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ABSTRACT

In this paper, we explore the use of lattices to generate pro-
nunciationsfor speech recognition based on the observation
of afew (say one or two) speech utterances of aword. Var-
ious search strategies are investigated in combination with
schemes where single or multiple pronunciations are gen-
erated for each speech utterance. In our experiments, a
strategy that combines merging time-overlapping linksin a
context-dependent subphone | attice and generating multiple
pronunciations provides the best recognition accuracy. This
results in average relative gains of 30% over the generation
of single pronunciations using a Viterbi search.

1. MOTIVATION

Speech recognition systems usualy rely on a fixed lexi-
con where the pronunciations of the vocabulary words are
given by hand-crafted phonetic baseforms, i.e. sequences
of phones written by a phonetician. However, many ap-
plications require new words to be dynamically added to
the recognition vocabulary, or new pronunciations of in-
vocabulary words to be added to the lexicon. We consider
situations where the spellings of the words are not available:
the user is asked to utter once or twice the words to add
to his/her personalized vocabulary, and phonetic baseforms
for these words are derived from the acoustic data. In these
situations, standard approaches ([1],[2]) usually rely on the
combined use of: (i) an existing set of speaker-independent
acoustic models of subphone units, and (ii) amodel of tran-
sition between these subphone units. In [9], multiple base-
forms are derived from each speech utterance by varying
the relative weights of the acoustic and transition models.
In this paper, we combine both single and multiple base-
form generation schemes with lattice rescoring techniques.
The structure of this paper is as follows. Section 2 ex-
plains the procedure used for lattice generation and sec-
tion 3 proposes three search strategies to retrieve pronoun-
ciations from the lattices. Section 4 describes two differ-
ent schemes according to which the recognition lexicons
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are built. Section 5 reports on speech recognition exper-
iments comparing various combinations of lattice genera-
tion, search strategies and lexicon schemes. Section 6 con-
cludes this work.

2. LATTICE GENERATION

In this section, we describe our acoustic and transition mod-
elsand theway these model s are combined to produce search
lattices at the level of either Context-Dependent (CD) sub-
phone units, Context-Independent (Cl) subphone units or
phone units. In our acoustic modeling scheme, each phone
is described as a sequence of three Cl subphone units called
arcs. Each arc is further modelled with a set of CD units,
more precisely triphone units, which are called leaves as
they are obtained by using a phonetic decision tree [5]. The
cepstral distribution of each leaf is modeled with a mixture
of Gaussians. The number of Gaussians in each mixtureis
optimized by using the BIC criterion [6].

A phone graph that allows any phone to follow any other
phone is expanded into an arc graph and then into a leaf
graph by integrating the contextual constraintsgiven by each
arc’'s phonetic decision tree. A leaf lattice containing the
Viterbi path for each leaf sequencein theinput graphisthen
generated for the data of each enrollment utterance. In our
experiments, pronunciations are derived using either these
leaf lattices or lattices at the arc or phonelevel. The arc lat-
tices are obtained by converting each leaf label into the cor-
responding arc label, while preserving the acoustic score of
each path. Similarly, the phone lattices are obtained by con-
verting each sub-sequence of arc labels matching the same
phone into the corresponding phone label, while preserving
the acoustic score of each path.

The lattices are then rescored with atransition model, i.e. a
Language Model (LM), between the leaves, arcs or phones
the same way word lattices are rescored with an LM in
speech recognition. In our experiments, the LM isabigram
model using Kneser-Ney-mod-fix smoothing technique [8].
TheLM training datawas obtained by aligning alarge dataset
of speech with a known transcription at the leaf level. The
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arc and phone bigram models are estimated after convert-
ing the aligned corpus into a corpus of arc and phone labels
respectively.

3. SEARCH STRATEGIES

Having generated the lattices at a leaf, arc or phone level,
we can retrieve the most likely path in each lattice using the
Viterbi a gorithm, which we will refer to asthe Viterbi strat-
egy.

We can also compute link posterior probability as the sum
of the posterior probabilities of all the sentences (paths)
which contain (go through) that particular link (computed
efficiently using the Forward-Backward algorithm [3]). We
can then extract the path in the lattice with the highest com-
bined link posterior probabilities, which we will refer to as
the Forward-Backward strategy. By doing this, we accu-
mulate path posterior probabilities for each link, but links
with the same label which are hypothesized in similar time
intervals are considered two different entities on competing
paths.

In order to move one step closer towards computing the pos-
terior probability of alink, arc or phonein aparticular time
interval, we need to merge these overlapping links and cre-
ate anew lattice. More precisely, weinitialize clusters with
all thelinks with the same label, start and end time. We then
merge the clusters that bear the same labels and whose link
components overlap in time?. This is similar to the intra-
word stage of the clustering procedure described in[4]. At
the end of the merging procedure we connect the resulting
clusters based on the order relations existing in the original
lattice, i.e. existing pathsin the original lattice between the
links components. Figure 1 illustrates the effect of merging
on both the topology and the scores of the original lattices.
By summing the posterior probabilities of all the links in
each cluster we obtain a new score for each link in the new
lattice. The path in the new lattice with the highest cumula-
tive score is the newly proposed hypothesis, which we will
refer to as the merging strategy.

4. LEXICON SCHEMES

As explained in section 3, a sequence of either leaf, arc
or phone labels is retrieved from the lattices generated for
each enrollment utterance following the Viterbi strategy, the
forward-backward strategy or the merging strategy. The se-
quences of labels output by the search procedure are con-
verted into phonetic baseforms by replacing the subphone
labelswith their phone counterpart and by merging repeated

1Thetimeinterval is suggested by the start and end time of the overlap-

ping links.

2We experimented with the degree of overlap as a constraint for merg-

ing and found that there is no need for such a constraint.

C (p2)
(a) Original lattice

(b) Lattice after merging

Fig. 1. Effect of merging on the topology and scores of the
original lattices.

phones. Beginning and ending silence labels arefiltered out.
The influence of the LM weight A used to rescore the lat-
tices is investigated in two different schemes. In the “sin-
gle baseform” scheme, al the distinct baseforms retrieved
for a given speaker and a given LM weight are gathered
(together with the hand-written baseforms of the fixed vo-
cabulary) to form the recognition lexicon. In the “multiple
baseform” scheme, al the distinct baseforms retrieved for
a given speaker by rescoring the same lattice with different
LM weights are gathered in the same lexicon as pronunci-
ation variants as proposed in [9]. Each of the three search
strategies is assessed in combination with either the single
or multiple baseform schemesusing either leaf, arc or phone
lattices.

5. EXPERIMENTS

5.1. Enrollment data

We report on experiments with 2 different sets of enrolled
words: (i) theenrollment set £; consists of 50 distinct words,
each word being repeated twice by 10 speakers, (ii) the en-
rollment set £ consists of 35 distinct words, each word be-
ing repeated once by 20 speakers. All the data are recorded
using a push-to-talk button in a quiet environment at 22kHz
and downsampled to 11kHz. The front end computes 12
cepstra+ the energy + deltaand delta-delta coefficientsfrom
15msframes. Baseforms are generated using areduced-size
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acoustic model especially designed to be used in portable
devices or in automotive applications [7]. It consists of a
set of speaker-independent acoustic models (156 subphones
covering the phoneticsof English) with about 5,000 context-
dependent gaussians, trained on afew hundred hours of gen-
eral English speech (about half of these training data has ei-
ther digitally added car noise, or was recorded in a moving
car at 30 and 60 mph). The bigram model of subphoneswas
estimated off-line on an aligned corpus of about 17,000 sen-
tences (names, addresses, digits). Speaker-dependent lexi-
cons are formed for each speaker in respectively £, and E-
following the schemes described in section 4.

5.2. Evaluation data

The recognition lexicons derived for each speaker in the
enrollment set F; are evaluated on 2 test sets: (i) the test
set T'1.1 where each of the 50 words in E; are repeated
in isolation 10 times by each of the same 10 speakers, (ii)
the test set 7'1.2 where each of the 50 words in £, arere-
peated in 10 different short sentences (typically command
sentences like “ADD < name > TO THE LIST”, where
< mame > is an enrolled word) by each of the same 10
speakers. Therecognition lexicons derived for each speaker
in the enrollment set E- are evaluated on 3 test sets: (i) the
test set 7'2.1 isrecorded in aquiet environment, (ii) the test
set T'2.2 isrecorded in a car moving at 30mph, (iii) the test
set 7'2.3 is recorded in a car moving at 60mph. All 3 sets
T2.1,7T2.2 and T2.3 consist of the 35 wordsin E uttered
once and preceded by either the word “CALL”, “DIAL” or
“EMAIL", by each of the speakersin E5. The baseforms
of the command words “CALL", “DIAL"... in the test sets
are linguist-written baseforms. In the following section, we
show the overall Word Error Rate (WER) obtained on al
five test sets.

5.3. Recognition scores

Figures 2(a), 2(b) and 2(c) compare the WER obtained
with the different search strategies for respectively the leaf,
arc and phone lattices in the single baseform scheme. The
WER is plotted as a function of the LM weight A (with
0.1 < XA < 1 amultiple of 0.1, for an acoustic model
weight set to 1). Regardless of the unit label, the forward-
backward strategy provides an average relative WER reduc-
tion of about 2% (across al LM weights) over the Viterbi
strategy. The merging strategy results in more significant
WER reductions: respectively 13%, 12% and 17% relative
for the leaf, arc and phone lattices.

Figures 3(a), 3(b) and 3(c) compare the WER obtained
with the merging strategy combined with either the single
or multiple baseform schemes for respectively the leaf, arc
and phone lattices. In the multiple baseform scheme, base-
forms are accumulated by scanning a set of LM weights
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(c) Phone lattices.
Fig. 2. WER asafunction of LM weight. Viterbi (- -) versus

Forward-Backward (-) versus Merging (-*) search strategies
in the single baseform scheme

{0.1;0.2;...; A}. In both the single and multiple baseform
schemes the WER is plotted as a function of A\. Accumulat-
ing baseforms when incrementing the LM weight decreases
the WER by respectively 17%, 7% and 6% relative for the
leaf, arc and phone lattices. As the single baseforms ob-
tained with the leaf lattices are of better quality than the
single baseforms obtained with the arc and phone lattices
(the solid line on Figure 3(a) versus the solid lines on Fig-
ure 3(b) and Figure 3(c), cumulating them is all the more
rewarding. These improvements confirm the ones obtained
in[9].

Figure 4 compares the WER obtained with the leaf, arc
and phone lattices for the optimal configuration where the
merging strategy is combined with the multiple baseform
scheme. The leaf lattices clearly outperform both the arc
and phone lattices, with relative WER reduction of respec-
tively 13% and 12% in average. The arc and phone lattices
produce similar performances.

6. CONCLUSIONS AND PERSPECTIVES

We investigated the use of lattices for the automatic gener-
ation of pronunciations when only one or two enrollment
speech utterances are available. Various search strategies
are used to rescore context-independent and dependent sub-
phone lattices and context-independent phone lattices. Our
best strategy involves merging links that both overlap in
time and have identical labels in a context-dependent sub-

| - 206




(a) Leaf lattices,
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(c) Phone lattices.
Fig. 3. WER asafunctionof LM weight. Single(- -) versus

multiple (-) baseform schemes combined with the merging
search strategy.

phone lattice. This strategy consistently improves the qual-
ity of the baseforms, resulting in more than 10% relative
reduction in WER. Moreover, accumulating the pronuncia-
tions across LM weightsimprovesthe robustness of the lex-
icons, as reflected by the 30% relative WER reduction. We
expect further improvements can be obtained from taking
into account the acoustic confusability between units.
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