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ABSTRACT 
 

This paper describes a bilingual text-to-speech (TTS) 
system, Microsoft Mulan, which switches between Mandarin and 
English smoothly and which maintains the sentence level 
intonation even for mixed-lingual texts. Mulan is constructed on 
the basis of the Soft Prediction Only prosodic strategy and the 
Prosodic-Constraint Orient unit-selection strategy. The unit- 
selection module of Mulan is shared across languages. It is 
insensitive to language identity, even though the syllable is used 
as the smallest unit in Mandarin, and the phoneme in English. 
Mulan has a unique module, the language-dispatching module, 
which dispatches texts to the language-specific front-ends and 
merges the outputs of the two front-ends together. The mixed 
texts are “uttered” out with the same voice. According to our 
informal listening test, the speech synthesized with Mulan 
sounds quite natural. Sample waves can be heard at: 
http://research.microsoft.com/~echang/projects/tts/mulan.htm.  
 

1. INTRODUCTION 
 

There is a long tradition of research on speech synthesis 
technology. With applications such as spoken dialog systems, 
call center services, voiced-enabled web and email services that 
are being introduced, an increasing emphasis has been put on 
generating naturally-sounding speech in recent years. There have 
been clear improvements in TTS by all quality measures in the 
past few years. However, most TTS systems can only handle a 
single language, which is often not adequate since many 
applications need to deal with multiple languages. Therefore, 
multilingual TTS systems are in great demand. The few 
multilingual TTS systems developed [1][2][3], however, can 
only deal with a single language at each call. For those systems, 
switching between languages requires switching between TTS 
engines. 

In our usability study of Mandarin TTS, the lack of ability to 
handle English words and phrases embedded in Chinese text 
deters the adoption of TTS technology, since much Chinese 
content, especially IT-related articles or emails, contain English 
words, phrases, or names. Like the multilingual systems 
mentioned above, we could solve this problem by switching 
between two TTS engines. The main drawback of this approach 
is that voices coming out of the two engines usually sound 
different. Users are always annoyed when hearing such two-
voice utterances. Furthermore, switching between two engines 
will destroy the overall sentence intonation. For example, if the 
sentence “我用 OfficeXP 写文章 ” (“I write articles with  
OfficeXP”) is sent to a Mandarin TTS engine and an English one, 
respectively, the output will sound like three independent 
sentences which are “我用 (I use)”， “OfficeXP” and “写文章 
(write articles)”. In this paper, we present a bilingual TTS system, 

Microsoft Mulan, which can switch between the two languages 
freely and smoothly without fragmenting the sentence level 
intonation. The two languages are spoken out with the same 
voice and sound like having been spoken by a bilingual person.  

The organization of this paper is as follows. The unified 
strategies for prosody and unit selection are presented in 
Sections 2 and 3 respectively. The architecture of Mulan and its 
other main components are described in Section 4. Section 5 
provides the final discussion. 
 

2. PROSODY STRATEGY — SOFT  PREDICTION 
ONLY (SPO) 

 

Conventionally, TTS systems have a prosody model that takes 
some high-level prosodic constraints, such as part-of-speech 
(POS), phrasing, accent and emphasis etc., as input and makes 
hard predictions on pitch and duration, i.e. generating 
deterministic values for them. Such a prosody model can be 
realized with a set of rules [4][5], a statistical model [6][7], or a 
neural network [8].  However, when investigating the human 
prosodic behavior over a large speech corpus, we found that 
there are many important variations in prosody that are difficult 
to address with such a hard prediction model. We conducted a 
study on syllable duration over a very large Mandarin speech 
corpus containing 190,000 syllables, in which five duration-
related features are considered. All these features take category 
values and result in 1000 possible combinations, i.e. there are 
1000 cells in the feature space. Since all units in the same cell 
are indistinguishable by their features, they will be represented 
by the same value no matter what kind of prediction scheme is 
used. To get the minimum RMSE (Root Mean Square Error), the 
best representative of each cell should be the mean of the cell. 
The RMSE calculated in this situation is 41 mili-seconds in our 
investigation, and this is the bottom limit for any prediction 
model using the five features as input. Comparing with the 
average syllable duration over the whole corpus, which is 245 
milliseconds, this means that the best hard prediction model will 
still result in 10-20 percent prediction errors in duration with the 
current feature set. This phenomenon can be viewed from two 
sides. On one hand, the RMSE can be reduced by considering 
more features or using more categories for each feature. 
However, when the feature space is partitioned into smaller and 
smaller cells, the generality of the prediction model will become 
poorer and poorer. It’s very difficult to implement a very precise 
predictor. On the other hand, we can imagine that if a time 
scaling algorithm is used to adjust the duration of all these 
syllables to the mean of their cells, the modified version of these 
utterances must sound worse than the original ones. In fact, the 
10-20 percent variation in duration is crucial for naturalness. The 
same is true for pitch. If sentences similar in structure are all 
generated with the same pitch pattern, they will sound 
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monotonous and boring. Humans always generate some 
variations in prosody to make their speech expressive, while 
most TTS systems cannot. 

We believe that the lack of proper variation in prosody is one 
of the main reasons why most state-of-the-art synthetic speech 
sound mechanical and not human-like. A very natural TTS 
system does not need a precise predictor. In fact, the pitch and 
duration of each segment in the synthesized utterance have a 
range of reasonable values. Thus, we proposed a Soft Prediction 
Only strategy for prosody, i.e. prosodic features such pitch and 
duration of most units in the same prosodic cell, i.e. they share 
the same high-level prosodic constraints, are reasonable and 
should not be adjusted to the core of the cell. With this strategy, 
synthesized utterances will achieve richer intonation by 
inheriting the prosodic habit of the original voice talent. The 
SPO strategy has successfully guided us to construct a very 
natural Mandarin TTS system [9] and it is extended to English 
speech synthesis in this paper. Even though pitch accent is 
believed to play a more important role in English, a stress 
language, than in Mandarin, a tonal language, the SPO strategy 
has demonstrated promising results in the bilingual Mulan.  

Another benefit of the SPO strategy is less artificial sounds. 
With traditional hard prediction prosody models, the targets of 
prosodic features are realized by adjusting the pitch and duration 
of selected units with scaling algorithms, such as PSOLA [10] or 
HNM [11]. Although these systems have the advantages of 
flexibility in controlling of prosody, they often suffer from 
significant quality decrease in timbre.  Mechanical or reverberant 
sounds are two typical distortions that are heard in speech 
synthesized this way. In our approach, since no scaling is 
performed, no artificial sound is induced. The synthesized 
speech sounds just like the voice talent of the speech corpus. 

It should be pointed out that all the benefits of SPO strategy 
will be achieved only when a good set of prosody-related 
features is used (these features can be derived from raw texts), 
when a prosodically enriched speech corpus is available, and 
when a powerful unit selection algorithm is developed. Although 
ample details on how to select the most suitable units from the 
unit inventory were presented in our previous paper [12], in the 
next section, the unit selection strategy is addressed again by 
answering the question of why it should be prosodic-constraint 
oriented under the SPO framework. A brief introduction of 
features used in unit selection is also included in Section 3. The 
speech corpus used is to be described in Section 4. 

 

3. UNIT SELECTION STRATEGY — PROSODIC-
CONSTRAINT ORIENTED (PCO) 

 

In concatenative TTS systems, the unnatural sound in synthetic 
utterances originates from three main sources. First, the finite 
ability of prosody prediction models leads to irregular or 
flattening intonation, Second, the pitch and time scale algorithms 
result in buzzing or mechanical sound. And finally, the 
unsmooth splicing of units causes a cracking sound. In 
conventional systems, since the pitch and duration are adjusted 
toward their target values with scaling algorithms, the acoustic 
features of units and their phonetic context are considered as the 
most important factors that will affect the quality of synthesized 
speech. Thus, instances of a unit are first clustered by their 
phonetic contexts [13][14], and then they are pruned by their 
distances from the core of the cluster or by their HMM scores.  

In those systems, prosodic features are used only to select one 
from several instances within the same cluster. When the 
prosodic features of the selected unit do not match their 
predicted target, they will be scaled with signal processing 
methods. However, under our SPO prosody strategy, no pitch 
and duration scaling are performed. Prosodic constraints become 
the only restriction for getting natural prosody. Thus, the unit 
selection scheme should be prosodic-constraint oriented. In our 
approach, all instances of a unit are clustered first by their 
prosodic constraints such as the stress level, break level, and 
position in phrase and word etc. These features are used to be the 
input for hard-prediction prosody models in conventional 
systems, yet, they are used to predict a cluster of instances for a 
unit in our approach. All instances in the same cluster are 
considered to have reasonable prosody features after pruning 
some exceptional cases. The most suitable one is then picked out 
by considering the continuity of concatenations.  

The degree of continuity for the splicing of two segments can 
be classified into 3 categories: 1) If the two segments are 
continuous segments in the unit inventory, they have very 
natural splicing. 2) Though the two segments are not continuous, 
if the spectral distance across the splicing boundary is small, no 
audible distortion occurs at the splicing boundary. This is a 
comfortable splicing. 3) The spectral distance across the splicing 
boundary is large. However, not all large distances are 
perceptible. We found that although the spectral distance for an 
unvoiced to unvoiced splicing is often large, fewer discontinuous 
sounds are audible. If a voiced segment is followed by an 
unvoiced segment or vice versa, the large spectral distance 
across the boundary is often imperceptible. Most of the 
concatenations in these situations are still comfortable. However, 
the chance for generating an annoying clicking sound increases 
for a voiced-voiced splicing. The natural splicing and the 
comfortable splicing are the kinds of concatenation we prefer. 
The unit selecting algorithm should pick out a series of segments 
from the prosodically reasonable pools of candidates to achieve 
the natural or comfortable splicing as much as possible.  

The design of our unit selection algorithm is based on all 
considerations discussed above. The syllable is the smallest unit 
for Mandarin, and the phoneme for English. A total of 7 
prosodic constraints are considered. They are: position in phrase; 
position in word; position in syllable; left tone; right tone; accent 
level in word; and emphasis level in phrase. Among them, 
position in syllable and accent level in word are effective only 
for English, and right/left tone are effective only for Mandarin. 
All instances for a base unit are clustered using a CART 
(Classification And Regression Tree) by querying about the 
prosodic constraints. The splitting criterion for CART is to 
maximize the reduction in the weighted sum of the MSEs (Mean 
Squared Error) of the three features: the average f0, the dynamic 
range of f0, and the duration. The MSE of each feature is defined 
as the mean of the squared distances from the feature values of 
all instances to the mean value of their host leaves. After the 
trees are grown, instances on the same leaf node have similar 
prosodic features. Two phonetic constraints, the left and right 
phonetic contexts and a smoothness cost, are used to assure the 
continuity of the concatenation between units. A concatenative 
cost is defined as the weighted sum of the source-target distances 
of the 7 prosodic constraints, the 2 phonetic constraints and the 
smoothness cost. The distance table for each prosodic/phonetic 
constraint and the weights for all components are first assigned 
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manually and then tuned automatically with the method 
presented in [15]. When synthesizing an utterance, prosodic 
constraints are first used to find a cluster of instances (a leaf 
node in the CART tree) for each unit, then, Viterbi search is 
used to find the best instance for each unit that will generate the 
smallest overall concatenative cost. The selected segments are 
then concatenated one by one to form a synthetic utterance.  

Our Mandarin TTS system based on the SPO strategy and 
PCO strategy has generated very natural sounding speech [16]. 
The two strategies are extended to English in this paper. 
Although the two languages adopt units in different size, they 
share the same unit selection algorithm and the same set of 
features for units. Therefore, the back-end (or the unit selection 
algorithm) in Mulan is language independent, and it can process 
unit sequences in a single language or a mixture of the two 
languages. However, there are still many front-end processes that 
are language specific. The architecture of Mulan is given in the 
next section. 

 

 
4. ARCHITECTURE OF MULAN 
 

Sproat [3] defined the ideal “multilingual” system as that all 
language-specific information should be stored in data tables and 
all algorithms should be shared by all languages. However, this 
ideal state is hard to achieve in practice since languages in 
different phyla, such as English and Mandarin, face quite 
different problems that are not easy to solve with the same 
algorithm. Thus, most multilingual systems have a common 
framework for all languages; yet, language-specific modules are 
still used. Our bilingual Mulan faces the same challenge. 
Furthermore, besides achieving the maximum sharing of 
components across languages, flexibility and extensibility are 
also very important features that should be considered during 
architecture designing. Although only two languages are to be 
handled in our current plan, it should not be difficult to add new 
languages in the future. With all these guidelines in mind, the 
architecture of the bilingual Mulan is designed as shown in 
Figure 1. It’s a Microsoft SAPI5.0/5.1 compatible [17] TTS 
engine. Raw texts or XML tagged texts are passed into the 
engine through the SAPI interface. The input text is first 

processed by the text-normalization module, which changes 
numbers (date, time and money, etc.) and symbols into readable 
text strings. This module is a language independent rule 
interpreter, although rules are normally language-specific. The 
output of the text-normalization module is then passed to the 
language-dispatching module, which assigns language IDs to 
sentences and words. The Mandarin front-end and the English 
front-end deal with all language-specific processes, such as 
phrasing and grapheme-to-phoneme conversion for both 
languages, word segmentation for Mandarin and abbreviation 
expansion for English. They are developed separately by experts 
of each language. The outputs from the two front-ends are 
merged together according to their original sequence, and then 
are converted into unit features by the feature-extraction module. 
It is very important that the unit features are calculated after they 
are merged back into the same sentence. Only at this stage, the 
sentence level prosodic constraints can be obtained. At last, the 
unit sequence and their features are sent to the unit selection 
module to find the most suitable series of segments for 
concatenating.  

In section 3, we have introduced the unit features and unit 
selection approach that is adopted. The remaining modules in 
our system are described below.   
 

4.1 The unified text-normalization module 
 

The text-normalization module is a language independent 
rule interpreter. It has two components. One is a pattern 
identifier. The other is a pattern interpreter which converts a 
matching pattern into a readable text string according to the rules. 
Each rule has two parts too. One is the definition of a pattern, 
and the other is the converting rule for the pattern. The definition 
part can either be shared by both languages or be specified to 
one of them. The converting rules are always language specific. 
Table 1 gives an example of a rule for date. The pattern in this 
rule has 5 components. Item1 and Item3 are integers between 1 
to 12 and 1 to 31 respectively. Item5 is a four-digit integer. The 
three numbers are delimited by two ‘/’. For example, 2/16/1998. 
The Chinese interpretation for the pattern is that Item5 
(explained as number one by one) followed by “年(year)”， then 
followed by item1 (as cardinal number), then by “月(month)”， 
then by item3 (as cardinal number) and then by “日(day)” at the 
end. The English interpretation for the pattern is that item1 (as a 
name for month) followed by item3 (as an ordinal number), then 
by item5 (as a number for years). The example above is 
converted to “一九九八年二月十六日 ” in Chinese and 
“February sixteenth nineteen ninety eight” in English, 
respectively. If a new language is to be added, the rule 
interpreting module does not need to be changed. Only new rules 
for the new language should be added.  

 

Table 1: An example of a rule for date 
------------------------------------------------------------------------------------------------------------------- 

Rule name: date07_2 
------------------------------------------------------------------------------------------------------------------- 

Rule pattern: 
Item1 (Pp) TOKEN_INT (F) isMonth； 
Item2 (Pp) TOKEN_EM_DASH 
Item3 (Pp) TOKEN_INT (F) isDay;  
Item4 (Pp) TOKEN_EM_DASH 
Item5 (Pp) TOKEN_INT (L) =4;  

------------------------------------------------------------------------------------------------------------------- 

Chinese interpretation: 

SAPI interface 

unified text 
normalization 

language  
dispatch  

unit feature 
extraction 

common 
rules 

language 
specific 

rules  

mandarin 
front-end 

english 
front-end 

unified  
unit selection 

unit 
inventory 

Figure 1. Architecture of Microsoft Mulan 
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Item5 (Pnt) IdenNum1 && Item0 (Pnc) 年 
Item1 (Pnt) Cardinal && Item0 (Pnc) 月 
Item3 (Pnt) Cardinal && Item0 (Pnc) 日 

------------------------------------------------------------------------------------------------------------------- 

English interpretation: 
Item1 (Pnt) Month 
Item3 (Pnt) Ordinal 
Item5 (Pnt) YearNum 

 

4.2 The language-dispatch module and unit feature 
extraction module 

 

The language dispatching module is very unique in our bilingual 
Mulan. It assigns language IDs to sentences or words. On 
sentence level, three modes are processed currently. They are 
pure English, pure Chinese, and Chinese with embedded English. 
English with Chinese embedded is not considered now. In the 
Chinese with English embedded mode, each word in the 
sentence is assigned an ID (either Chinese or English). Sentences 
or words are then dispatched to the corresponding front-end. The 
outputs from the two front-ends are merged back according to 
their original sequence in a sentence. Thus, all sentence level 
information will be kept. The 7 prosodic features and 2 phonetic 
features of all units (Chinese syllables or English phonemes) in 
the sentence are then extracted by the feature extraction module. 
They will be used during unit selection. 
  

4.3 The speech corpus 
 

A bilingual speech corpus collected at MSR Asia is used. It 
contains approximately 15,000 Mandarin utterances and 10,000 
English utterances. The whole corpus is read by a professional 
female voice talent who is a native Chinese speaker and can 
speak English fluently. Forced alignment is performed to label 
the syllable boundaries in Mandarin and phoneme boundaries in 
English. Each unit in the corpus is indexed by a PCO CART.  

The English utterances, the Mandarin utterances, and the 
mixed utterances generated by Mulan sound quite natural 
according to our informal listening test. Sample waves can be 
heard at: 
http://research.microsoft.com/~echang/projects/tts/mulan.htm.  
  

5. DISCUSSION 
 

The SPO prosody strategy and PCO unit selection strategy were 
first proposed for Mandarin TTS in our previous study and were 
extended to English in this paper. Very natural utterances have 
been generated in both languages. Since Mandarin is 
representative of tonal languages and English represents the 
stress languages, the successful implementation of the SPO and 
PCO strategy in both languages shows great potential of 
extensibility of the two strategies. They will be applied to more 
languages in our future studies.  

The two strategies have some limitations, though. First, 
their success depends heavily on the quality of the speech corpus 
including the prosodic and phonetic coverage of units and the 
consistency of recording environment. Thus corpus design and 
collection are very important for constructing a natural TTS 
system.  Defects in speech corpus are difficult to recover with 
post-processing. Secondly, the speaking style of the speech 
corpus sets an upper limit for the synthesized speech. It is almost 
impossible to synthesize speech beyond the style of the original 
speech corpus under the no scaling framework.  In our future 

study, generating speech in different styles will be one of the 
topics. 
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