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ABSTRACT

In this work, different prosodic knowledge sources are integrated
into a state-of-the-art large vocabulary speech recognition system.
Prosody manifests itself on different levels in the speech signal:
within the words as a change in phone durations and pitch, inbe-
tween the words as a variation in the pause length, and beyond the
words, correlating with higher linguistic structures and nonlexical
phenomena. We investigate three models, each exploiting a differ-
ent level of prosodic information, in rescoring N-best hypotheses
according to how well recognized words correspond to prosodic
features of the utterance. Experiments on the Switchboard corpus
show word accuracy improvements with each prosodic knowledge
source. A further improvement is observed with the combination
of all models, demonstrating that they each capture somewhat dif-
ferent prosodic characteristics of the speech signal.

1. INTRODUCTION

One source of information that is currently not explicitly modeled
in most state-of-the-art automatic speech recognition (ASR) sys-
tems is prosody: phone duration, suprasegmental duration, pause,
pitch, and energy measurements. Prosodic features, unlike tradi-
tional segmental features (i.e. MFCC), are robust to noise and un-
affected by channel conditions. Hence, modeling their interaction
with words is important for improving ASR.

Prosody manifests itself on different levels in the speech sig-
nal. Within the words, phone durations and pitch depend on lexi-
cal stress and surrounding word and pause context. For example,
pauses affect the vowel durations of preceding words, an effect
known as “prepausal lengthening”. Between the words, the vari-
ation of the pauses is another prosodic characteristic of speech.
Finally, pitch, energy, pause, and vowel lengthening are correlated
with higher linguistic structures and nonword phenomena, such as
sentence boundaries, disfluencies, syntax, and semantics.

Past research in modeling prosody has dealt independently
with the different aspects of the prosodic information. There have
been studies that used prosody to help in syntactic disambigua-
tion and understanding [1, 2] or to detect disfluenciesand sentence
boundaries [3, 4]. Other efforts studied the effects of lexical stress,
phone durations, or higher-level prosodic information in ASR. Ex-
amples of this work can be found in [5, 6, 7, 8].

In this paper we investigate two of the above-mentioned tech-
niques plus a novel one, in order to integrate the different levels of
prosodic information in an ASR system:

� The first approach is an improved version of the word-
duration model described in [6]. Each word is represented

by a duration feature that is a vector comprised of the dura-
tions of the individual phones in the word. Gaussian Mix-
ture Models (GMMs) are used to predict the word duration
features from the hypothesized words and pauses.

� The second approach addresses the interaction between
words and the between-word pauses, using an N-gram
model to predict the duration of the pauses from the word
context.

� In the third approach [8] prosodic features are used to
predict certain hidden events in speech, such as segment
boundaries and disfluencies. The interaction of the hidden
events with the spoken words is modeled by an N-gram lan-
guage model (LM).

All the above techniques were integrated in SRI’s 2002 Switch-
board system [9], showing a consistent improvement over the base-
line. Each approach models different aspects of speech prosody,
although there is some overlap between models. While, as ex-
pected, the improvements were not entirely additive, we obtained
best performance when all three techniques were integrated into a
single system.

2. MODEL DESCRIPTION

2.1. Word Duration Models

Traditional acoustic models computing the probabilityP �OjW �
of the acoustic observationsO given a word sequenceW , do not
model explicitly the durational characteristics of the hypothesized
words.

In this work we revisit the word-duration models described in
[6]. Each word is represented by a duration feature that is a vec-
tor comprising the durations of the individual phones in the word.
For example, the word “that”, represented as the phone sequence
“dh+ae+t”, may be represented by a duration feature (10.0 8.0 4.0),
where the three values represent the durations of the three phones
“dh”, “ae”, and “t”, respectively. Thus, the feature vector captures
the durations of the phones within the context of the given word.
Given sufficient instancesof a word, we can train statistical models
to represent word duration patterns. In our experiments, we used
GMMs.

The duration models can be used to rescore the recognition hy-
potheses in an N-best list. This way, the probability of the acous-
tic observations can be broken into the probability of the standard
acoustic featuresOA and the probability of the word-duration fea-
turesOD:

P �OjW � � P �OA� ODjW � � P �OAjW �P �ODjW � (1)
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assuming conditional independence given the hypothesisW .
In developing the duration models we must deal with the prob-

lem of sparse words. We are limited to the words in the data with a
minimum number of occurrences. Also, since word durations are
sensitive to the pauses that may follow (prepausal lengthening), we
actually want to train separate models for the words followed by
pauses. This makes the sparsenessof data an even bigger problem.
To deal with this, we train duration models of individual triphones
and phones along with those of words. We apply a simple back-off
scheme, in which the triphone models are used to score an unseen
word. If a triphone model does not exist, we back off to the corre-
sponding context-independent phone model.

Another problem is the rate of speech (ROS) variation across
different speakers. We estimated ROS as the average number of
phones per unit time, and used it to normalize the durations of the
phones in both training and testing. We found that such a normal-
ization performed at the speaker level gave the best results. We
excluded nonspeech (pause and noise) phones from duration scor-
ing, both because this gave better results in isolation and because
it makes the model more orthogonal to our other prosodic models.

2.2. Pause Language Model

Standard acoustic models provide the probabilityP �OjW�S� of
the observations given the word sequenceW and the hypothesized
nonspeech regionsS. Nevertheless, standardlanguage models do
not include pauses, which constitute an important component of
prosody. However, simply including pauses in N-gram LMs would
fragment the N-gram space. It would also limit the training data
from which we can estimate N-gram probabilities since we must
use speech, rather than text, data.

One solution is to model the pauses as a separate knowledge
source, using a trigram model conditioned on the surrounding
words. This way, we approximate

P �W� S��P �W �P �SjW ��

NY
i��

P �wijhi���P �sijwi� wi��� (2)

wheresi is the length of the pause following theith word. In our
experiments we quantized pause lengths into a few discrete bins
in order to obtain reliable estimates. We found preceding words
to be slightly better predictors of pauses than following words;
consequently, the pause LM backs off toP �s ijwi� in the absence
of a trigram.

2.3. Modeling the Prosody of Hidden Events

The models we have described capture some of the interactions be-
tween words and durations in phones and pauses. But prosody cor-
relates also with linguistic structures beyond the words themselves,
and includes cues other than durations. Taking the approach de-
scribed in [8] we try to leverage prosody for word recognition by
modeling certain higher-level phenomena that manifest themselves
prosodically, such as sentence boundaries and speech disfluencies.
We refer to these phenomena ashidden events, because they can
be thought of as hidden pseudo-words occurring between the ob-
servable words.

If we denote byE the hidden event representations embedded
inW , and byF the prosodic features associatedwith those events,
then we want to have a model for the relation between words, hid-
den events, and prosody:P �W�E�F �. The motivation for mod-
elingE is that it may be easier to compute the above model than

P �W jF � directly. We can compute the latter as

P �W jF � � P �W�F ��P �F � �
X
E

P �W�E�F ��P �F � (3)

and then decomposeP �W�E� F � as

P �W�E�F ��P �W�E�P �F jW�E��P �W�E�

nY
i��

P �FijEi�W � (4)

where we assume that the prosodic feature vectorFi correlates
only with the eventEi. We compute the feature from a window
around the boundary of that event, so this is a reasonable assump-
tion to make.

For theevent LM P �W�E� we use standard N-gram model-
ing techniques on a text corpus in which the events are marked
as tags following the words:W�E�W�E����WnEn. During test-
ing, the events are unknown, and according to equation (3) we
need to sum over all possible event sequences. The joint model
P �W�E�F � thus becomes equivalent to an HMM, whose states
are the (word,event) pairs, while the prosodic features form the
observations. Transition probabilities are given by the event N-
gram model; emission probabilities are given byP �FijEi�W �.
Since the event space is discrete and small, and the prosodic fea-
ture space continuous, high-dimensional and highly correlated, we
invert the problem and model posterior probabilities instead:

P �FijEi�W � � P �FijEi� �
P �Fi�

P �Ei�
P �EijFi� (5)

where we assume that the prosodic features are marginally inde-
pendent of the word sequence given the events. This is justified
since for the computation of the features we use only the segmen-
tation information associated with a word sequence and ignore the
word identities. The posterior probabilitiesP �EijFi� can be es-
timated by a variety of probabilistic classifiers such as decision
trees, neural networks, or exponential models. By resampling the
classifier training data we obtain equal priors for all events, such
thatP �Fi��P �Ei� in (5) can be treated as constant for a givenFi.

3. MODEL INTEGRATION

We can revise the standard equation of maximum a posteriori
probability (MAP) decoding to include the conditioning on the
prosodic features we are using. So the MAP hypothesisWS � ,
whereS is the pause sequence accompanying the words, given the
acoustic featuresOA, the word duration featuresOD, and the other
prosodic featuresF , would be

WS� � argmax
WS

P �W�SjOA�OD� F � �

� argmax
WS

P �W�SjF �P �OAjW�S�F �P �ODjW�S�F �

P �OAjF �P �ODjF �
(6)

� argmax
WS

P �W�SjF �P �OAjW�S�P �ODjW�S� (7)

� argmax
WS

P �W jF �P �SjW �P �OAjW�S�P �ODjW�S� (8)

� argmax
WS

X
E

P �W�E�F �P �SjW �P �OAjW�S�P �ODjW�S� (9)

� argmax
WS

�X
E

P �W�E�P �F jE�

�

P �SjW �P �OAjW�S�P �ODjW�S� (10)

I - 209

➡ ➡



In (6) we make the same conditional independence assumption as
in (1). Equation (7) relies on the approximation that the observa-
tionsOA andOD are independent of the other prosodic features
F , conditioning on the word sequence. We ignore the denominator
in (6) since we assume that it is constant with respect toWS. 1 In
(8) we introduce the pause model as was done in (2). Finally, to
obtain (9) and (10) we apply equations (3) and (4).

The final term we need to compute in (10) is a product (or al-
ternatively a log-linear combination) of four separate knowledge
sources: the prosodic hidden event model (HE), the pause LM
(Pau), the standard acoustic model (AC), and the duration model
(Dur). In most state-of-the-art systems we would also include a
term for the pronunciation probability of the words, and one for
the word insertion penalty. This being a log-linear combination of
knowledge sources [11] we combine them using discriminatively
optimized weights. So in practice we introduce one exponent for
each of the above-mentioned knowledge sources, which is opti-
mized to minimize the word errors on held-out data. We also intro-
duce a separate exponent for the prosodic modelP �F jE�, within
the HE model, which is optimized separately and reflects the rel-
ative importance of the event classifierP �EjF � (in equation (5))
relative to the event LM.

4. EXPERIMENTS

We tested our models on Switchboard (SWB) data from recent
NIST Hub-5 benchmarks. The 2001 development set was used as
the held-out set on which the exponents of the knowledge sources
were optimized. We used a simplex downhill method for the opti-
mization of the log-linear weights on an N-best hypothesis list as
in [12]2.

The data from the 2001 and 2002 evaluations was used for
testing. The results of our experiments are in Tables 1 and 2. Ta-
ble 1 gives the MAP decoding word error rate (WER) for different
systems that include each of the prosodic models separately or in
combination with others. Table 2 gives results after performing
an N-best ROVER combination with two other systems that used
different front ends, as used in the full evaluation system [9]. As
an expedient, these additional systems were not rescored with the
HE model, but did use the duration model and pause LM, for the
experiment that included prosodic information.

The baseline and prosodic models used in the experiments are
described in more detail below:

Baseline: The baseline system (BS) used MMIE trained cross-
word acoustic models (�150K Gaussians) of PLP features with
SAT and MLLR adaptation, a word-class 4-gram LM, and a pro-
nunciation probability model. An important detail is that N-best
decoding in our system used acousticmodels that had been adapted
using prior recognition outputs, which in turn had already been
rescored once with the duration model and pause LMs. This means
that the acoustic models had already benefited from some of the
prosodic knowledge sources, making further improvements harder
to achieve.

Pause model: The pause model (Pau) was a standard back-
off-trigram model predicting only three levels of pause duration:

1This is a loose approximation since the features are computed using
the segmentation information associated withW . The work in [10] pro-
poses a solution to this problem, but for this study we take the indepen-
dence assumption.

2The algorithm is implemented in the SRILM Toolkit, available from
http://www.speech.sri.com/projects/srilm/.

Table 1. Word Error rates of the MAP hypothesis using rescoring
of N-best hypotheses obtained with a PLP baseline system.

System dev’01 eval’01 eval’02

Baseline system (BS) 28.2 26.7 29.1
BS + Pau 28.1 26.7 28.9
BS + Dur 27.6 26.4 28.6
BS + HE 27.6 26.3 28.6
BS + Pau + Dur 27.4 26.4 28.5
BS + Pau + HE 27.5 26.3 28.5
BS + Dur + HE 27.1 26.1 28.3
BS + Pau +Dur + HE 27.1 26.0 28.2

pause�0.06sec, 0.06�pause�0.6sec, and pause� 0.6sec. Using a
baseline acoustic model we performed a time alignment of all the
acoustic training data utterances against their transcriptions. From
these alignments, we obtained the durations of phones and pauses
that were used to train the model.

Duration model: The time-aligned acoustic training data were
used to train the Duration models (Dur) for each word with a mini-
mum of 20 training occurrences (�8K word-models +�10K mod-
els which included following pause/no-pause information). Tri-
phone and phone duration models were also trained and were used
as a back-off for the rest of the words. The covariances were mod-
eled by a full-diagonal matrix. ROS normalization was applied on
the speaker level, estimating two ROS normalization parameters
per speaker, corresponding to vowels and consonants.

Hidden event model: The prosodic model in (5) was trained us-
ing 900 SWB conversations annotated with hidden events by LDC
[13]. A CART-type decision tree was used as our modeling ap-
proach. A vast range of prosodic features was explored, but the
best tree made use mainly of the duration of the current and pre-
vious pauses, durations of last observed syllable rhymes, vowels
and last stressed vowel (normalized by phone and speaker-specific
statistics), the distance from last speaker turn, and a flag indicat-
ing whether or not the current boundary corresponds to a speaker
turn. Less frequent, but still present in the best tree, were questions
about the pitch pattern and fluctuations in the last word.

We used the tree to predict five hidden event types: sentence
boundaries (occurring with a frequency of 10.8% in the training
data), filled pauses (2.9%), repetitions (1.9%), deletions (1.3%),
and all others (82.9%). The tree resulted in a prediction accuracy
of 61.8% (compared to chance at 20%), corresponding to an en-
tropy reduction of 42.5%.

For theP �W�E� term of the Hidden Event (HE) model we
trained a word-class 4-gram LM. The same data and the same
word classes as in the baseline LM were used. First, the LDC
event-annotatedconversationswere used to obtain an initial model,
which was then used in a tagger to automatically annotate the rest
of the SWB language model training corpus. The whole corpus
was eventually used to retrain the 4-gram hidden event class LM.

5. DISCUSSION

As shown in Table 1, all prosodic models improve the baseline
system to various degrees. The smallest WER reduction, 0.1-
0.2% absolute, comes from the pause LM. Improvements due to
the duration model range from 0.3 to 0.6% absolute over the base-
line system. The hidden event model reduces the WER about as
much as the duration model, and when combined with the other
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Table 2. WER of ROVER combination of 3 systems: PLP, MFCC
and LFC (Fourier), with and without the use of prosodic informa-
tion.

3 system ROVER dev’01 eval’01 eval’02

no prosodic information 27.1 25.8 27.9
with prosodic information 26.2 25.2 27.2

two prosodic knowledge sources still gives an additional 0.3-0.4%
improvement. All WER reductions relative to the baseline on the
combined eval’01 and ’02 utterances are significant in a matched
pairs Sign test,p � ������ one-sided.

Overall, the combined use of all three prosodic models low-
ers WER by 0.7-0.9% on the independent test sets. Even in the
ROVER-combination with the two other systems that did not make
use of the HE model, an improvement of 0.6-0.7% over the sys-
tem combination without prosody is preserved. The gains due to
each individual prosodic model were somewhat complementary,
but not fully additive, as expected. This confirms that the infor-
mation sources modeled are in fact correlated, and suggests that
relaxing some of the independence assumptions may result in fur-
ther improvements.

As already mentioned, the duration model and pause LM had
been used earlier in the processing to generate adaptation hypothe-
ses for the baseline system, thereby making incremental gains
from prosody scoring harder to achieve. In fact, prior to transcrip-
tion mode adaptation, compared to a baseline WER of about 32%,
the duration model achieves a WER reduction of about 1% abso-
lute, and the pause LM an additional 0.4%. Even in relative terms,
these improvements are larger than those obtained after adapta-
tion, consistent with the acoustic model having absorbed some of
the prosodic information via adaptation.3

6. CONCLUSIONS AND FUTURE WORK

We found that the use of different levels of prosodic information
in otherwise competitive large-vocabulary speech recognition sys-
tems is effective in reducing word errors. We observed improve-
ments in WER of 0.7-1.1% absolute using MAP decoding over a
PLP baseline SWB system. Using ROVER with multiple front-end
systems and more knowledge sources, we found the improvement
due to the prosodic information to be 0.7-0.9%.

In future work we will revisit some of the independence as-
sumptions made in our models, and will try to make use of more
prosodic features. Currently, we ignore the fact that the prosodic
features computed are dependent on the current hypothesis, which
makes the likelihood scores of different hypotheses not entirely
comparable. In [10] a normalization “anti-phone” model is pro-
posed to account for this error in probability estimation. Also we
plan to explore more of the interaction between prosodic features
like pitch and energy with the word sequence. In the current work
such features were modeled only indirectly through their interac-
tion with hidden events. Since non-default events (sentencebound-
aries and disfluencies) occur at only 17% of the word boundaries
one would expect better results with an approach that explicitly
characterizes the pitch and energy features of all words.

3For logistical reasons we did not apply the hidden event model to the
pre-adaptation baseline, and rescored only one of the adapted systems.
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