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ABSTRACT

In this work, different prosodic knowledge sources are integrated
into a state-of-the-art large vocabulary speech recognition system.
Prosody manifests itself on different levels in the speech signal:
within the words as a change in phone durations and pitch, inbe-
tween the words as a variation in the pause length, and beyond the
words, correlating with higher linguistic structures and nonlexical
phenomena. We investigate three models, each exploiting a differ-
ent level of prosodic information, in rescoring N-best hypotheses
according to how well recognized words correspond to prosodic
features of the utterance. Experiments on the Switchboard corpus
show word accuracy improvements with each prosodic knowledge
source. A further improvement is observed with the combination

by a duration feature that is a vector comprised of the dura-
tions of the individual phones in the word. Gaussian Mix-
ture Models (GMMs) are used to predict the word duration
features from the hypothesized words and pauses.

The second approach addresses the interaction between
words and the between-word pauses, using an N-gram
model to predict the duration of the pauses from the word

context.

In the third approach [8] prosodic features are used to
predict certain hidden events in speech, such as segment
boundaries and disfluencies. The interaction of the hidden
events with the spoken words is modeled by an N-gram lan-
guage model (LM).

of all models, demonstrating that they each capture somewhat dif-

ferent prosodic characteristics of the speech signal. All the above techniques were integrated in SRI's 2002 Switch-

board system[9], showing a consistentimprovement over the base-
line. Each approach models different aspects of speech prosody,
although there is some overlap between models. While, as ex-
pected, the improvements were not entirely additive, we obtained

One source of information that is currently not explicitly modeled best performance when all three techniques were integrated into a
in most state-of-the-art automatic speech recognition (ASR) sys-Single system.
tems is prosody: phone duration, suprasegmental duration, pause,
pitch, and energy measurements. Prosodic features, unlike tradi-
tional segmental features (i.e. MFCC), are robust to noise and un-
affected by channel conditions. Hence, modeling their interaction 2 1. \Word Duration M odels
with words is important for improving ASR.

Prosody manifests itself on different levels in the speech sig- Traditional acoustic models computing the probabilityO|WV')
nal. Within the words, phone durations and pitch depend on lexi- Of the acoustic observatioiis given a word sequend#’, do not
cal stress and Surrounding word and pause context. For example’model eXplICItly the durational characteristics of the hypothesized
pauses affect the vowel durations of preceding words, an effect Words.
known as “prepausa| |engthening“_ Between the Words’ the vari- In this work we revisit the word-duration models described in
ation of the pauses is another prosodic characteristic of speechl6]. Each word is represented by a duration feature that is a vec-
Fina”y, p|tch, energy, pause, and vowel |engthening are Corre|atedt0r Comprising the durations of the individual phones in the word.
with higher linguistic structures and nonword phenomena, such asFor example, the word “that”, represented as the phone sequence
sentence boundaries, disfluencies, syntax, and semantics. “dh+ae+t", may be represented by a duration feature (10.0 8.0 4.0),

Past research in modeling prosody has dealt independentlyWhere the three values represent the durations of the three phones
with the different aspects of the prosodic information. There have “dh”, “ae”, and “t’, respectively. Thus, the feature vector captures
been studies that used prosody to help in syntactic disambigua-the durations of the phones within the context of the given word.
tion and understanding [1, 2] or to detect disfluencies and sentenceGiven sufficientinstances of a word, we can train statistical models
boundaries [3, 4]. Other efforts studied the effects of lexical stress, {0 represent word duration patterns. In our experiments, we used

phone durations, or higher-level prosodic information in ASR. Ex- GMMs. ) N
amples of this work can be found in [5, 6, 7, 8]. The duration models can be used to rescore the recognition hy-

In this paper we investigate two of the above-mentioned tech- potheses in an N-best list. This way, the probability of the acous-

niques plus a novel one, in order to integrate the different levels of tic OPServations can be broken into the probability of the standard
prosodic information in an ASR system: acoustic feature® 4, and the probability of the word-duration fea-

turesOp:

1. INTRODUCTION

2. MODEL DESCRIPTION

e The first approach is an improved version of the word-

duration model described in [6]. Each word is represented P(O|W) = P(Oa,Op|W) = P(OA|W)P(Op|W) (1)
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assuming conditional independence given the hypoth&sis P(W|F) directly. We can compute the latter as
In developing the duration models we must deal with the prob-

lem of sparse words. We are limited to the words in the data with a PWI|F) = P(W, F)/P(F) = Z PW,E, F)[P(F) (3)

minimum number of occurrences. Also, since word durations are &

sensitive to the pauses that may follow (prepausal lengthening), we gnd then decompos®&(W, E, F) as

actually want to train separate models for the words followed by n

pauses. This makes the sparseness of data an even bigger problenP(W,E,F):P(W,E)P(F|W,E) — P(W,E)HP(Fi|Ei, W) (4)

To deal with this, we train duration models of individual triphones ey

and phones along with those of words. We apply a simple back-off

scheme, in which the triphone models are used to score an unsee

word. If a triphone model does not exist, we back off to the corre-

sponding context-independent phone model. ’
Another problem is the rate of speech (ROS) variation across 10N to make.

different speakers. We estimated ROS as the average number of  For theevent LM P(WV, ) we use standard N-gram model-

phones per unit time, and used it to normalize the durations of the "9 techniques on a text corpus in which the events are marked

phones in both training and testing. We found that such a normal- &S tags following the wordsiVy £, W5 E5... Wy, E, . During test-

ization performed at the speaker level gave the best results. Wel"d: the events are unknown, and according to equation (3) we

excluded nonspeech (pause and noise) phones from duration scor’€€d to sum over all possible event sequences. The joint model

ing, both because this gave better results in isolation and because’ (W, £, I) thus becomes equivalent to an HMM, whose states

it makes the model more orthogonal to our other prosodic models. &€ the (word,event) pairs, while the prosodic features form the
observations. Transition probabilities are given by the event N-

gram model; emission probabilities are given ByF;|E;, W).
Since the event space is discrete and small, and the prosodic fea-

yvhere we assume that the prosodic feature vettocorrelates
only with the event&;. We compute the feature from a window
around the boundary of that event, so this is a reasonable assump-

2.2. Pausel anguage M odel

Standard acoustic models provide the probabiRt§O|W, S) of ture space continuous, high-dimensional and highly correlated, we
the observations given the word sequelicand the hypothesized invert the problem and model posterior probabilities instead:
nonspeech regions. Nevertheless, standa@hguage models do P(F)

not include pauses, which constitute an important component of P(Fi|E;,W) = P(F;|E;) = = P(E|F) (5)

prosody. However, simply including pausesin N-gram LMs would P(E:)
fragment the N-gram space. It would also limit the training data where we assume that the prosodic features are marginally inde-
from which we can estimate N-gram probabilities since we must pendent of the word sequence given the events. This is justified
use speech, rather than text, data. since for the computation of the features we use only the segmen-
One solution is to model the pauses as a separate knowledgeation information associated with a word sequence and ignore the
source, using a trigram model conditioned on the surrounding word identities. The posterior probabilitig( £;| F;) can be es-
words. This way, we approximate timated by a variety of probabilistic classifiers such as decision
N trees, neural networks, or exponential models. By resampling the
. - . T classifier training data we obtain equal priors for all events, such
P(W, 5)=PW)P(S|W) '\'II_IIP(w’“L’_1 WP(silwi, wia) (2) that P(F;)/ P(E;) in (5) can be treated as constant for a given
wheres; is the length of the pause following thith word. In our 3. MODEL INTEGRATION
experiments we quantized pause lengths into a few discrete bins
in order to obtain reliable estimates. We found preceding words \ye can revise the standard equation of maximum a posteriori

to be slightly better predictors of pauses than. following words; probability (MAP) decoding to include the conditioning on the
consequently, the pause LM backs off/#gs ;[w;) in the absence  rosodic features we are using. So the MAP hypothBisis*

of a trigram. wheres is the pause sequence accompanying the words, given the
acoustic feature® 4, the word duration feature3p,, and the other

2.3. Modeling the Prosody of Hidden Events prosodic feature$’, would be

The models we have described capture some of the interactions be- 177 5* = argmax P(W,S|04,0p, F) =

tween words and durations in phones and pauses. But prosody cor- ws

relates also with linguistic structures beyond the words themselves, P(W,S|F)P(Oa|W,S, F)P(Op|W, S, F) 6

and includes cues other than durations. Taking the approach de-~ #&1a% P(OA|F)P(Op|F) ®)

scribed in [8] we try to leverage prosody for word recognition by

modeling certain higher-level phenomenathat manifest themselves ~ ar%vmsax P(W, S|E)P(O4|W, 5)P(Op|W, 5) )

prosodically, such as sentence poundaries and speech disfluencies argmax P(W|F)P(S|W)P(Oa|W, S)P(Op|W, S) ®)

We refer to these phenomenatadden events, because they can WS

be thought of as hidden pseudo-words occurring between the ob-

bl o P 9 ~ argmaxy_P(W,E,F)P(S|W)P(04]W,5) P(Op|WW.5) (9)
If we denote by~ the hidden event representations embedded B

in W, and byF the prosodic features associated with those events,

then we want to have a model for the relation between words, hid- ~ argmax Z P(W, E)P(F|E)

den events, and prosody’(W, £, F'). The motivation for mod- E

eling £ is that it may be easier to compute the above model than P(S|W)P(O4|W,S)P(Op|W, S) (10)
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In (6) we make the same conditional independence assumption a
in (1). Equation (7) relies on the approximation that the observa-
tionsO 4 andOp are independent of the other prosodic features

STabIel. Word Error rates of the MAP hypothesis using rescoring
of N-best hypotheses obtained with a PLP baseline system.

F, conditioning on the word sequence. We ignore the denominator L SYStem [ devi0l | eval01 | eval02 |
in (6) since we assume that it is constant with respett'®. * In Baseline system (BS)| 28.2 26.7 29.1
(8) we introduce the pause model as was done in (2). Finally, to BS + Pau 28.1 26.7 28.9
obtain (9) and (10) we apply equations (3) and (4). BS + Dur 27.6 26.4 28.6
The final term we need to compute in (10) is a product (or al- BS + HE 27.6 26.3 28.6
ternatively a log-linear combination) of four separate knowledge BS + Pau + Dur 27.4 26.4 28.5
sources: the prosodic hidden event model (HE), the pause LM BS + Pau + HE 27.5 26.3 28.5
(Pau), the standard acoustic model (AC), and the duration model BS + Dur + HE 27.1 26.1 28.3
(Dur). In most state-of-the-art systems we would also include a BS + Pau +Dur + HE|| 27.1 26.0 28.2

term for the pronunciation probability of the words, and one for

the word insertion penalty. This being a log-linear combination of

knowledge sources [11] we combine them using discriminatively
optimized weights. So in practice we introduce one exponent for
each of the above-mentioned knowledge sources, which is opti-
mized to minimize the word errors on held-out data. We also intro-
duce a separate exponent for the prosodic médél| £), within

the HE model, which is optimized separately and reflects the rel- Duration model: The time-aligned acoustic training data were

ative importance of the event classifie( E| F') (in equation (5)) used to train the Duration models (Dur) for each word with a mini-
relative to the event LM. mum of 20 training occurrences 8K word-models +~10K mod-

els which included following pause/no-pause information). Tri-
phone and phone duration models were also trained and were used
as a back-off for the rest of the words. The covariances were mod-

We tested our models on Switchboard (SWB) data from recent eled by afuII-diagonaI'mat.rix. ROS normalizatiqn was applied on
NIST Hub-5 benchmarks. The 2001 development set was used adihe speaker level, estlmgtlng two ROS normalization parameters
the held-out set on which the exponents of the knowledge sourcesP€" SPeaker, corresponding to vowels and consonants.
were optimized. We used a simplex downhill method for the opti- Hidden event model: The prosodic model in (5) was trained us-
mization of the log-linear weights on an N-best hypothesis list as ing 900 SWB conversations annotated with hidden events by LDC
in [12]2. [13]. A CART-type decision tree was used as our modeling ap-
The data from the 2001 and 2002 evaluations was used for proach. A vast range of prosodic features was explored, but the
testing. The results of our experiments are in Tables 1 and 2. Ta-best tree made use mainly of the duration of the current and pre-
ble 1 gives the MAP decoding word error rate (WER) for different vious pauses, durations of last observed syllable rhymes, vowels
systems that include each of the prosodic models separately or inand last stressed vowel (normalized by phone and speaker-specific
combination with others. Table 2 gives results after performing statistics), the distance from last speaker turn, and a flag indicat-
an N-best ROVER combination with two other systems that used ing whether or not the current boundary corresponds to a speaker
different front ends, as used in the full evaluation system [9]. As turn. Less frequent, but still presentin the best tree, were questions
an expedient, these additional systems were not rescored with theabout the pitch pattern and fluctuations in the last word.
HE model, but did use the duration model and pause LM, for the We used the tree to predict five hidden event types: sentence

pausec0.06sec, 0.06 pause:0.6sec, and pause0.6sec. Using a
baseline acoustic model we performed a time alignment of all the
acoustic training data utterances against their transcriptions. From
these alignments, we obtained the durations of phones and pauses
that were used to train the model.

4. EXPERIMENTS

experiment that included prosodic information. boundaries (occurring with a frequency of 10.8% in the training
The baseline and prosodic models used in the experiments aredata), filled pauses (2.9%), repetitions (1.9%), deletions (1.3%),
described in more detail below: and all others (82.9%). The tree resulted in a prediction accuracy

Baseline: The baseline system (BS) used MMIE trained cross- Of 61.8% (compared to chance at 20%), corresponding to an en-
word acoustic models~150K Gaussians) of PLP features with ~ tropy reduction of 42.5%.

SAT and MLLR adaptation, a word-class 4-gram LM, and a pro- For the P(W, E') term of the Hidden Event (HE) model we
nunciation probability model. An important detail is that N-best trained a word-class 4-gram LM. The same data and the same
decoding in our system used acoustic models that had been adapteord classes as in the baseline LM were used. First, the LDC
using prior recognition outputs, which in turn had already been event-annotated conversationswere used to obtain an initial model,
rescored once with the duration model and pause LMs. This meanswhich was then used in a tagger to automatically annotate the rest
that the acoustic models had already benefited from some of the©f the SWB language model training corpus. The whole corpus
prosodic knowledge sources, making further improvements harderwas eventually used to retrain the 4-gram hidden event class LM.
to achieve.

Pause model: The pause model (Pau) was a standard back- 5. DISCUSSION
off-trigram model predicting only three levels of pause duration:

As shown in Table 1, all prosodic models improve the baseline
system to various degrees. The smallest WER reduction, 0.1-
0.2% absolute, comes from the pause LM. Improvements due to

1This is a loose approximation since the features are computed using
the segmentation information associated with The work in [10] pro-
poses a solution to this problem, but for this study we take the indepen-

dence assumption. the duration model range from 0.3 to 0.6% absolute over the base-
2The algorithm is implemented in the SRILM Toolkit, available from  line system. The hidden event model reduces the WER about as
http://ww. speech. sri.com projects/srilni. much as the duration model, and when combined with the other
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Table2. WER of ROVER combination of 3 systems: PLP, MFCC
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[ 3 system ROVER

no prosodic information
with prosodic information

|| dev'0l | eval'0l1 | eval'02 |
27.1 25.8 27.9
26.2 25.2 27.2

two prosodic knowledge sources still gives an additional 0.3-0.4%
improvement. All WER reductions relative to the baseline on the
combined eval'01 and '02 utterances are significant in a matched
pairs Sign testp < 0.0001 one-sided.

Overall, the combined use of all three prosodic models low-
ers WER by 0.7-0.9% on the independent test sets. Even in the
ROVER-combination with the two other systems that did not make
use of the HE model, an improvement of 0.6-0.7% over the sys-
tem combination without prosody is preserved. The gains due to

each individual prosodic model were somewhat complementary, [4]

but not fully additive, as expected. This confirms that the infor-
mation sources modeled are in fact correlated, and suggests that
relaxing some of the independence assumptions may result in fur-
ther improvements.

As already mentioned, the duration model and pause LM had
been used earlier in the processing to generate adaptation hypothe-

ses for the baseline system, thereby making incremental gains 6

from prosody scoring harder to achieve. In fact, prior to transcrip-
tion mode adaptation, compared to a baseline WER of about 32%,
the duration model achieves a WER reduction of about 1% abso-
lute, and the pause LM an additional 0.4%. Even in relative terms,
these improvements are larger than those obtained after adapta-
tion, consistent with the acoustic model having absorbed some of
the prosodic information via adaptation.

6. CONCLUSIONSAND FUTURE WORK

[10

We found that the use of different levels of prosodic information
in otherwise competitive large-vocabulary speech recognition sys-

tems is effective in reducing word errors. We observed improve- [11]

ments in WER of 0.7-1.1% absolute using MAP decoding over a
PLP baseline SWB system. Using ROVER with multiple front-end
systems and more knowledge sources, we found the improvement
due to the prosodic information to be 0.7-0.9%.

In future work we will revisit some of the independence as-
sumptions made in our models, and will try to make use of more
prosodic features. Currently, we ignore the fact that the prosodic
features computed are dependent on the current hypothesis, which
makes the likelihood scores of different hypotheses not entirely
comparable. In [10] a normalization “anti-phone” model is pro-
posed to account for this error in probability estimation. Also we
plan to explore more of the interaction between prosodic features
like pitch and energy with the word sequence. In the current work
such features were modeled only indirectly through their interac-
tion with hidden events. Since non-default events (sentence bound-
aries and disfluencies) occur at only 17% of the word boundaries
one would expect better results with an approach that explicitly
characterizes the pitch and energy features of all words.

SFor logistical reasons we did not apply the hidden event model to the
pre-adaptation baseline, and rescored only one of the adapted systems.
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