
TWO-PASS SEARCH STRATEGY FOR LARGE LIST RECOGNITION ON EMBEDDED
SPEECH RECOGNITION PLATFORMS

M. Novak, R. Hampl, P. Krbec, V. Bergl, J. Sedivy

IBM T.J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598, USA

ABSTRACT

This paper presents an efficient algorithm for a speech
recognition system which can process large lists of items.
The described two-pass search implementation focuses on
maximizing the speed and minimizing the memory footprint
of the search engine. The algorithm is designed to handle
thousands or tens of thousands of words in a search space
restricted by a grammar. A typical example of such a task is
stock name recognition, street name finding, song selection
etc. The intended application of this algorithm is in embed-
ded ASR system in portable devices (e.g. iPAQ) or cars.

1. INTRODUCTION

Speech recognition applications implemented on low-resource
platforms have received a lot of attention recently. The task
complexity is limited by the available resources, such as the
processing power of the CPU and available memory. The
application’s memory footprint is more critical since the tar-
geted platforms typically try to extend battery life by equip-
ping devices with smaller dynamic memory. Thus, many
such recognizers target small vocabulary tasks with search
spaces limited by grammars.

This paper presents an algorithm which can be used for
large vocabulary speech recognition on existing portable de-
vices such as the Compaq iPAQ. We focus on a particu-
lar class of tasks, which we refer to as “large list” tasks.
The main characteristics are large vocabulary (several thou-
sand words) and search space restricted by an acyclic finite
state machine (FSM). The acyclic restriction is essential for
our implementation, as it allows us to represent the whole
search space as a tree.

This functionality is useful for many applications where
the user is selecting from a large list of choices. These are
the kinds of applications where speech recognition is bring-
ing the largest benefit to the user interface. A typical ex-
ample of such a task is stock name or mutual fund name
selection, street name finding, song selection etc. An ut-
terance is usually very short, so the user does not need any
feedback during the utterance, as long as the answer is ready
soon after the utterance is finished.

2. SEARCH STRATEGY

Recognition of large lists has been addressed in the context
of using network search space [1]. We will show that we
can take advantage of tree search by using it during the first
pass of a two-pass search.

The decoder is based on synchronous Viterbi search. We
have ruled out an asynchronous stack search approach [2]
due to its relative complexity of implementation in com-
parison to the Viterbi search. For the level of complexity
observed in embedded tasks, the advantage of stack search
scalability is not apparent. Nevertheless, we have borrowed
some concepts from stack search to implement the “large
list” system.

We will first discuss the available options for search im-
plementation. We will then present the reasons why we
choose our two-pass search strategy and compare it to al-
ternative solutions.

Recent developments in the application of finite state
transducers to speech recognition have made the choice of
single-pass Viterbi very popular [3] by providing a sound
framework for operations such as weighted automata de-
terminization, minimization, factorization etc. The search
network can be either statically pre-compiled or composed
dynamically with some additional CPU cost.

Our initial experiments showed that a statically com-
piled network would not allow us to perform single pass
search with sufficient speed, so we have decided to use two-
pass strategy. In the first pass, the search is performed on
a static network using approximate models over the whole
utterance. This “fast match” generates a list of n-best hy-
potheses, from which a smaller “detailed match” network is
compiled.

This arrangement introduces certain latency into the sys-
tem, since the detailed match phase is not started until the
utterance is completed. But since the detailed match phase
is much faster and we compute and store the detailed match
state output probabilities during the fast match phase, this
latency is very small.

Another reason for adopting the two pass strategy is the
sensitivity of the targeted task to search errors. The perplex-
ity of the search at the beginning is very high, possibly equal

I - 2000-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

N-best generator
output

text

time

start

endutterance

Detailed MatchFast Match

Acoustic
Front End

Output Prob. Cache
input

PCM

Detailed
MatchAcoustic Front End + Fast Match

Fig. 1. Block and time diagrams of the two pass search
strategy

to the number of words in the vocabulary. At that point, the
correct path can be easily pruned off by another path which
might have a better score at a particular time but may never
reach the end of the utterance. Knowing the score of the
whole phrase gives us significantly more information about
the first word than just the score of this word alone. Thus,
delaying the detailed match pass until the fast match is com-
pleted over the whole utterance results in a much sparser
word trellis for the detailed match.

3. ACOUSTIC FRONT END

The role of the front end is to compute the HMM state out-
put probabilities using Gaussian mixture models. We use
decision trees to create 700 GMMs, each one correspond-
ing to one HMM state in a tri-phone context. The context
information is limited to word internal phones only. Rather
than computing these probabilities on demand (an efficient
approach for small vocabularies), we evaluate only a limited
number of GMMs using a hierarchical scheme [4] so that
the CPU cost is not dependent upon vocabulary or grammar
size. Our two-pass strategy requires storage of these values
for the whole length of the utterance, by changing the num-
ber of GMMs computed and stored we can trade accuracy
for memory usage.

Instead of using the GMM probabilities directly, we con-
vert them to probabilities based on their rank when sorted by
GMM probability [5]. One particular advantage is that the
probability space is then bounded and the values of the best
and the worst state output probabilities remain the same for
each time frame. This allows us to prune the search more
aggressively. For any state output probabilities not actually
computed, we simply use a single value from the tail of the
rank probability distribution. Another advantage of using
rank based probabilities is that their dynamic range is more
comparable to the range of state transition probabilities, so
their effect on the duration modeling capability of the HMM
is more apparent.

4. FAST MATCH

For the fast match pass, an FSM graph representing the
search space at the word level is expanded into a phonetic
tree. We take advantage of a tree property: each leaf of the
tree uniquely identifies a matched phrase. There is no need
for back-tracing: the score of each hypothesis can be read
at the leaves of the tree. This has an important implication
for both memory and CPU usage.

To analyze these costs carefully, let us start with the tree.
The memory cost can be divided into three distinct cate-
gories - ROM, statically allocated RAM and dynamically al-
located RAM. This distinction is important on certain hard-
ware platforms. In particular, the management of dynami-
cally allocated RAM may represent an additional cost. All
information which does no need to be changed during the
runtime can be stored in a ROM. This is the static informa-
tion associated with each node of the tree and links between
the nodes. Statically allocated RAM is needed only for the
state likelihoods, which are updated at each time frame. Be-
cause the tree search does not need to save back-pointers,
there is no need for dynamically allocated RAM. The CPU
cost is mainly in the update of the state likelihoods. The cost
of traversing the tree can be minimized by factoring the tree
into a set of linear state sequences (i.e. with no branching),
which can be more effectively stored in memory in terms of
locality of access.

As an alternative to the tree search, a network search
could also be considered. Here, a network is obtained by
minimizing the tree, which typically leads to a smaller net-
work in terms of states, but not necessarily in transitions be-
tween states. The minimization process essentially merges
the common word and phrase suffixes. We have observed
that factorization of the minimized network produces shorter
state sequences, which reduces the gain in both memory and
CPU cost obtained by the factorization. Furthermore, the
CPU cost and memory need is increased, because not only
the state likelihood need to be updated, but also the trace-
back pointer as well. The costs are further increased if there
is a requirement that n-best list or a word trellis containing
the n-best scoring hypothesis has to be found as well. The
memory related to the trace-back needs to be dynamically
allocated.

In the actual implementation we do not really use a strict
tree structure. We start with a tree/network hybrid, illus-
trated in Figure 2. On the word level (A,B,C,D,E), it is still
a tree, but all the pronunciation variants are locally merged
into a network. The final determinization step then merges
common phonetic prefixes across different words. This ap-
proach significantly reduces the tree size while maintaining
all benefits of the tree search. One drawback is the inabil-
ity to find the exact pronunciation of the best path, so the
final n-best list will include all pronunciations. We do not

I - 201

➡ ➡

see it as a significant disadvantage, since in most cases the
pronunciation variants of the same word are similar and it is
likely that they would be included in the n-best list anyway.

A(1)

A(2)

B(1)

B(2)

B(3)

C(1)

C(2)

D(1)

D(2)

E(1)

Fig. 2. The word-tree/pronunciation-network structure of
the Fast Match

The fast match pass uses simplified phone models [6],
derived from detailed match models. The HMM topology
of each phone in the tree consists of a single node with one
self-loop arc and one forward arc. The state output probabil-
ities are computed as the maximum observation probability
over all states corresponding to the modeled phone.

P (o|phone) = max
s∈Sphone

P (o|s) (1)

To improve the ability of such simple structure to cap-
ture the phonetic duration we use state transition probabil-
ities trained on these models. In addition (to enforce the
minimum duration), we allow the transition from one phone
to another every third time frame only. This has a signifi-
cant benefit in terms of speed, because it allows us to merge
the fast match state output probabilities into triplets and per-
form the Viterbi search with effectively one third of the time
frames only.

To control the speed of the search, we use standard beam
pruning techniques. To form the beam, we use the maxi-
mum of the state likelihoods observed in the previous time
frame rather than the current time frame. This arrangement
allows us deactivate the states with low likelihood imme-
diately after they are updated for the current frame. The
last frame maximum is indeed a good predictor of current
frame maximum, since the best state output probability in
each frame is constant when the state output probabilities
are rank based.

In addition to the beam pruning, we use an n-best active
phone strategy in the fast match pass. Only those phones
which are considered active use the actual observation prob-
ability, for the rest we use some default low probability
value. This technique helps us to deactivate states with low
likelihood much earlier. The n-best phones can be found at
no additional cost, since the use of rank based probabilities
requires sorting anyway.

5. DETAILED MATCH

The role of the detailed match is to search a word lattice
constructed from the n-best list provided by the fast match
using the accurate state observation probabilities. Both the
lattice building and the search must be very fast, since they
are performed only after the utterance is finished. There
is no need to compute the state output probabilities , since
they were stored in memory during the first pass. If the
fast match models are accurate enough, only relatively few
hypotheses need to be passed to the detailed match.

The lattice construction is quite efficient. By selecting
the n-best leaves of the fast match tree, we define a sub-
tree to be processed by the detailed match. This subtree is
already determinized on the phonetic level, each phone is
then expanded into context dependent states using decision
trees. This expansion is fast due to the use of word internal
tri-phone context.

6. RESULTS

We present our results on two platforms. The development
platform is a PC with Intel Pentium 4, clock speed 1700MHz
with 500 MB of RAM. The OS is Windows 2000.

The second platform is a Compaq iPAQ with the follow-
ing hardware specifications: CPU ARM SA1110 206 MHz
Intel StrongARM 32-bit RISC, memory 63.14 MB RAM,
OS Microsoft Pocket PC Version 3.0.11171.

The tasks contains a list of 1475 song titles. The vo-
cabulary has 3699 unique word pronunciations. The test set
contains 1376 utterances, one song name in each utterance.

First, we have demonstrated that our decision to use
a tree search was right. On the same task, we tried both
tree search and the network search. The results are shown
in table 1 for the fast match pass only. The speed factor
(faster/RT) shows how many times is the decoding time
shorter than the duration of speech. This factor is more illus-
trative than the more conventional real-time factor. Neither
the timing nor the memory includes the additional cost of
n-best list construction.

faster/RT memory[MB]
Tree 39.6 2.06
Network 15.34 2.14

Table 1. Comparison between the tree search and network
search

Figure 3 shows the tradeoff between speed and accu-
racy controlled by the number of n-best phrases processed
by the detailed match. The speed factor depicts how many
times the two-pass system (fast match and detailed match)
is faster than running the single pass detailed match search

I - 202

➡ ➡

only on the whole grammar, using the same beam search
width.

4 4.5 5 5.5 6 6.5 7
0

2

4

6

8

10

12

Speed−up factor [FM+DM / DM only]

S
E

R
[%

]

1

20
60100200300400500

Fig. 3. Dependency of the sentence error rate and speed on
the detailed match list size on Intel

Figure 4 shows the speed and accuracy measured on the
iPAQ. The solid curve represents the total time when the
second pass latency is not included. From a user’s point
of view, more important is the dashed curve showing the
timing of the second (detailed match) pass only. It can be
clearly seen that this pass represents only a fraction of the
CPU cost and the perceived latency will be very small (
our experience shows that the utterances are almost always
shorter than 3 seconds).

Table 2 shows the comparison between single-pass and
two-pass search with the 100 best hypotheses processed in
the second pass. The comparison shows the sentence error
rate, how many times is the system slower than real-time
and the memory footprint.

SER slower/RT memory[MB]
single-pass 2.33% 4.88 3.0
two-pass 100-top 2.40% 0.56 2.2

Table 2. Comparison between the single-pass and two-pass
search

7. CONCLUSION

We have shown that a specific large vocabulary task can be
implemented on today’s portable devices such as the iPAQ.
We have presented the reasons for choosing the two pass
tree/network search strategy for the large list tasks. Our re-
sults confirmed our expectations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

3

4

5

6

7

8

9

10

11

12

real−time factor

S
E

R
[%

]

11

6060 150150 300300

11

6060 150150 300300

11

6060 150150 300300

Total time
DM pass only

Fig. 4. Dependency of the sentence error rate and speed on
the detailed match list size on iPAQ

8. REFERENCES

[1] K. Hanazawa, Y. Minami, and S. Furui, “An efficient
search method for large-vocabulary continuous-speech
recognition,” in Proc. ICASSP ’97, 1997, pp. 1787 –
1790.

[2] P.S. Gopalakrishnan, L.R. Bahl, and R.L. Mercer, “A
tree search strategy for large vocabulary continuous
speech recognition,” in Proc. ICASSP ’95, May 1995,
pp. 572–575.

[3] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-
state transducers in speech recognition,” Computer
Speech & Language, vol. 16, no. 1, pp. 69–88, January
2002.

[4] M. Novak, R. A. Gopinath, and J. Se-
divy, “Efficient hierarchical labeler algorithm
for gaussian likelihoods computation in re-
source constrained speech recognition systems,”
http://www.research.ibm.com/people/r/rameshg/novak-
icassp2002.ps.

[5] L.R. Bahl P.V. de Souza, P.S. Gopalakrishnan, D. Na-
hamoo, and M.A. Picheny, “Robust methods for us-
ing context-dependent features and speech recognition
models in a continuous speech recognizer,” in Proc.
ICASSP ’94, 1994.

[6] L.R. Bahl, S.V. De Gennaro, P.S. Gopalakrishnan, and
R.L. Mercer, “A fast approximate acoustic match for
large vocabulary speech recognition,” IEEE Transac-
tions on Speech and Audio Processing, vol. 1, no. 1, pp.
59–67, January 1993.

I - 203

➡ ➠

