
THE ROBUSTNESS OF AN ALMOST-PARSING LANGUAGE MODEL GIVEN ERRORFUL
TRAINING DATA

Wen Wang���, Mary P. Harper�, Andreas Stolcke�

� Electrical and Computer Engineering, Purdue University
West Lafayette, IN 47907-1285

� Speech Technology and Research Laboratory, SRI International
Menlo Park, CA 94025

wwang@speech.sri.com, harper@ecn.purdue.edu, stolcke@speech.sri.com

ABSTRACT
An almost-parsing1 language model has been developed [1] that
provides a framework for tightly integrating multiple knowledge
sources. Lexical features and syntactic constraints are integrated
into a uniform linguistic structure (called a SuperARV) that is
associated with words in the lexicon. The SuperARV language
model has been found able to reduce perplexity and word error rate
(WER) compared to trigram, part-of-speech-based, and parser-based
language models on the DARPA Wall Street Journal (WSJ) CSR
task. In this paper we further investigate the robustness of the
language model to possibly inconsistent and flawed training data,
as well as its ability to scale up to sophisticated LVCSR tasks by
comparing performance on the DARPA WSJ and Hub4 (Broadcast
News) CSR tasks.

1. INTRODUCTION

The purpose of a language model (LM) is to determine the a pri-
ori probability of a word sequence ��� , � ���

� �. Although word-
based LMs (with bigram and trigram being the most common)
remain the mainstay in many continuous speech recognition sys-
tems, recent efforts have explored a variety of ways to improve LM
performance [2, 3, 4, 5]. There has been good progress in develop-
ing structured models [2, 3, 5] that focus more on the hierarchical
characteristics of a language than specific information about words
and their lexical features (e.g., case, number). Goodman [6] inte-
grates a small set of features at the level of Context-free Grammar
(CFG) production rules to achieve increased parse accuracy; how-
ever, only a small set of lexical features can be integrated without
causing a significant increase in grammar size and a concomitant
data sparsity problem. In contrast, we have developed an almost-
parsing language model, called the SuperARV LM, that does not
appear to suffer from this sparseness problem [1]. This structured
LM tightly integrates structural constraints and lexical features at
the word level by using a structure called a SuperARV. We inves-
tigate the SuperARV LM because it achieves a high level of word

This research was supported in part by Purdue Research Foundation,
National Science Foundation under Grant No. BCS-9980054, and DARPA
under Contract No. MDA972-02-C-0038. The Hub4 experiments were
conducted by the first author at SRI International as a part of her doctoral
dissertation. Part of this work was carried out while the second author
was on leave at National Science Foundation. Any opinions, findings, and
conclusions expressed in this material are those of the authors and do not
necessarily reflect the view of DARPA or the National Science Foundation.

1Almost-parsing involves obtaining structural information for an utter-
ance without completely specifying the parse.

predictability with a complexity lower than a full parser-based LM
and can be embedded in a decoder.

In contrast to word-based LMs which are trained using tran-
scriptions, structured LMs need to be trained from parse annota-
tions. Since there is only a limited availability of human annotated
parse treebanks over a very limited number of tasks, developing
a syntactically based LM for a new task can be quite difficult.
One possibility is to use state-of-the-art parsers to generate a tree-
bank for a new task; however, such a treebank would likely contain
many incorrect parses. It is uncertain how sensitive various struc-
tured LMs are to errorful training data. Although Chelba [2] men-
tions that his structured LM should be able to recover from errors
in an automatically generated treebank because of his use of EM
parameter reestimation, this hypothesis is not explicitly tested. In
this paper, we investigate the impact of errorful training data on our
SuperARV LM. First we briefly review the SuperARV LM (Sec-
tion 2) and then investigate its robustness and scale-up character-
istics across two tasks (Section 3). Conclusions appear in Section
4.

2. BRIEF REVIEW OF THE SUPERARV LM

The SuperARV LM [1] is a highly lexicalized probabilistic LM
based on Constraint Dependency Grammars (CDGs). It tightly
integrates multiple knowledge sources, for example, word identity,
lexical features, and syntactic and semantic constraints at both the
knowledge representation level and model level.

The first type of integration was achieved by introducing a lin-
guistic structure, called a super abstract role value (SuperARV),
to encode multiple knowledge sources in a uniform representa-
tion that is much more fine-grained than part-of-speech (POS). A
SuperARV is an abstraction of the joint assignment of dependen-
cies for a word, which provides a mechanism for lexicalizing CDG
parse rules. The gray box of Figure 1 presents an example of a Su-
perARV for the word did, which is derived from the dependency
parse of the sentence What did you learn depicted in the white box
of Figure 1. Each word in the parse has a lexical category, a set of
feature values, and a governor role (denoted �) which is assigned
a role value, comprised of a label, as well as a modifiee, which in-
dicates the position of the word’s governor or head. For example,
the role value assigned to the governor role of did is vp-1, where
its label vp indicates its grammatical function and its modifiee 1 is
the position of its head what. The words in the parse can also have
need roles (denoted Need1, Need2, and Need3), which are used to
ensure the grammatical requirements (e.g., subcategorization) of a

I - 2400-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

word are met. Note that the verb did needs a subject (Need1) and
a base form verb (Need2), but since the word takes no other com-
plements, the modifiee of the role value assigned to Need3 is set
equal to its own position.

A SuperARV is formally defined as a four-tuple for a word,
���� , ����� ���	����
��, where C is the lexical category
of the word, � � ����
�� � �������, � � � � ���
�� �
�������� is a feature vector (where ���
�� is the name of a
feature and ������� is its corresponding value), (R, L, UC, MC)+
is a list of one or more four-tuples, each representing an abstrac-
tion of a role value assignment, where � is a role variable, � is a
functionality label, �� represents the relative position relation of
a word and its dependent, 	� is the lexical category of the mod-
ifiee for this dependency relation, and
� represents the relative
ordering of the positions of a word and all of its modifiees. Notice
that the SuperARV structure for did provides an explicit way to
combine its lexical features with information concerning one con-
sistent set of dependency links for the word that can be directly
derived from its parse assignments. A SuperARV can be thought
of as providing admissibility constraints on syntactic and lexical
environments in which a word may be used. Once SuperARVs
are assigned to a word sequence, a parse for the sentence can be
produced by the constrained operation of deciding dependencies
to link the SuperARVs together.

pronoun
case=common
behavior=nominal
type=interrogative
semtype=inanimate
agr=3s

G=np-4

verb
subcat=base
verbtype=past
voice=active
inverted=yes
type=none
gapp=yes
mood=whquestion
semtype=auxiliary
agr=all

G=vp-1
Need1=S-3
Need2=S-4
Need3=S-2

pronoun
case=common
behavior=nominal
type=personal
semtype=human
agr=2s

G=subj-2

 1
 what

 2
 did

 3
 you

The SuperARV of the word "did":

 Category: Verb

 4
 learn

verb
subcat=obj
vtype=infinitive
voice=active
inverted=no
type=none
gapp=yes
mood=whquestion
semtype=behavior
agr=none

G=vp-2
Need1=S-4
Need2=S-1
Need3=S-4

 Features: {verbtype=past, voice=active, inverted=yes,
 gapp=yes,mood=whquestion,agr=all}

 Role=G, Label=vp, PX>MX, (ModifieeCategory=pronoun)
 Role=Need1, Label=S, PX<MX, (ModifieeCategory=pronoun)
 Role=Need2, Label=S, PX<MX, (ModifieeCategory=verb)
 Role=Need3, Label=S, PX=MX, (ModifieeCategory=verb)

 Dependent Positional Constraints:
 MX[G] < PX = MX[Need3] < MX[Need1]
 < MX[Need2] MC

}

n
ee

d
 r

o
le

co

n
st

ra
in

ts}
}
}C

F }
}

(R,L,UC,MC)+

DC

Fig. 1. The SuperARV for the word did given the CDG parse for
the sentence what did you learn. Note: G represents the governor
role; the Need1, Need2, and Need3 roles are used to ensure that
the requirements of the word are met. PX and MX represent the
position of a word and its modifiee, respectively.

The model-level integration was accomplished by jointly es-
timating the probabilities of a sequence of words ��� and their
SuperARV membership ��� :

����
�

�
�
�

�
� �

��

���

���������
���

�
�
���

�
�

�
��

���

�������
���

�
�
���

�
� � �������

���

�
�
�

�
�

We use this to enable the joint prediction of words and their Su-
perARVs so that word identity information is tightly integrated at
the model level. Note that SuperARVs serve as hidden events for
constraining word prediction. Since the parametric space for the

SuperARV LM is larger than a word-based LM, in [1] we have
considered carefully how to interpolate lower-order �-gram prob-
ability estimations and which smoothing algorithm to use. For
each smoothing algorithm investigated, we used a combination of
heuristics and an entropy-based method to determine globally the
lower-order �-grams to include in the interpolation, as well as their
ordering. For a trigram SuperARV LM on the DARPA WSJ CSR
task, the modified Kneser-Ney smoothing algorithm [7] showed
the best performance. A detailed description of the best order of
interpolation appears in [1].

The LM needs to be trained on CDG parses. However, since
there is no CDG treebank (except for a moderate-sized corpus for
the DARPA Naval Resource Management task [8] that we have an-
notated), we have developed a methodology to automatically trans-
form CFG constituent bracketing into CDG annotations [1]. In ad-
dition to generating dependency structures by headword percola-
tion [2], our transformer utilizes a rule-based method to determine
lexical features and need role values for words. Although these
procedures are effective, they cannot guarantee that the CDG an-
notations generated are completely correct. We have implemented
an efficient lattice rescoring algorithm for applying the SuperARV
LM with a Viterbi search using the word sequence probabilities
[1].

In the next section, we describe the evaluation of the Super-
ARV LM on the DARPA WSJ and Hub4 (Broadcast News) CSR
tasks. Evaluation on these tasks allows us to investigate our model’s
robustness and whether LM performance gracefully scales up to
more sophisticated LVCSR tasks.

3. INVESTIGATION ACROSS TASKS

3.1. Evaluation on the DARPA WSJ CSR Task

In [1], we have compared the effectiveness of using trigram word-
based, trigram POS, trigram SuperARV, and Chelba’s LMs [2]
in rescoring hypotheses generated by a speech recognizer for the
DARPA WSJ CSR task. The training set for a word-based LM
on this task is composed of the 1987-1989 LM training data con-
taining 37,243,300 words. Our SuperARV LM must be trained on
dependency parses for the transcriptions; however, the WSJ Penn
Treebank covers only a small proportion of the DARPA WSJ CSR
training set. For the remaining training sentences, we used the
CFG constituent bracketing from the BLLIP Treebank [9], which
was produced by Charniak’s maximum-entropy inspired parser [10]
trained on the WSJ Penn Treebank. Because the BLLIP Treebank
was not proofread, it may contain incorrect parse trees. How-
ever, because it was generated using a high-quality, state-of-the-art
probabilistic parser trained on the WSJ domain, we assumed that
BLLIP provides parse trees with a good level of consistency and
accuracy for training our LM. For testing the LMs, we used the
1992 and 1993 5K closed vocabulary and 20K open vocabulary
DARPA WSJ CSR evaluation sets [1].

The trigram LM was provided by LDC while all the other LMs
(i.e., the POS LM, the SuperARV LM, and Chelba’s LM) were
trained using information derived from the training set trees for
the CSR task. Parameter tuning for the LMs on each task used
the corresponding development set [1]. Each LM was then used to
rescore the lattices generated by an acoustic recognizer built using
HTK. Dr. Chelba also provided us with a set of lattices for 93-20K
that were generated using the AT&T decoder. Table 1 shows the
WER and sentence accuracy (SAC) after rescoring lattices using
each LM, with the lowest WER and highest SAC for each test set
presented in bold face. As can be seen from Table 1, the Super-

I - 241

➡ ➡

Our HTK Lattices Chelba’s
92-5k 93-5k 92-20k 93-20k 93-20k lattices

LM WER(SAC) WER(SAC) WER(SAC) WER(SAC) WER(SAC)
3gram 4.43(61.52) 6.91(43.26) 11.11(36.94) 14.74(30.52) 13.72(36.18)
POS 3.92(64.85) 6.55(47.91) 10.58(38.14) 14.52(33.22) 13.51(37.96)

SuperARV 3.83(65.76) 6.24(50.23) 10.15(39.64) 14.26(36.12) 12.87(42.02)
Chelba 3.85(65.45) 6.26(49.77) 10.19(39.34) 14.31(35.88) 12.93(40.48)

lattice accuracy 1.79(79.40) 2.16(73.95) 4.93(59.46) 6.65(52.11) 3.41 (68.86)

Table 1. Comparing WER and SAC (%) after rescoring lattices using each LM on the DARPA WSJ CSR 5k- and 20k- test sets. The lattice
WER/SAC which defines the best accuracy possible given perfect knowledge is also provided.

ARV LM produces the best reduction in WER with Chelba’s LM
the second best. The SuperARV LM performs statistically signif-
icantly better than the trigram and POS LMs. Although there is
no significant difference between the SuperARV LM and Chelba’s
LM, the former has a much lower complexity than the latter. Also,
because of the additional heuristic steps required in the CFG-to-
CDG conversion, our SuperARV LM was generated using a po-
tentially greater amount of flawed training data.

3.2. Evaluation on the Hub4 Domain

A baseline word-based LM was constructed for the Hub4 task. The
data sources for this model consisted of two sets of Hub4 training
data (the 130 million word loosely transcribed Broadcast News
corpus for LM training and the 380,000 word closely transcribed
material for acoustic training) and two sets of non-Hub4 training
data, that is, the North American Business News (NABN) corpus
and the Switchboard-I corpus. As to the two sets of non-Hub4
training data, the former was chosen for additional coverage on
business and politics, and the latter was added to increase the cov-
erage of conversational speech characteristics (e.g., disfluencies)
insufficiently covered in the Hub4 training data.

A 5-gram word-based LM was estimated for each set of Hub4
training data, and a trigram word-based LM was trained for each
set of non-Hub4 training data, resulting in four LMs, each esti-
mated by the SRILM toolkit [11] using the modified Kneser-Ney
smoothing algorithm. The baseline LM was constructed by in-
terpolating each of these four LMs. The vocabulary size of the
baseline LM is 48k.

The challenge for building a SuperARV LM for the Hub4 do-
main is that, in contrast to the DARPA WSJ CSR task, there is
no corpus of parse trees available for deriving CDG annotations
for training. One way to get around this problem is to generate a
set of training parse trees by using available probabilistic parsers.
We investigated three of the best parsers that generate CFG brack-
eting: Collins’ bilexical dependency parser [12], Ratnaparkhi’s
maximum-entropy parser [13], and Charniak’s maximum-entropy
inspired parser [10]. Since none of these parsers was designed to
model conversational speech, we chose to generate parses for only
the Hub4 LM training data and the NABN corpus, which will be
denoted � .

To construct our training Treebank for � , we considered two
important attributes of the parsers, accuracy and robustness. To
evaluate parser accuracy, we consider the Labeled Precision (LP)
and Labeled Recall (LR)2 of the three parsers on the WSJ Penn
Treebank [14]. As described in [10, 12, 13], these parsers have

2LP is the number of correct constituents divided by the number of con-
stituents found by the parser and LR is the number of correct constituents
divided by the number of constituents in the actual parse.

been trained, tuned, and tested on the same three data sets. Char-
niak’s parser achieved the greatest accuracy with 89.5% LP and
89.6% LR, followed by Collins’ parser at 88.3% LP and 88.1%
LR, and then Ratnaparkhi’s parser at 87.5% LP and 86.3% LR.
To evaluate the robustness of each parser, we measured the cov-
erage of each parser on a randomly selected subset consisting of
10% of � , denoted �. A sentence is covered by a parser if it suc-
ceeds in generating a parse tree whose yield is the entire sentence
without aborting prematurely. Ratnaparkhi’s parser achieved the
greatest coverage at 95% of �, followed by Collins’ at 93%, and
then Charniak’s at 71%. To test the coverage of pairs of parsers,
we generated a treebank ��� which is comprised of all the parse
trees generated by parser � for the set together with parse trees
generated by parser � for any sentence in the set that failed to be
covered by parser �. For �, we generated six pairs of parsers and
found that Ratnaparkhi’s � Collins’ and Ratnaparkhi’s � Char-
niak’s each cover almost 100% of �; Collins’ � Charniak’s and
Collins’ � Ratnaparkhi’s each cover 99%; and Charniak’s � Rat-
naparkhi’s and Charniak’s � Collins’ each cover 98%. We con-
cluded that, by combining the output from a pair of parsers, we
would be able to obtain a better coverage of � than by using one
alone.

Consistency of training data is important for building a good
LM. Hence, we also considered the mutual consistency between
the parse trees produced by the three parsers. To measure the
structural consistency between the parses produced by CFG brack-
eting parsers and a gold standard parse, Black, Garside, and Leech
[15] defined the metric average crossing brackets (ACB), the mean
number of times per sentence that a bracketed sequence from one
parser overlaps with the gold standard from the treebank such that
neither is properly contained in the other. Although ACB does not
account for all types of conflicting constituency, it is a practical
measure for the structural consistency between two sets of parse
trees. By using the output from one parser as the gold set, we can
calculate the pair-wise ACB among the three parsers to measure
their mutual consistency. We have calculated the ACB between
parser pairs on a subset of � that is covered by all the three parsers
(containing 14,466 sentences and about 300,000 words). The pair-
wise ACB was 2.46 for Collins’ and Charniak’s parsers, 3.34 for
Ratnaparkhi’s and Collins’ parsers, and 3.73 for Ratnaparkhi’s and
Charniak’s parsers. Clearly, Collins’ and Charniak’s parsers have
the greatest mutual structural consistency; however, their pair-wise
ACB is much larger than each parser’s ACB reported for the gold
standard parses of the WSJ Penn Treebank, suggesting that these
parsers have a greater degree of mutual inconsistency on � .

To intelligently select parser pairs for generating a treebank
for � , we should consider the accuracy of the individual parsers,
as well as the coverage and consistency of the pairs. Charniak’s
parser has the greatest accuracy of the three parsers, and so if ac-

I - 242

➡ ➡

curate parsing is important for the LM it would be ideal to select
it as the major contributor of parses to the treebank. Although the
coverage of the parser pairs involving Ratnaparkhi’s parser as the
major contributor is nearly 100% on �, that parser is also the least
accurate of the three. On the other hand, the coverage for the pairs
with Charniak’s as the major parser is essentially equal, as is the
case with pairs involving Collin’s as the major parser. Further-
more, Charniak’s and Collins’ parsers have the greatest pairwise
consistency using the ACB measure. Hence, we will evaluate tree-
banks that use a combination of Charniak’s and Collins’ parsers to
parse � , with Charniak’s � Collins’, denoted T1, and Collins’ �
Charniak’s, denoted T2. Note that alone Charniak’s parser covered
only 68.4% of � and Collin’s covered 90.5%; whereas, T1 and T2
cover 97.5% and 98.2% of sentences, respectively. It is important
to note that T1 and T2 contain parse errors and that these errors
should affect the quality of our CDG derivation. Hence, we will
be training our SuperARV LM on training data that is probably
more inconsistent and flawed than for the DARPA WSJ CSR task.
However, based on the WSJ Penn Treebank parsing results, it is
likely that T1 is more accurate than T2.

Acoustic Cond. Baseline LM Interp. T1 Interp. T2
F0 12.4 10.9 11.2
F1 28.6 28.2 28.5
F2 32.1 30.7 31.8
F3 31.9 30.1 31.2
F4 22.8 22.2 22.5
F5 20.4 19.1 19.8
FX 43.4 43.2 43.3

Total 26.9 26.0 26.5

Table 2. WER (%) given acoustic conditions after N-best rescor-
ing using the baseline word-based LM and interpolated SuperARV
LMs trained on T1 and T2.

A 4-gram SuperARV LM was trained using each treebank, and
parameter tuning was done on a heldout data set of 20% of the
training data. Since spontaneous speech characteristics (such as
disfluencies) are not well represented in the training data for the
SuperARV LM, we have interpolated the SuperARV LM with the
baseline LM. The N-best lists (of up to 2000 hypotheses per ut-
terance), generated by SRI’s 1997 Broadcast News System for the
1996 Hub4 development test set, were rescored with a log linear
combination of two types of acoustic models (crossword and non-
crossword triphones), word insertion penalty, and language model.
The WER was computed for the hypotheses with the highest com-
bined scores [16].

Results are shown in Table 2. Although T1 is not a consistent
and accurate training set, the interpolated SuperARV LM results
in 0.9% absolute WER reduction compared to the baseline word-
based LM. Consistent with our hypothesis that a more accurate
treebank (and more accurate CDG annotations) should benefit the
performance of the SuperARV LM, we found that the interpolated
SuperARV LM trained on T2 obtained only 0.4% absolute WER
reduction. Note that without interpolation with the baseline LM,
the SuperARV LMs trained on T1 and T2 achieve WER of 26.1%
and 26.6% on the same test set, respectively.

Table 3 demonstrates an important attribute of our SuperARV
LM: the number of SuperARVs does not increase dramatically as
the training data size increases from a moderate-sized Resource
Management corpus to the very large Hub4 set T1. Hence, Super-
ARV LMs scale well to large data sets.

Data RM WSJ WSJ Hub4
PTB CSR T1

of words 25,168 1 M 37 M 300 M
of SuperARVs 328 538 791 1,612

Table 3. The number of SuperARVs as a function of number of
words in a data set. Note that M means 1 million.

4. CONCLUSIONS AND FUTURE WORK

In cross-corpus experiments investigating the performance of the
SuperARV LM, we have observed that the SuperARV structure
provides a flexible framework that tightly couples a variety of knowl-
edge sources without combinatorial explosion. Furthermore, we
have found that the SuperARV LM is effective even when trained
on inconsistent and flawed training data; however, developing meth-
ods to produce better quality training data are worth the effort. In
future work, we will use the LM to model conversational speech
phenomena. Additionally, we plan to evaluate a tighter integration
between the acoustic model and SuperARV LM by applying the
LM during lattice generation and expansion.

5. REFERENCES

[1] W. Wang and M. P. Harper, “The SuperARV language model: Inves-
tigating the effectiveness of tightly integrating multiple knowledge
sources,” in Proceedings of Empirical Methods in Natural Language
Processing, 2002.

[2] C. Chelba, Exploiting Syntactic Structure for Natural Language
Modeling, Ph.D. thesis, Johns Hopkins University, 2000.

[3] B. Roark, “Probabilistic top-down parsing and language modeling,”
Computational Linguistics, vol. 27, no. 2, pp. 249–276, 2001.

[4] R. Rosenfeld, “Two decades of statistical language modeling: Where
do we go from here?,” Proceedings of the IEEE, vol. 88, pp. 1270–
1278, 2000.

[5] E. Charniak, “Immediate-head parsing for language models,” in
Proceedings of ACL, 2001.

[6] J. Goodman, “Probabilistic feature grammars,” in Proceedings of the
Fourth International Workshop on Parsing Technologies, 1997.

[7] S. F. Chen and J. T. Goodman, “An empirical study of smoothing
techniques for language modeling,” Tech. Rep., Harvard University,
Computer Science Group, 1998.

[8] P. J. Price, W. Fischer, J. Bernstein, and D. Pallett, “A database for
continuous speech recognition in a 1000-word domain,” in Proceed-
ings of ICASSP, 1988, pp. 651–654.

[9] E. Charniak, D. Blaheta, N. Ge, K. Hall, and M. Johnson, “BLLIP
WSJ corpus,” CD-ROM, 2000, Linguistics Data Consortium.

[10] E. Charniak, “A maximum-entropy-inspired parser,” in Proceedings
of NAACL, 2000.

[11] A. Stolcke, “SRILM–An extensible language modeling toolkit,” in
Proceedings of Intl. Conf. on Spoken Language Processing, Denver,
Co, 2002, vol. 2, pp. 901–904.

[12] M. Collins, Head-Driven Statistical Models for Natural Language
Parsing, Ph.D. thesis, University of Pennsylvania, 1999.

[13] A. Ratnaparkhi, “Learning to parse natural language with maximum
entropy models,” Machine Learning, pp. 151–176, 1999.

[14] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a
large annotated corpus of English: The Penn Treebank,” Computa-
tional Linguistics, vol. 19, no. 2, pp. 313–330, 1993.

[15] E. Black, R. Garside, and G. Leech, Statistically-driven Computer
Grammars of English: The IBM/Lancaster Approach, Rodopi, Ams-
terdam, 1993.

[16] A. Sankar, F. Weng, Z. Rivlin, A. Stolcke, and R. Gadde, “Develop-
ment of SRI’s 1997 Broadcast News transcription system,” in Pro-
ceedings of DARPA Broadcast News Transcription and Understand-
ing Workshop, Lansdowne, VA, 1998, pp. 91–96.

I - 243

➡ ➠

