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ABSTRACT

Automatic, data-driven grapheme-to-phoneme conversion is a chal-
lenging but often necessary task. The top-down strategy implicitly
followed by traditional inductive learning techniques tends to dis-
miss relevant contexts when they have been seen too infrequently
in the training data. The bottom-up philosophy inherent in, e.g.,
pronunciation by analogy, allows for a markedly better handling of
rarer contexts, but proves nonetheless equally dependent on local,
language-dependent alignments between letters and phonemes. This
paper proposes an alternative bottom-up approach, dubbedpro-
nunciation by latent analogy, which adopts a global definition of
analogy, more amenable to obviate such supervision. For each out-
of-vocabulary word, a neighborhood of globally relevant pronunci-
ations is constructed through an appropriate data-driven mapping
of its graphemic form. Phoneme transcription then proceeds via
locally optimal sequence alignment and maximum likelihood po-
sition scoring. This method was successfully applied to the speech
synthesis of proper names with a large diversity of origin.

1. INTRODUCTION

Assigning phonemic/phonetic transcriptions to graphemic word
forms is of critical importance to all spoken language applica-
tions. In automatic speech recognition (ASR), the search mod-
ule relies on phonetic transcriptions to select appropriate acous-
tic models against which to score the input utterance. Likewise,
in text-to-speech (TTS) synthesis, phonemic transcriptions are re-
quired for the selection of the proper TTS units from which to
generate the desired waveform. Depending on the particular em-
phasis and/or application considered, the process of constructing
such transcriptions goes by different names, e.g., grapheme-to-
phoneme conversion [1], baseform generation [2], pronunciation
modeling [3], letter-to-sound translation [4], and text-to-phoneme
mapping [5], to name but a few. Since this paper is primarily moti-
vated by a speech synthesis application, we adopt the terminology
“grapheme-to-phoneme conversion” (GPC).

For most languages, especially English, GPC is a challenging
task. One approach is to rely on expert knowledge from trained
linguists to manually create each entry in an underlying pronunci-
ation dictionary. But this is time-consuming, inherently language-
dependent, often prone to inconsistencies, and not applicable to the
real-time processing of words not present in the dictionary (out-of-
vocabulary words). This has sparked interest in data-driven GPC
methods, which leverage a variety of statistical algorithms to au-
tomatically derive pronunciation from orthography. In ASR ap-
plications, this is typically done by exploiting the available acous-
tic side information (see, e.g., [3]). In TTS applications, existing
pronunciation dictionaries serve as training data to extract suitable

conversion rules, whose role is to encapsulate language regularity
within a manageably small number of general principles (cf. [4]).

Such extraction is usually based on inductive learning tech-
niques involving, e.g., decision trees [6] or Bayesian networks [7].
Take the case of a decision tree. The problem is to classify an
input grapheme sequence into the appropriate output phoneme se-
quence. Training therefore proceeds using sequence pairs, aligned
with the help of language-dependent “allowables,”, i.e., individual
pairs of letters and phonemes which are allowed to correspond [8].
The tree is first grown by iteratively splitting nodes to minimize
some measure of spread (e.g., entropy), and then pruned back to
avoid unnecessary complexity and/or overfitting. During classifi-
cation, the tree is traversed on the basis of questions asked about
the context of each grapheme, until a leaf corresponding to a par-
ticular phoneme (or phoneme string) is reached. As is well known,
question selection and pruning strategy heavily influence classifi-
cation granularity and generalization ability. Typical tree designs
attempt to strike an acceptable balance between the two.

But this trade-off has a price: the effective set of questions
ends up best covering those phenomena which are most repre-
sented in the training data. In contrast, rarely seen contexts tend
to be overlooked, regardless of their degree of similarity or rel-
evance in a given situation. For out-of-vocabulary words which
largely conform to the general principles derived from the train-
ing sequences, this is relatively inconsequential. But many other
words, such as names (especially those of foreign origin), may
comprise a number of irregular patterns rarely seen in the dictio-
nary, for which this limitation may be more deleterious.

Hence the interest in bottom-up, rather than top-down, strate-
gies for GPC, e.g., pronunciation by analogy [9]. The idea is to as-
semble the pronunciation for an unknown word by matching sub-
strings of the input to substrings of known lexical words, hypoth-
esizing a partial pronunciation for each matched substring derived
from local, individual letter-phoneme alignments, and concatenat-
ing the partial pronunciations. This strategy results in markedly
better handling of rarer contexts [10], but the letter-phoneme align-
ment process on which it relies remains problematic, due to the
need for “allowables” as mentioned above. Although recent work
has attempted to relax some of this supervision, the handling of
“nulls” would seem to remain highly language-dependent [11].

The goal of this paper is to present an alternative bottom-up
approach, more amenable to unsupervised processing, in which
we decouple the two sub-problems of finding neighbors and as-
sembling the pronunciation. When finding neighbors, the concept
of analogy is cast in a global (latent) sense, which circumvents
the need for individual letter-phoneme alignments. Then, when
assembling the pronunciation, local information emerges automat-
ically from the influence of the entire neighborhood, which by-
passes the need for any external linguistic knowledge. The paper
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is organized as follows. The next section gives a general overview.
Sections 3 and 4 examine the two main building blocks of the pro-
posed approach. Finally, Section 5 reports the outcome of prelim-
inary experiments conducted on a diverse corpus of proper names.

2. OVERVIEW

While traditional inductive learning techniques tend to exhibit good
performance on “conforming” words, they degrade rapidly when
encountering patterns unusual for the language considered [8]. As
an illustration, consider the proper name of Indian origin:Krish-
namoorthy, for which the phoneme sequence:

k r I S n @ m U r T i (1)

represents a good estimate of the correct pronunciation. Because
this name is not part of the underlying Apple dictionary, the GPC
converter currently bundled with MacOS X comes up with the (in-
correct) sequence:

k r I S n { m u 3 r D i (2)

after traversing a dedicated 2000-node decision tree trained on 56K
names (predominantly of Western European origin).

Comparing (2) with (1), three errors stand out: (i) the schwa
“@” is replaced by the full vowel “{”, (ii) the unvoiced “T” is
replaced by the voiced version “D”, and (iii) the stressed vowel
“U” is replaced by the improper compound “u 3”. These errors
can all be traced to poor generalization properties. Specifically,
the ending “3 r D i” results from the influence of a large number of
names in the training dictionary ending in “orthy,” such asFoxwor-
thy. The vowel compound comes from the inability of this pattern
to account for “oo,” hence the awkward attempt to have it both
ways by concatenating the two vowels. Finally, the full vowel “{”,
commonly seen after “n” in names likeMcNamara, points to an
obvious failure to connectKrishnamoorthy with the more closely
relatedKrishna.

This example underscores the importance of exploitingall po-
tentially relevant contexts, regardless of how sparsely seen they
may have been in the training data. In order to do so, pronuncia-
tion by analogy eschews the inherently top-down stategy of deci-
sion trees in favor of a bottom-up approach relying on the concept
of lexical neighborhood. Loosely speaking, two words are lexical
neighbors if they share a common graphemic substring [9]. The
problem with this concept is that it offers no principled way of
deciding which neighbor(s) of a new word can be deemed to sub-
stantially influence its pronunciation. As a case in point, from a
Levenshtein string-edit distance perspective, the wordsalthough,
through, andenough would likely be considered lexical neighbors,
while in fact they have absolutely no bearing on each other when
it comes to the pronunciation of the substring “ough.”

What seems to be needed is a concept of neighborhood which
is not specified exclusively in terms of graphemic substrings, but
also includes phonemic information. This leads us to the following
notion oforthographic neighborhood.

Given an out-of-vocabulary word, we define its orthographic
neighborhood as the set of in-vocabulary words which are suf-
ficiently “close” to it, in some suitable metric adopted from la-
tent semantic analysis (LSA). LSA has already proven effective
over the past decade in a variety of other fields, including query-
based information retrieval, word clustering, document/topic clus-
tering, large vocabulary language modeling, and semantic infer-
ence for voice command and control [12]. Here, LSA is used to
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Fig. 1. Pronunciation by Latent Analogy.

determine what grapheme strings are most characteristic of words,
and map all in-vocabulary words onto the space of all charac-
teristic grapheme strings. The outcome is a set oforthographic
anchors(one for each in-vocabulary word), determined automat-
ically from the underlying vocabulary. Each out-of-vocabulary
word is then compared to each orthographic anchor, and the corre-
sponding “closeness” evaluated. If this closeness is high enough,
the associated in-vocabulary word is added to the orthographic
neighborhood of the out-of-vocabulary word.

Neighborhood entries can thus be thought of as the ortho-
graphic generalization of candidate pronunciation variants in ASR,
and the LSA formalism is seen to play a role comparable to that
of contextual questions in the decision tree framework. Compared
to the latter, however, it offers several benefits. First, it obviates
the need for explicit, language-dependent alignments between in-
dividual pairs of letters and phonemes. Second, grapheme sub-
strings with hidden similarities having a bearing on pronunciation
are automatically discovered and exploited. And third, closeness
is defined globally across an entire sequence, so words with higher
relevance across multiple contexts can easily be identified.

Once an orthographic neighborhood is available for a given
out-of-vocabulary word, it is straightforward to gather the corre-
sponding set of pronunciations from the existing dictionary. We
refer to this set as thepronunciation neighborhood. Phonetic ex-
pansions in the pronunciation neighborhood have the property to
contain at least one sub-string which is “locally close” to the pro-
nunciation sought. The next step is therefore to automatically align
these pronunciations to find common elements between them. The
more common a particular element in a particular position, the
more likely it is to belong to the out-of-vocabulary phonetic tran-
scription. Thus, the maximum likelihood estimate at every posi-
tion is the best candidate for the final pronunciation. The proce-
dure, illustrated in Fig. 1, is entirely data-driven and requires no
human supervision.

3. ORTHOGRAPHIC NEIGHBORHOODS

Let V, |V| = M , be a collection of words of interest (e.g., a set
of names), andT , |T | = N , the set of all strings ofn letters1 that
can be produced from this vocabulary (including markers for word
beginning and ending). Typically,M varies between 10,000 and
100,000; with the choicen = 3,N is of the order of 10,000.

We first construct a (N ×M ) matrixW , whose entrieswij

suitably reflect the extent to which eachn-letter stringti ∈ T ap-

1Of course, strings ofn graphemes could also be used, but this does not
seem to have an appreciable effect on performance. Note that opting for
letters rather than graphemes preserves language independence.
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peared in each wordwj ∈ V. From [12], a reasonable expression
for wij is:

wi,j = (1− εi)
ci,j
nj

, (3)

whereci,j is the number of timesti occurs in wordwj , nj is the
total number ofn-letter strings present in this word, andεi is the
normalized entropy ofti in V. The global weighting implied by
1− εi reflects the fact that twon-letter strings appearing with the
same count in a particular word do not necessarily convey the same
amount of information; this is subordinated to the distribution of
then-letter strings in the entire vocabularyV.

Then we perform a singular value decomposition (SVD) ofW
[12] as:

W = U S V T , (4)

whereU is the (N × R) left singular matrix with row vectorsui

(1 ≤ i ≤ N ), S is the (R×R) diagonal matrix of singular values
s1 ≥ s2 ≥ . . . ≥ sR > 0, V is the (M ×R) right singular matrix
with row vectorsvj (1 ≤ j ≤ M ),R� M,N is the order of the
decomposition, andT denotes matrix transposition.

This (rank-R) decomposition defines a mapping between: (i)
the set ofn-letter strings inT and, after appropriate scaling by the
singular values, theR-dimensional vectors̄ui = uiS (1 ≤ i ≤
N ), and (ii) the set of words inV and, again after appropriate scal-
ing by the singular values, theR-dimensional vectors̄vj = vjS
(1 ≤ j ≤ M ). The latter are the orthographic anchors mentioned
in the previous section. The dimensionR is bounded from above
by the rank of the matrixW , and from below by the amount of
distortion tolerable in the decomposition. Values ofR in the range
R = 50 toR = 100 seem to work well.

By definition, theR-dimensional vector space spanned by the
vectorsūi andv̄j minimally describes the linear space spanned by
W , i.e., the underlying vocabularyV and set ofn-letter strings
T . Thus, the relative positions of the orthographic anchors in
that space reflect a parsimonious encoding of the orthography used
in the training data. This means that any out-of-vocabulary word
mapped onto a vector “close” (in some suitable metric) to a partic-
ular orthographic anchor would be expected to be closely related
to the corresponding in-vocabulary word, and conversely any in-
vocabulary word whose orthographic anchor is “close” to a partic-
ular vector in the space would tend to be related to the correspond-
ing out-of-vocabulary word. This offers a basis for determining
orthographic neighborhoods.

To proceed, however, we first have to specify how to represent
an out-of-vocabulary word, saỹwp (wherep > M ), in the above
vector space. For eachn-letter string inT , we compute for this
word the weighted counts (3) withj = p. The resulting feature
vector, a column vector of dimensionN , can be thought of as an
additional column of the matrixW . Thus, assuming the matri-
cesU andS do not change appreciably, the SVD expansion (4)
implies:

w̃p = U S ṽ T
p , (5)

where theR-dimensional vector̃v T
p act as an additional column

of the matrixV T . This in turn leads to the definition:

˜̄vp = ṽp S = w̃ T
p U . (6)

It remains to define an appropriate closeness measure to com-
pare˜̄vp to each of thēvj ’s. From [12], a natural metric to consider
is the cosine of the angle between them. Thus:

K(˜̄vp, v̄j) = cos(ṽpS, vjS) =
ṽp S

2 v T
j

‖ṽpS‖ ‖vjS‖
, (7)

for any 1 ≤ j ≤ M . Using (7), it is a simple matter to rank
all orthographic anchors in decreasing order of closeness to the
representation of a given out-of-vocabulary word. The associated
orthographic neighborhood follows by retaining only those entries
whose closeness measure is higher than a pre-set threshold.

4. SEQUENCE ALIGNMENT

Such orthographic neighborhood comprises (in-vocabulary) word
entries. From the underlying dictionary, we can easily deduce
the associated pronunciation neighborhood (comprising phoneme
strings). In principle, each phoneme string in this pronunciation
neighborhood contains at least one sub-string which is germane to
the input out-of-vocabulary word. Thus, the final pronunciation
can be assembled by judicious alignment of appropriate phoneme
sub-strings from the pronunciation neighborhood.

To carry out such alignment, we adopt a sequence analysis ap-
proach commonly used in molecular biology. In bioinformatics,
a number of algorithms have been developed to align similar pro-
tein sequences in order to find groups of related proteins, and ulti-
mately identify likely genes in the genome. The basic framework
is dynamic programming, with provisions for the existence of gaps
in the alignment, and the possibility of specific amino acid pair-
ings. To find maximally homologous sub-sequences, techniques
have also been devised to locally align specific regions of two pro-
tein sequences (see, e.g., [13]). This approach has recently been
modified for orthographic sequences to enable computer-assisted
morphological lemma discovery [14].

We proceed in analogous fashion to apply the underlying frame-
work to pronunciation alignment. Assume, without loss of gener-
ality, that we want to align two phoneme stringsϕ1 . . . ϕk . . . ϕK

andψ1 . . . ψ` . . . ψL (of lengthK andL, respectively) from the
pronunciation neighborhood, and denote byA(k, `) the best (min-
imum cost) alignment betweenϕ1ϕ2 . . . ϕk andψ1ψ2 . . . ψ`. If
C(k, `) is the cost of substituting phonemeψ` for phonemeϕk,
g(i, k) the cost of a gapϕi . . . ϕk in the first string, andh(j, `)
the cost of a gapψj . . . ψ` in the second string, the basic dynamic
programming recursion can be written:

A(k, `) = min{A(k − 1, `− 1) + C(k, `), G(k, `), H(k, `)} ,
(8)

where:

G(k, `) = min
0≤i≤k−1

{A(i, `) + g(i, k)} , (9)

H(k, `) = min
0≤j≤`−1

{A(k, j) + h(j, `)} , (10)

with initial conditionsA(k, 0) = h(0, k), 1 ≤ k ≤ K and
A(0, `) = g(0, `), 1 ≤ ` ≤ L.

We select as first reference phoneme sequence the entry corre-
sponding to the closest orthographic anchor comprising a beginning-
of-word marker, as determined above. We then proceed in left-to-
right fashion until we have aligned the pronunciation of every word
in the neighborhood to its immediate predecessor. The maximum
likelihood estimate is then computed for every position, by simply
using the observed phoneme counts at this position. The outcome
is the final pronunciation sought.

5. EXPERIMENTS

Preliminary experiments were conducted using an underlying train-
ing vocabulary ofM = 56, 514 names, predominantly of Western
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European origin. At this stage, lexical stress markers were omit-
ted from all pronunciations, leaving for future work the important
aspect of stress assignment. For this vocabulary the number of
unique 3-letter strings turned out to beN = 8, 257. Also avail-
able was a disjoint set of84, 193 names reflecting a much larger
diversity of origin. From this set we extracted as test data a subset
of 500 names whose pronunciations comprised 3160 phonemes.

As baseline system, we used the decision tree-based GPC con-
verter bundled with MacOS X, previously mentioned in Section 2.
On the above (difficult) test set, the phoneme error rate (taking into
account substitutions, insertions, and deletions) was 23.3%, and
the pronunciation error rate 80.2%. That is, only 1 in 5 phoneme
sequences was actually error-free when compared to a manually
derived pronunciation produced by a human expert.

We performed the SVD of the(8257 × 56, 514) matrix W
constructed from the training data using the single vector Lanczos
method [12]. Orthographic anchors were obtained usingR = 100
for the order of the decomposition. Each of the (out-of-vocabulary)
words in the test data was then compared to these orthographic an-
chors and the resulting orthographic and pronunciation neighbor-
hoods assembled accordingly, with the thresholds chosen so that
on the average each neighborhood comprised about 200 entries.

Entries in each pronunciation neighborhood were then aligned
with a rather primitive version of (8), where: (i) exact phoneme
matches were encouraged with a zero substitution cost, (ii) vowel-
consonant substitutions were prohibited with an infinite substitu-
tion cost, and (iii) substituting a vowel (respectively a consonant)
for any other vowel (respectively any other consonant) was given
the same penalty as introducing a gap—the latter clearly adopting
a highly simplistic view of phonology, especially regarding vow-
els. The final pronunciation was produced using the maximum
likelihood estimate at each position, as described earlier.

On the above test set, we observed a phoneme error rate of
13.4%, and a pronunciation error rate of 38.0%. Thus, despite
the above simplification, pronunciation by latent analogy shows
substantial improvement compared to the decision tree method.
To illustrate, for the nameKrishnamoorthy, the expansion:

k r I S n @ m u r T i (11)

was the pronunciation returned by the proposed approach. A com-
parison with (1) and (2) shows that, while still not entirely cor-
rect, this expansion solves many of the problems observed in deci-
sion tree GPC. This bodes well for the general applicability of the
method to generic GPC in speech synthesis applications.

6. CONCLUSION

Common inductive learning techniques used in automatic GPC
(e.g., decision trees) do not always generalize well, as in the case
of proper names of foreign origin for example. In contrast, meth-
ods based on pronunciation by analogy exploit all potentially rele-
vant contexts, regardless of how sparsely seen they may have been
in the training data. But they tend to require external linguistic
knowledge, be it for local letter-phoneme alignments, or the dis-
covery of paradigmatic relationships. We have proposed an alter-
native bottom-up strategy, completely unsupervised, which decou-
ples the two sub-problems of finding neighbors and assembling the
pronunciation.

By redefining the concept of analogy in terms of grapheme-
phoneme co-occurrences, it becomes possible to construct neigh-
borhoods of globally relevant pronunciations, using a latent se-

mantic analysis framework operating onn-letter graphemic forms.
Phoneme transcription then follows via locally optimal sequence
alignment and maximum likelihood position scoring, in which the
influence of the entire neighborhood is implicitly and automati-
cally taken into account. This method was observed to be effective
on a difficult test corpus of proper names with a large diversity of
origin.

These results should be regarded as work-in-progress. We
have not yet studied the influence ofn on the vector space of char-
acteristic grapheme strings, and the likely trade-off between mod-
eling power and generalization properties should be made explicit.
Likewise, we have not yet exploited the full power of the sequence
alignment framework, and in particular more realistic substitution
and gap costs should be investigated. Finally, our current posi-
tion scoring strategy could benefit from a variety of refinements,
such as the integration of confidence measures in the final estima-
tion. Future efforts will concentrate on addressing these important
points.
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