data likelihood.

Evaluation metrics
In [5], the best iteration from which to obtain models was deter-
mined by calculating the language model perplexity on some held-
out data, referred to as thevalidation set. In fact, it was found that
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Fig. 1. Accuracy versus iteration for the Boot-32 and Boot-02 ex-
periments, respectively. Iteration 0 corresponds to the case where
training was performed with only the bootstrap data. For Boot-32
and� � �, the best iteration was 2 and accuracy at that iteration
was 82.38%. By best iteration, we mean the iteration at which the
validation set accuracy was highest. For� = 0.5, 0.75 and 1.0,
the best iteration was 1 and the evaluation accuracies at this itera-
tion were 84.14%, 84.48% and 84.65% respectively. For Boot-02,
corresponding numbers were 63.09% at iteration 2, 68.124 and
67.87% at iteration 6 respectively.

Table 3. Summary of results.Baseline in column 2 shows the
accuracy of the baseline model (� � �). Columns 3 and 4 show
the value of� and the iteration number at which validation set
accuracy was the highest, respectively. Columns 5 and 6, show the
accuracy of the experiment after iteration 0, which represents the
performance of the system after training only on the bootstrap set
and at the best iteration.

EXPT Baseline � Iter Iter-0 Best
Boot-32 82.38 1.00 1 84.65 84.65
Boot-16 79.70 0.80 4 79.03 80.96
Boot-08 78.78 0.50 3 76.09 77.94
Boot-04 61.83 0.35 6 61.24 64.60
Boot-02 63.09 0.45 3 67.11 68.37

the validation set perplexity was a good criterion for picking mod-
els with near optimal classification accuracies. Unfortunately, here
we are unable to use the same criterion for determining the values
of the tunable parameters —� and the iteration number. The rea-
son for this is that by substitutingP�FijDAi� with P�DAijFi�

� ,
we lose the ability to obtain real probability estimates and thus
the ability to calculate the perplexity of a given corpus that can be
meaningfully compared to the perplexity obtained with a different
value of�. Therefore, we use the 20-dialog held-out portion from
the bootstrap set as our validation set on which we calculate the
classification accuracy at each iteration. The evaluation accuracies
we report in this paper are those from the iteration at which this
validation set accuracy was maximum.

5. RESULTS AND DISCUSSION

We evaluated our framework for different amounts of bootstrap
data as shown in Table 2. The two extreme conditions for boot-
strap data were Boot-32 and Boot-02, with 970 and 57 utterances,
respectively. Becauseof space constraints we present graphical re-
sults in Figure 1 on only these two sets for� � �� ����� ���� and
1.0, while, however, discussing the other results in text.

Table 3 summarizes the results for all the bootstrap sets. The
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results can be summarized as follows. First, we confirmed that
prosodic cues are effective in improving the baseline (iteration 0)
accuracies of the DA tagger. Second, we are always able to do bet-
ter than the accuracy at the end of iteration 0, even if by just one
more iteration. This shows that learning from unlabeled training
examples is clearly of help, both with and without prosodic mod-
eling. Third, as one would expect, this addition of the unlabeled
training data is most helpful for the smallest bootstrap sets. How-
ever, as in our previous work, we observed that it is better to use
all available labeled data for training whenever possible. That is,
the small-bootstrap-size learners never catch up with the initial ac-
curacy of the large-bootstrap-size learners, in spite of the fact that
substantially more unlabeled was used in the former than labeled
data in the latter (“There is no data like labeled data”).

Finally, and most importantly from the perspective of this
study, automatic labeling seems to combine well with the use of
prosodic information. In all but one case (further discussedbelow),
the prosody-based tagger obtained with unlabeled data improves
upon the tagger using unlabeled data, but no prosodic information.
Combining unlabeled data and prosodic cues gives and overall tag-
ging error reduction between 12% and 16% relative, compared to
the baseline of using only the lexical, labeled training data.

A further point that is not obvious from the results shown, but
which we observed in the results, was that although the incorpo-
ration of prosodic information into the model usually improved
the performance of the baseline model, it was hard to predict any
general trend in the amounts of such improvements between the
various bootstrap set sizes. In particular, as Table 3 shows, there is
no improvement over the baseline in Boot-08 and Boot-02 is better
than Boot-04 even though it uses less boot data.1 Upon closer in-
spection of the data, we found many dialogs which had extremely
skewed distributions of dialog classeswithin them. For instance,
in some dialogs the participants would be talking not within the
task assigned to them, but ratherabout it, and all the utterances
within this dialog might be labeled with SO (for statement-other).
Similarly many dialogs were totally lacking in the question class.
While the large bootstrap sets seemed to be immune to such prob-
lems, the small bootstrap sets were particularly prone to be af-
fected by such issues. Preliminary investigation showed that al-
though the language model is able to generalize gracefully in the
case of little training data, the decision tree is not. This causes
the induced trees to be overly sensitive to the particular choice of
a bootstrap set. For this reason, accuracy comparisons are only
meaningful when compared against a baseline (� � �) model that
uses the same bootstrap set and not a different bootstrap set albeit
of comparable size.

6. CONCLUSIONS AND FUTURE WORK

Our experiments on the SPINE dialog data have shown that un-
labeled data can be used effectively for training HMM-based dia-
log act taggers, through an iterative relabeling and retraining pro-
cedure. Furthermore, prosodic features modeled by decision tree
classifier can be integrated into this framework, and help tagging
accuracy both with labeled and unlabeled training data.

Several questions remain for future work. One is whether the
results carry over to other and potentially much larger corpora and

1Boot-08 did produce models that had better accuracy than the baseline
at several iterations, but unfortunately, these were not the models which
had the best validation set accuracy

DA labeling systems, such as the Switchboard-DAMSL system de-
veloped for conversational telephone speech [4]. This then raises
the question of whether unlabeled data can boost the effectiveness
of DA taggers for improving speech recognition LMs beyond pre-
vious results, which showed only modest benefits [3]. Further-
more, it will be interesting to see if completely unsupervised DA
taggers (using DA categories defined only in terms of similarity in
some suitable feature space) might be effective for speechprocess-
ing tasks.
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