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ABSTRACT conversion rules, whose role is to encapsulate language regularity

A ic data-dri h h L h Iwithin a manageably small number of general principles (cf. [4]).
utomatic, data-driven grapheme-to-phoneme conversionisachal- g, o extraction is usually based on inductive learning tech-

lenging but often necessary task. The top-down strategy implicitly niques involving, e.g., decision trees [6] or Bayesian networks [7].
followed by traditional inductive learning techniques tends to dis- 1,1« the case of a decision tree. The problem is to classify an
miss releyqnt contexts when they have .been seen too infr.equentlxnput grapheme sequence into the appropriate output phoneme se-
in the trgm_mg data. The bottom-up philosophy inherent in, €.g., quence. Training therefore proceeds using sequence pairs, aligned
pronunciation by analogy, allows for a markedly better handling of with the help of language-dependent “allowables,”, i.e., individual

rarer contexts, but proves nonetheless equally dependent on IOCaIgairs of letters and phonemes which are allowed to correspond [8].

language-dependent allgnm_ents between letters and phonemes. T. e tree is first grown by iteratively splitting nodes to minimize
Paper proposes an alternatlve_ bottom-up approach, .dL_JPmEd some measure of spread (e.g., entropy), and then pruned back to
nunciation by latent analogyNhlph adopts a glol:_)a_l definition of avoid unnecessary complexity and/or overfitting. During classifi-
analogy, more amenable_to obviate such supervision. For each O_Ut'cation, the tree is traversed on the basis of questions asked about
of-vocabulary word, a neighborhood of globally relevant pronunci- the context of each grapheme, until a leaf corresponding to a par-
atipns is constructed through an appropri_atg data-driven maIOpirlgticular phoneme (or phoneme étring) is reached. As is well known,
of its grap_hemlc form. Pho_neme transcription then_ prc_Jceeds V'aquestion selection and pruning strategy heavily influence classifi-
qually opt!mal sequence alignment and maximum likelihood po- 44ion granularity and generalization ability. Typical tree designs
sition scoring. This method was successfully applied to the speechattempt to strike an acceptable balance between the two.

synthesis of proper names with a large diversity of origin. But this trade-off has a price: the effective set of questions
ends up best covering those phenomena which are most repre-
1. INTRODUCTION sented in the training data. In contrast, rarely seen contexts tend

to be overlooked, regardless of their degree of similarity or rel-

Assigning phonemic/phonetic transcriptions to graphemic word evance in a given situation. For out-of-vocabulary words which
forms is of critical importance to all spoken language applica- largely conform to the general principles derived from the train-
tions. In automatic speech recognition (ASR), the search mod-ing sequences, this is relatively inconsequential. But many other
ule relies on phonetic transcriptions to select appropriate acous-words, such as names (especially those of foreign origin), may
tic models against which to score the input utterance. Likewise, comprise a number of irregular patterns rarely seen in the dictio-
in text-to-speech (TTS) synthesis, phonemic transcriptions are re-nary, for which this limitation may be more deleterious.
quired for the selection of the proper TTS units from which to Hence the interest in bottom-up, rather than top-down, strate-
generate the desired waveform. Depending on the particular em-gies for GPC, e.g., pronunciation by analogy [9]. The idea is to as-
phasis and/or application considered, the process of constructingsemble the pronunciation for an unknown word by matching sub-
such transcriptions goes by different names, e.g., grapheme-tostrings of the input to substrings of known lexical words, hypoth-
phoneme conversion [1], baseform generation [2], pronunciation esizing a partial pronunciation for each matched substring derived
modeling [3], letter-to-sound translation [4], and text-to-phoneme from local, individual letter-phoneme alignments, and concatenat-
mapping [5], to name but a few. Since this paper is primarily moti- ing the partial pronunciations. This strategy results in markedly
vated by a speech synthesis application, we adopt the terminologybetter handling of rarer contexts [10], but the letter-phoneme align-
“grapheme-to-phoneme conversion” (GPC). ment process on which it relies remains problematic, due to the

For most languages, especially English, GPC is a challenging need for “allowables” as mentioned above. Although recent work
task. One approach is to rely on expert knowledge from trained has attempted to relax some of this supervision, the handling of
linguists to manually create each entry in an underlying pronunci- “nulls” would seem to remain highly language-dependent [11].
ation dictionary. But this is time-consuming, inherently language- The goal of this paper is to present an alternative bottom-up
dependent, often prone to inconsistencies, and not applicable to thepproach, more amenable to unsupervised processing, in which
real-time processing of words not present in the dictionary (out-of- we decouple the two sub-problems of finding neighbors and as-
vocabulary words). This has sparked interest in data-driven GPCsembling the pronunciation. When finding neighbors, the concept
methods, which leverage a variety of statistical algorithms to au- of analogy is cast in a global (latent) sense, which circumvents
tomatically derive pronunciation from orthography. In ASR ap- the need for individual letter-phoneme alignments. Then, when
plications, this is typically done by exploiting the available acous- assembling the pronunciation, local information emerges automat-
tic side information (see, e.g., [3]). In TTS applications, existing ically from the influence of the entire neighborhood, which by-
pronunciation dictionaries serve as training data to extract suitablepasses the need for any external linguistic knowledge. The paper
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is organized as follows. The next section gives a general overview. Grapheme Global Pronunciation Sequence | Phoneme
Sections 3 and 4 examine the _tvvo main building blocks of the pro _>Sequence Analysis Neighborhood | Alignment | sequence
posed approach. Finally, Section 5 reports the outcome of prelim-

inary experiments conducted on a diverse corpus of proper names.

2. OVERVIEW
Orthographic Closeness Substitution
While traditional inductive learning techniques tend to exhibit good Anchors Measure & Gap Costs
performance on “conforming” words, they degrade rapidly when
encountering patterns unusual for the language considered [8]. As
an illustration, consider the proper name of Indian origifish- Fig. 1. Pronunciation by Latent Analogy.
namoorthy, for which the phoneme sequence:
k rl1 S n @ mUr T 1)

determine what grapheme strings are most characteristic of words,
represents a good estimate of the correct pronunciation. Becaus@nd map all in-vocabulary words onto the space of all charac-
this name is not part of the underlying Apple dictionary, the GPC teristic grapheme strings. The outcome is a sebrtfiographic
converter currently bundled with MacOS X comes up with the (in- anchors(one for each in-vocabulary word), determined automat-

correct) sequence: ically from the underlying vocabulary. Each out-of-vocabulary
) word is then compared to each orthographic anchor, and the corre-
k r1'S$n{mu3rD.I @) sponding “closeness” evaluated. If this closeness is high enough,

after traversing a dedicated 2000-node decision tree trained on 56kih€ @ssociated in-vocabulary word is added to the orthographic
names (predominantly of Western European origin). neighborhood of the out-of-vocabulary word.

Comparing (2) with (1), three errors stand out: (i) the schwa ~ Neighborhood entries can thus be thought of as the ortho-
“@” is replaced by the full vowel {*, (i) the unvoiced “T” is graphic generallzatlc_)n of_ candidate pronunciation variants in ASR,
replaced by the voiced version “D”, and (iii) the stressed vowel and the LSA formalism is seen to play a role comparable to that
“U” is replaced by the improper compound 3”. These errors of contextual questlon§ in the decision tree frgmewprk. .Compared
can all be traced to poor generalization properties. Specifically, {0 the latter, however, it offers several benefits. First, it obviates
the ending “3 r D i” results from the influence of a large number of the need for explicit, language-dependent alignments between in-
names in the training dictionary ending in “orthy,” suchRas wor- dividual pairs of letters and phonemes. Second, grapheme sub-
thy. The vowel compound comes from the inability of this pattern Strings with hidden similarities having a bearing on pronunciation
to account for “00,” hence the awkward attempt to have it both are automatically discovered and exploited. And third, closeness

ways by concatenating the two vowels. Finally, the full vowg! * is defined globally across an entire sequence, so words with higher
commonly seen after “n” in names likefcNamara, points to an relevance across multiple contexts can easily be identified.
obvious failure to connedrishnamoorthy with the more closely Once an orthographic neighborhood is available for a given
relatedKrishna. out-of-vocabulary word, it is straightforward to gather the corre-
This example underscores the importance of explogihgo- sponding set of pronunciations from the existing dictionary. We

tentially relevant contextsregardless of how sparsely seen they refer to this set as theronunciation neighborhoodPhonetic ex-
may have been in the training data. In order to do so, pronuncia-Pansions in the pronunciation neighborhood have the property to
tion by analogy eschews the inherently top-down stategy of deci- contain at least one sub-string which is “locally close” to the pro-
sion trees in favor of a bottom.up approach re|ying on the Concept nunciation Sought. The next Step is therefore to automatica”y align
of lexical neighborhood. Loosely speaking, two words are lexical these pronunciations to find common elements between them. The
neighbors if they share a common graphemic substring [9]. The more common a particular element in a particular position, the
problem with this concept is that it offers no principled way of more likely itis to belong to the out-of-vocabulary phonetic tran-
deciding which neighbor(s) of a new word can be deemed to sub-scription. Thus, the maximum likelihood estimate at every posi-
stantially influence its pronunciation. As a case in point, from a tion is the best candidate for the final pronunciation. The proce-
Levenshtein string_edit distance perspective’ the Wﬁfdﬁ)llgh, dure, i”UStI'ate.d.in Flg 1, is entirely data-driven and requires no
through, andenough would likely be considered lexical neighbors, human supervision.

while in fact they have absolutely no bearing on each other when
it comes to the pronunciation of the substring “ough.”

What seems to be needed is a concept of neighborhood which
is not specified exclusively in terms of graphemic substrings, but
also includes phonemic information. This leads us to the following
notion of orthographic neighborhoad

Given an out-of-vocabulary word, we define its orthographic
neighborhood as the set of in-vocabulary words which are suf-
ficiently “close” to it, in some suitable metric adopted from la-
tent semantic analysis (LSA). LSA has already proven effective
over the past decade in a variety of other fields, including query-
based information retrieval, word clustering, document/topic clus-  15¢coyrse, strings of graphemes could also be used, but this does not

tering, large vocabulary language modeling, and semantic infer- seem to have an appreciable effect on performance. Note that opting for
ence for voice command and control [12]. Here, LSA is used to letters rather than graphemes preserves language independence.

3. ORTHOGRAPHIC NEIGHBORHOODS

LetV, |V| = M, be a collection of words of interest (e.g., a set
of names), and’, |7| = N, the set of all strings of letterd that
can be produced from this vocabulary (including markers for word
beginning and ending). Typically/ varies between 10,000 and
100,000; with the choice = 3, N is of the order of 10,000.

We first construct al{ x M) matrix W, whose entriesu;;
suitably reflect the extent to which eagHetter stringt; € 7 ap-
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peared in each word; € V. From [12], a reasonable expression foranyl < j < M. Using (7), it is a simple matter to rank

for w;; is: all orthographic anchors in decreasing order of closeness to the
wi; = (1— &) Gig (3) representation of a given out-of-vocabulary word. The associated
nj orthographic neighborhood follows by retaining only those entries

wherec; ; is the number of timesg; occurs in wordw;, n; is the whose closeness measure is higher than a pre-set threshold.
total number ofr-letter strings present in this word, angis the

normalized entropy of; in V. The global weighting implied by 4. SEQUENCE ALIGNMENT

1 — ¢; reflects the fact that twa-letter strings appearing with the

same countin a particular word do not necessarily convey the samesych orthographic neighborhood comprises (in-vocabulary) word
amount Of |nf0rmatl0n; th|5 IS Subordlnated to the dIStI’IbutIOI’l Of entriesl From the under|ying dic’[ionary’ we can easily deduce

then-letter strings in the entire vocabulary N the associated pronunciation neighborhood (comprising phoneme
Then we perform a singular value decomposition (SVD)Iof  strings). In principle, each phoneme string in this pronunciation
[12] as: - neighborhood contains at least one sub-string which is germane to
W=USVvV~", (4) the input out-of-vocabulary word. Thus, the final pronunciation
whereU is the (V x R) left singular matrix with row vectors,; can be assembled by judicious alignment of appropriate phoneme
(1 <i < N), Sisthe (R x R) diagonal matrix of singular values  sub-strings from the pronunciation neighborhood.
s1>82>...>sr>0,Visthe M x R) right singular matrix To carry out such alignment, we adopt a sequence analysis ap-
with row vectorsy; (1 < j < M), R < M, N is the order of the proach commonly used in molecular biology. In bioinformatics,
decomposition, and’ denotes matrix transposition. a number of algorithms have been developed to align similar pro-

This (rank+) decomposition defines a mapping between: (i) tein sequences in order to find groups of related proteins, and ulti-
the set ofn-letter strings ir7” and, after appropriate scaling by the mately identify likely genes in the genome. The basic framework

singular values, th&-dimensional vectorg; = u;S (1 < i < is dynamic programming, with provisions for the existence of gaps
N), and (i) the set of words iw and, again after appropriate scal- in the alignment, and the possibility of specific amino acid pair-
ing by the singular values, thB-dimensional vectors; = v;S ings. To find maximally homologous sub-sequences, techniques

(1 < j < M). The latter are the orthographic anchors mentioned have also been devised to locally align specific regions of two pro-

in the previous section. The dimensidhis bounded from above  tein sequences (see, e.g., [13]). This approach has recently been

by the rank of the matri¥//, and from below by the amount of  modified for orthographic sequences to enable computer-assisted

distortion tolerable in the decomposition. Valuegin the range morphological lemma discovery [14].

R =50to R = 100 seem to work well. We proceed in analogous fashion to apply the underlying frame-
By definition, theR-dimensional vector space spanned by the work to pronunciation alignment. Assume, without loss of gener-

vectorsi; andu; minimally describes the linear space spanned by ality, that we want to align two phoneme strings. .. ¢y . .. ¢

W, i.e., the underlying vocabulary and set ofn-letter strings and; ...y, ... 7 (of length K and L, respectively) from the

7. Thus, the relative positions of the orthographic anchors in pronunciation neighborhood, and denotedjk, ¢) the best (min-

that space reflect a parsimonious encoding of the orthography usedmum cost) alignment betweep s ... or andyivps ... 9. If

in the training data. This means that any out-of-vocabulary word C(k, ¢) is the cost of substituting phoneme for phonemepy,

mapped onto a vector “close” (in some suitable metric) to a partic- g(¢, k) the cost of a gafp; . .. & In the first string, and(j, £)

ular orthographic anchor would be expected to be closely relatedthe cost of a gag; . . . 1, in the second string, the basic dynamic

to the corresponding in-vocabulary word, and conversely any in- programming recursion can be written:

vocabulary word whose orthographic anchor is “close” to a partic- .

ular vector in the space would tend to be related to the correspond- A (K £) = min{A(k — 1,6 = 1) + C(k, (), G(k, £), H (k. ()} ,

ing out-of-vocabulary word. This offers a basis for determining here: C)
orthographic neighborhoods. where:

To proceed, however, we first have to specify how to represent Gk, 0) = min {A(i, ) + g(i, k)}, (9)
an out-of-vocabulary word, say, (wherep > M), in the above 0<i<k—1
vector space. For eacfhletter string in7, we compute for this H(k,t) = min {A(k,j) + h(5,€)}, (10)

word the weighted counts (3) with = p. The resulting feature 0=yt

vector, a column vector of dimensiaW, can be thought of as an  with initial conditions A(k,0) = h(0,k), 1 < k < K and
additional column of the matri¥}’. Thus, assuming the matri-  A(0,¢) = g(0,¢),1 < £ < L.

cesU and S do not change appreciably, the SVD expansion (4) We select as first reference phoneme sequence the entry corre-
implies: - sponding to the closest orthographic anchor comprising a beginning-
wp, =U S, , %) of-word marker, as determined above. We then proceed in left-to-

where theR-dimensional vecto.” act as an additional column  'ightfashion until we have aligned the pronunciation of every word
of the matrixV Z. This in turn Ieal()js to the definition: in the neighborhood to its immediate predecessor. The maximum

likelihood estimate is then computed for every position, by simply
Up=10p S = u?pT U. (6) using the observed phoneme counts at this position. The outcome

. ) . is the final pronunciation sought.
It remains to define an appropriate closeness measure to com-

parev,, to each of they;'s. From [12], a natural metric to consider
is the cosine of the angle between them. Thus: 5. EXPERIMENTS

bp SZv) Preliminary experiments were conducted using an underlying train-

K (0p,0;) = cos(8,5,v;5) = 5, STTw: 5T @) ing vocabulary of\/ = 56, 514 names, predominantly of Western
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European origin. At this stage, lexical stress markers were omit- mantic analysis framework operating nfletter graphemic forms.
ted from all pronunciations, leaving for future work the important Phoneme transcription then follows via locally optimal sequence
aspect of stress assignment. For this vocabulary the number ofalignment and maximum likelihood position scoring, in which the
unique 3-letter strings turned out to Bé = 8,257. Also avail- influence of the entire neighborhood is implicitly and automati-
able was a disjoint set &4, 193 names reflecting a much larger cally taken into account. This method was observed to be effective
diversity of origin. From this set we extracted as test data a subseton a difficult test corpus of proper names with a large diversity of
of 500 names whose pronunciations comprised 3160 phonemes. origin.

As baseline system, we used the decision tree-based GPC con- These results should be regarded as work-in-progress. We
verter bundled with MacOS X, previously mentioned in Section 2. have not yet studied the influencerobn the vector space of char-
On the above (difficult) test set, the phoneme error rate (taking into acteristic grapheme strings, and the likely trade-off between mod-
account substitutions, insertions, and deletions) was 23.3%, andeling power and generalization properties should be made explicit.
the pronunciation error rate 80.2%. That is, only 1 in 5 phoneme Likewise, we have not yet exploited the full power of the sequence
sequences was actually error-free when compared to a manuallyalignment framework, and in particular more realistic substitution
derived pronunciation produced by a human expert. and gap costs should be investigated. Finally, our current posi-

We performed the SVD of th€8257 x 56,514) matrix W tion scoring strategy could benefit from a variety of refinements,
constructed from the training data using the single vector Lanczossuch as the integration of confidence measures in the final estima-
method [12]. Orthographic anchors were obtained usging 100 tion. Future efforts will concentrate on addressing these important
for the order of the decomposition. Each of the (out-of-vocabulary) points.
words in the test data was then compared to these orthographic an-
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