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ABSTRACT

A method for the automatic segmentation of speech signals is de-
scribed. The method is dedicated to the construction of a large
database for a Text-To-Speech (TTS) synthesis system. The main
issue of the work involves the refinement of an initial estimation of
phone boundaries which are provided by an alignment, based on
a Hidden Markov Model (HMM). Multi-layer perceptron (MLP)
was used as a phone boundary detector. To increase the perfor-
mance of segmentation, a technique which individually trains an
MLP according to phonetic transition is proposed. The optimum
partitioning of the entire phonetic transition space is constructed
from the standpoint of minimizing the overall deviation from hand
labelling positions.
With single speaker stimuli, the experimental results showed that
more than 95% of all phone boundaries have a boundary devia-
tion from the reference position smaller than 20 ms, and the re-
finement of the boundaries reduces the root mean square error by
about 25%.

I. INTRODUCTION

Since the development of a corpus-based concatenative TTS [1][2],
the quality of synthesized speech signals has been improved in
naturalness and intelligibility. Most corpus-based TTS systems
involve a large database which is built from more than a 1 hour
speech corpus [2]. Generating such a huge database is a very
time-consuming process in most TTS systems, hundreds of hours
are required to label large database concatenative TTS systems by
hand [2]. Another drawback of hand labelling is that the results
lack consistency because of the subjective decisions involved [3].
Thus, the automatic labelling of a large amount of speech would
be highly desirable.

Early studies on automatic labelling were largely based on
what had been learned from automatic speech recognition (ASR)
[4]. In these studies, an individual phoneme is modelled by HMM,
automatic labelling is implemented by the alignment of a phoneme
sequence on the given speech signals. The major difference be-
tween ASR and automatic phone labelling is that the phoneme se-
quence is already known in automatic phone labelling, hence the
onset or termination time of each phone inventory is more impor-
tant in phone labelling, whereas the identities of HMM are more
important in ASR. The HMM based approach continue to have an
important role in automatic labelling task.

In HMM based phoneme segmentation, segment boundaries
are determined by maximizing a likelihood function, hence this
method is based on a statistical criterion. Assuming that phone

boundaries are determined not only by explicit boundaries obtained
from HMM, but also implicit boundaries obtained directly from
the speech signal, a more accurate estimation of phone bound-
aries can be achieved by combining implicit segmentation with
HMM segmentation. Studies in this area have been reported in
[3][5][6][7]. In [3], correlations between neighboring LPCs were
used to determine implicit boundaries. A refinement of the seg-
ments based on the homogeneity of the speech segments was pro-
posed in [5]. Multi-Layer-Perceptron (MLP) was also applied to
achieve an improvement in the accuracy of the segmentation [6][7].

In this work, several specialized MLPs were used to refine
different types of phonetic transitions. In [6], the use of spe-
cialized MLPs failed to yield remarkable improvements over the
single MLP case. In a similar study, however, the performance
of automatic segmentation was improved by phone-specific MLPs
[7]. One of the reasons for the inconsistent performance of mul-
tiple MLPs lies in the partitioning of the entire phone-transition
space and allocating MLPs to each partition. In [6], four differ-
ent MLPs were used, each of which specialized in one of the four
possible combinations of voiced and unvoiced phonemes in a tran-
sition. Since such a pre-determined partitioning does not consis-
tently guarantee optimal partitioning in the sense of minimizing
the overall deviation from reference phone boundaries, the perfor-
mance may be inconsistent, even when more than one MLP were
used.

To cope with this problem, a joint partitioning and training al-
gorithm is proposed in this work, which is based on a data-driven
approach. A similar approach was investigated in [8] in which
multiple MLP-based predictors were designed to implement low
bit rate speech coders. The optimized set of MLPs were con-
structed by minimizing the overall distortion between manually
labelled positions and estimated ones. Moreover, the set of pho-
netic transitions for each MLP is automatically determined.

To evaluate the performance of the proposed phone boundary
refinement algorithm, we compared the results before/after apply-
ing MLP-based postprocessing.

This paper is organized as follows. Section II provides an
overview of the proposed refinement algorithm. The method used
for partitioning and training multiple MLPs is introduced in Sec-
tion III. Performance evaluations and concluding remarks are pre-
sented in Sections IV and V.

II. MLP-BASED BOUNDARY REFINING SYSTEM

The overall block diagram of the MLP-based phone boundary re-
fining system is shown in Fig. 1. HMM-based explicit segmenta-
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Fig. 1. Block diagram of an MLP-based phone boundary refining
system

tion is initially performed with a given phonetic transcription and
speech signal. This procedure is implemented by Viterbi decod-
ing. The results from HMM segmentation are used as the initial
phone boundaries for the subsequent refinement procedure. Final
phone boundaries are obtained by postprocessing involving MLP.

II.A. HMM segmentation overview

The phoneme set of the underlying TTS includes 49 monophones,
23 diphones, silence and a short pause. In training HMM parame-
ters, a typical left-to-right model is used. Feature parameters con-
sist of 13 MFCCs(Mel Frequence Cepstrum Coefficients), 13 delta
MFCCs and 13 delta-delta MFCCs. MFCCs are computed every
10 ms and, hence, the time resolution of the HMM segmentation
is 0.01 s. We used HTK to build all phonemes’ HMMs and to per-
form phoneme alignment. Several experiments were performed to
determine the appropriate number of states and gaussian compo-
nents which provide the best results. Based on experiments, the
best results were achieved in the case of 5 states and 3 gaussian
components for all phonemes.

II.B. MLP-based boundary refining

MLP was applied to refine the initial phone boundaries. The time
alignment of the input features and target outputs are shown in Fig.
2. The input features of MLP include the following acoustic fea-
ture variables : 1) 4 consecutive MFCCs 2) 2 short-time ZCR(Zero
Crossing Rate), 3) 1 SFTR (Spectral Feature Transition Rate)[9],
4) SKLD (Symmetrical Kullback-Leibler Distance)[10]. Hence,
the total number of input nodes is 56. SFTR and SKLD are com-
puted from the two consecutive frames. As shown in Fig. 2, the
target output of MLP is set to 1.0 when a phone boundary exists
between the left two consecutive frame and the right two consec-
utive frames. Otherwise, the target output of the MLP was set to
0. Note that if an adjacent frame is a boundary frame, the target
output is 0.5. This allows MLP to have a slowly varying transition
effect in the neighboring boundary frames [7].

Phoneme-A Phoneme-B
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00 0 0

Input 
parameters
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Fig. 2. Relationship between MLP input and target output

Each MLP contains 1 hidden layer having 15 nodes. We per-
formed several experiments to investigate the relationship between
the number of hidden layers and the accuracy of the refined phone
boundaries. No clear relationship between them was found. We
therefore concluded that one hidden layer is sufficient for our ap-
plication. A standard error propagation algorithm [11] is used to
train the MLPs. To decrease errors at the phone boundaries, the
error for the top (output) node can be adaptively emphasized ac-
cording to its error pattern. For example, if the target output is
1.0 and the actual MLP output is less than 0.5, the error for the
top node is multiplied by 2. Applying adaptive weight to the out-
put node also alleviates the training corpus bias problem which is
caused by the fact that the frequency of the target output 1.0 is
much smaller than that of 0.0.

In online processing, the acoustic feature variables used in
training procedure are input to a trained MLP and the position of
maximum MLP output is taken as the refined phone boundary. Fig.
3 represents the search area for refinement. Limiting the search
area shown in Fig. 3 has the advantages of avoiding an exhaustive
search and removing suspicious phone boundaries.

III. CONTEXT-DEPENDENT PHONE BOUNDARY
REFINING

Assuming that the spectral trajectory of a speech signal at the
phone boundary is affected by the underlying context, a more ac-
curate estimation of phone boundaries can be achieved by apply-
ing phonetic information to the refining process. This suggests
a context-dependent phone boundary refinement method where a
specialized MLP is selected according to the phonetic transition.
However, two problems should be considered in implementing this
method; 1) How to build the optimum set of MLPs 2) How to par-
tition the entire phoneme space. To solve these problems, a joint
classification/training algorithm is proposed in this paper. The pro-
posed algorithm is based on a minimum mean square error crite-
rion, hence the resulting set of MLPs and partitioning provides the
minimum overall deviation from the reference phone boundaries.
The overall procedure for MLP set designing is shown in Fig. 4.
Detailed description for each step is as follows :

Step-0. Initialization: Given training set{X(n), yd(n)}N
n=1 where

X(n), yd(n) and N are n-th MLP input feature vectors, target
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value, and the total number of training patterns, respectively, an
initial MLP set C0 = {Φ0

k}K
k=1 is built by an adequate method,

whereK is the total number of MLPs. Let{tm}M
m=1 be the refer-

ence phone boundaries, then the phone transition indexPc(m) for
them-th phone boundary is given by one of the possible combina-
tions of the left-right phonemes. Set thresholdsε, D−1 = ∞ and
i = 0.

Step-1. Classification: For each phoneme combination, find the
optimal MLP index having minimum overall distances between
the MLP outputs and the target values.

ci(Pj) = arg min
k
{
X

Pc(m)=j

X
n∈∆m

|yd(n)− F (Φi
k,X(n))|2}

(1)
whereci(Pj) is the optimal MLP index for thej-th phoneme com-
bination at thei-th iteration andF (Φi

k,X(n)) is thek-th MLP
output, when the MLP input is given byX(n). ∆m denotes the
phone transition interval for them-th boundary, which is given by

∆m = {t| tm−1 + tm

2
≤ t ≤ tm + tm+1

2
} (2)

Step-2. Partioning: The training set{X(n), yd(n)}N
n=1 is par-

titioned intoAi = {si
k; k = 1, ..., K} according to the optimal

indexci(Pj) from step-1. Let si
k be thek-th cell of partitionAi,

then

si
k = {{X(n), yd(n)}|n ∈ ∆m, where Pc(m) ∈ W i

k} (3)

where
W i

k = {Pj |ci(Pj) = k} (4)

Note that all{X(n), yd(n)} in si
k have the optimum MLPΦi

k.

Step-3. Convergence test: GivenAi andCi = {Φi
k}K

k=1, com-
pute the overall distortion at thei-th iteration

Di =

KX
k=1

X
Pj∈si

k

min
k
{
X

Pc(m)=j

X
n∈∆m

|yd(n)− F (Φi
k,X(n))|2}

(5)
If (Di−1 − Di)/Di ≤ ε, stop withAi, W i

k andCi = {Φi
k}K

k=1

describing final partitioning and MLP set. Otherwise continue.
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Fig. 4. MLP set designing procedure

Step-4. Re-training MLPs: Updating equation fork-th MLP pa-
rameters is given by

∆Φi
k = η

X
{X(n),yd(n)}∈si

k

5
Φi

k

1

2
|yd(n)−F (Φk,X(n))|2 (6)

Note that thek-th MLP is trained with training patterns having an
MLP index k. After re-training all MLPs, update a MLP setCi

with newly trained MLPs. Replacei by i + 1 and go toStep-1.

The algorithm iteratively finds the optimum partitioning with
a given set of MLPs and updates each MLP to have the minimum
mean square error within each cluster.

In online processing, the phone transition of the underlying
frame is first taken, an appropriate MLP for the current phone com-
bination is then selected usingAi, W i

k from equation (4).

IV. EXPERIMENTAL RESULTS

The speech corpus used in our experiments consists of 1,000 utter-
ances from a TTS talker. This corresponds to 55250 phone bound-
aries and 476902 feature vectors. The entire corpus was split into
400 utterances for training and 600 utterances for the test. After
training, the test utterances were segmented in four ways: 1) by
HMM only, 2) by HMM + the refinement algorithm with a single
MLP 3), by HMM + the refinement algorithm with multiple MLPs
specialized by the voicing status of phoneme [6], 4) by HMM +
the refinement algorithm with multiple MLPs obtained by the joint
classification/retraining algorithm. Note that both methods (3), (4)
have the same number of MLPs (=4).

Since the goal of this work is to produce phone boundaries
which are as close as possible to the manually segmented ones,
we evaluated the performance with RMSE(Root Mean Square Er-
ror) and MAE(Mean Absolute Error) between phone boundaries
obtained by hand and the estimated ones. It was empirically es-
tablished that a segmentation error of 20 ms is usually acceptable.
Thus we also computed the percent of all phone boundaries that
have boundary deviations smaller than 20 ms. The results are sum-
marized in Table 1. The results obtained by MLP-based refinement
methods are consistently better than the results of the HMM-based
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Table 1. Performance of automatic labelling
method RMSE MAE % error

(msec) msec <20msec

HMM olny 13.5 9.3 90.4
HMM + Single MLP 12.2 7.7 91.2

HMM + 4 MLPs (off-line) 10.7 6.8 93.0
HMM + 4 MLPs (joint) 10.1 6.2 95.2

10 20 30 40 50 60
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100
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error range < (msec)

Joint
Offline

Fig. 5. Cumulative distribution of the difference in location of the
phone boundaries obtained by the proposed method and the re-
finement algorithm with multiple MLPs specialized by the voicing
status of the phoneme.

method alone. Fig. 5 shows a comparison between the phone
boundaries obtained by the proposed method and the refinement
algorithm with multiple MLPs specialized by the voicing status of
the phoneme [6]. In the figure, the white bars and dark bars cor-
respond to the proposed method and the method [6], respectively.
It appears that the proposed joint classification/retraining method
provides superior performance to the pre-determined partitioning
method.

An informal listening test was conducted to compare the syn-
thesized speech signals from the two databases; one using the
proposed automatic segmentation (HMM+MLP) and the other us-
ing manual segmentation. The baseline TTS was a corpus-based
waveform concatenating TTS system that employed a PSOLA (Pit-
ch Synchronous Over Lap Addition) technique. 15 listeners par-
ticipated and were asked to judge which stimulus was preferred
over the other. The test data set consisted of 10 pairs of sentences.
The result showed that the speech signals synthesized using the
database from the proposed method were preferred for 58% of the
stimuli. This results indicated that the proposed automatic seg-
mentation can successfully replace manual segmentation.

V. CONCLUSION

A new phone boundary refining algorithm is described. MLP was
employed to modify the phone boundary after HMM-based seg-
mentation. The unique issues of this study include the optimal
partitioning of phonetic transition and the construction of an opti-
mal set of MLPs from the standpoint of a minimum mean square

error criterion.
Both subjective and objective test ensured the superiority of

the proposed method. It would be concluded that the proposed
automatic segmentation method can yield perceptually satisfactory
results and, given the other advantages, may well be preferred over
manual segmentation.
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