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ABSTRACT 
 
This paper presents a novel approach to automatic speaker 
recognition using dynamic Bayesian network (DBN). 
DBNs have a precise and well-understand probabilistic 
semantics, and it has the ability to incorporate prior 
knowledge, to represent arbitrary non-linearities, and to 
handle hidden variables and missing data in a principled 
way with high extensibility. Experimental evaluation over 
YOHO corpus shows promising results compared to other 
classical methods. 
 

1. INTRODUCTION 
 
Analysis and classification of temporal sequences in 
automatic speaker recognition has been a focus of 
research for many years. Many approaches have been 
developed in this field such as vector quantization (VQ), 
Gaussian mixture model (GMM), Hidden Markov Model 
(HMM), that deal with speech and speaker variability to 
accomplish the task of speaker recognition, but general 
paradigm is in no way exhausted. Recently, a new 
statistical approach from the perspective of Bayesian 
networks was proposed for time series data modeling, as 
is referred to Dynamic Bayesian Network (DBN). DBNs 
are knowledge representation schemes that can 
characterize probability relationships among time series 
data and perform exact or approximate inference. Zweig 
[1] first applied DBNs in isolated speech recognition and 
achieved considerable results. Up to now, DBNs is little 
used in speaker recognition community. In this paper, we 
present a novel approach to automatic speaker recognition 
using dynamic Bayesian network specifically. 

As a result of a combination of anatomical 
differences inherent in the vocal tract and the learned 
speaking habits, voices of different individuals contain the 
speaker-related information, and this information can be 
used to discriminate between speakers.  The advantages of 
using DBNs in speaker recognition lie in two aspects: (1) 
Time series data of a speaker’s voice can be represented 
by DBNs with high interpretability and flexibility in a 
unifying statistical framework. (2) Some prior knowledge 
(e.g. gender, noise) can be described by DBNs 

conveniently. Our experimental results also show that 
DBNs is a promising way to modelize the speaker 
variability.  

This paper is organized as the following: as DBNs 
are not used often in speaker recognition community, we 
give a brief introduction in section 2. In section 3 and 4, 
we propose details of inference and learning algorithms in 
dynamic Bayesian network to the needs of automatic 
speaker recognition. In section 5, we describe how to 
recognize a person given his utterances in arithmetic level. 
Experimental comparison between DBNs and other 
classical methods such as VQ, GMM, HMM is discussed 
in section 6. Finally, we give a conclusion in section 7. 

 
2. DYNAMIC BAYESIAN NETWORK 

 
For time-series modeling we can assume that an event can 
cause another event in the future, but not vice-versa. This 
simplifies the design of dynamic Bayesian networks 
allowing directed arcs to flow forward in time.  
 

Q

X

O  
Figure1: A simple Bayesian network 
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Figure 2: A dynamic Bayesian network with 3 slices 

 
       A DBN is a specific type of Bayesian network and is 
almost always assumed to satisfy the following two 
conditions: (1) it has the same structure at each time slice t 
and (2) the cross-slice arcs can only be extended from 
slice t to slice t+1. Condition (1) means that DBNs are 
time-invariant so that the topology of the network is a 
repeating structure, and its conditional probabilities do not 
change in each time-slice. According to condition (2), 
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DBNs satisfy the Markov assumption: the future states of 
the domain are conditionally independent of the past 
states given the present state. Figure 2 is a simple example 
of a DBN with 3 slices. 
       Now, we are going to calculate the joint probability 
and marginal probability through a simple Bayesian 
network structure.  For simple Bayesian network, as that 
of figure 1, the joint probability model can be expressed 
by chain rule: 
 

)(*)|(*),|(),,( QPQXPQXOpOXQP =  (1) 
 
Since the variable X is independent of variable Q, the 
joint probability can then be calculated by: 
 

)(*)(*),|(),,( QPXPQXOpOXQP =   (2) 
 
So probability of target )|( QOP is calculated by 
marginalization over X: 
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For many practical applications, O can be considered as 
observation, Q is state variable that drives observation O, 
and X is other factor variable. The probability 

),|( QxXOP =  can be assumed to satisfy Gaussian 
mixture distributions, and their parameters (means, 
covariances and weights) can be estimated by the standard 
EM algorithm from training data.  
       This is a simple case of Bayesian network. We are 
going to investigate the complex structure of DBNs and 
present more general inference algorithm in the following 
section. 
 

3. INFERENCE IN DBNS 
 
The goal of  inference in dynamic Bayesian network is to 
estimate the posteriori probability of the hidden states of 
the network given some known sequence of observations 
O and the known model parameters. Each variable has a 
probability distribution conditioned on its parent nodes.  
When a set of observations O is assigned to a subset of 
the variables in a DBN, the variables left unobserved have 
their prior probability distribution ))(|( ii XparentXP , but 
need to have their posteriori probability distribution 
inferred: 

)),(|( OXparentXP ii                 (4) 

so the log-likelihood of the observation set 
},,,{ 21 MOOOO L=  is a sum of terms, one for each node: 
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Here G is a DBN model with N variables. 
       There are a few of exact and approximate inference 
algorithms that can be applied to calculate the posteriori 
probability distributions. One of the most commonly used 
algorithms is the junction tree algorithm [3], which is 
similar to the Baum-Welch algorithm used in HMM. 
Zweig [1] introduced a tailored version to the needs of 
speech recognition. The junction tree algorithm works 
with variable λ and π as the following,  
 

)|,( 0 jXOOP iii
i
j == −λ    (6) 

),( jXOP ii
i
j == +π    (7) 

 
Here 0

iO is any observation for iX itself, −
iO  are the 

observations for nodes in the subtrees rooted in 
sX i

' children in the junction tree, +
iO  are all the 

remaining observations. Equation (6) and (7) can then be 
used to compute the marginal probability distribution as 
well as the joint posteriori probability for each variable. 
       According to chain rule, 
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So the marginal and joint posteriori probability 

distribution is calculated as the following, 
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As we can see, the variables λ and π are analogous to the 
α and β variables used in HMM respectively. These two 
variables can be calculated as the following: 
 
1) Computing i

jλ  
If iX is a leaf node, then  

jXwithj i
i
j =∀= ,1λ     (11) 
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Otherwise, 
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Here )( iXC is the set of sX i

' children nodes. Note that to 
compute a variable’s λ , you need to first compute its 
children’s sλ . 
 
2) Computing i

jπ  
If iX is the root node, then  

)( jXP i
i
j ==π       (13) 

Otherwise, 

∏ ∑
∑

∈ ==∗∗

∗===

)( )|(
)|(

iXSs f ps
s
f

p
v

pv i
i
j

vXfXP
vXjXP
λπ

π
 (14) 

 
Here )( iXS  is the set of iX ’s siblings nodes. This shows 

that to compute the value i
jπ , you need to compute its 

parent’s π as well as the conditional probabilities, and its 
siblings’ sλ . 
 

4. LEARNING IN DBNS 
 
In our speaker recognition, each speaker is modelized by a 
DBN model. And all the DBN models are trained 
independently. Generally, the methods of learning 
Bayesian network can be divided into 4 types according to 
the structure and observability of the DBNs [4]: (1) 
known structure and full observability; (2) known 
structure and partial observability; (3) unknown structure 
and full observability; (4) unknown structure and partial 
observability. Practically, different type of learning 
method can be applied to different applications under 
different assumptions. However, this topic is out of the 
scope of this paper and will be researched in the future. In 
this speaker recognition, we assume the structure of the 
DBNs are known for simplicity but have not observed all 
of the data. In other words, some of the nodes in these 
DBNs are hidden and some others are observable.  

   Since discrete DBNs will lose a lot of information, 
we specify the graph structure and the conditional 
probability distributions and make it work with 
continuous variables directly. The most common 
distribution is a Gaussian, since it is analytically tractable 
and works successfully in many statistical problems.  So 
for observable node X with a discrete parent node Q (Q is 
a hidden node in our DBNs), the Gaussian distribution is 

 

))()(
2
1exp(||)|( 1'2

1

iiii xxciQxP µµ −∑−−∑== −−
 (10) 

 

Where 2/)2( dc −= π  is a constant and dx =|| , µ is the 
mean vector and i∑ is the covariance matrix. Given the 
training sequences, we re-estimate the means and 
covariance matrices in each iteration using EM algorithm 
to get the Maximum Likelihood as the following: 
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Here, function )(xE is the expected likelihood of x, and 

)|( m
i
m

i
m OqEw = . The variable 1=i

mq  if Q has value i in 

the thm '  data cases, and 0 otherwise. See [2] for more 
general learning techniques in DBNs.  
 

5. HOW TO PERFORM RECOGNITION 
 
Usually, speaker recognition is divided into identification 
and verification according to its functionality. We will 
introduce them respectively in the following. 
 
5.1. Identification 
 
The task of identification is to determine if the speaker is 
a specific one in the group of N known speakers given his 
utterance. In the closed set problem, it is assured that it 
belongs to one of the registered speakers.  So we need to 
find the speaker î whose DBN model iM  maximizes a 
posteriori probability NiOMP i ,,1),|( L= . According 
to Bayes’ rule,  
 

)(/)(*)|()|( OPMPMOPOMP iii =  (13) 
 

Since we haven’t any prior knowledge of )(/)( OPMP i , 
we consider it be the same for all speakers.  Then the 
decision rule can be simplified to 
  

NiMOPi i
i

,,1),|(maxargˆ L==   (14) 

Here iM is the DBN model of speaker i , and î is the 
identified speaker. We need to calculate the posteriori 
probabilities )|( iMOP , corresponding to each of the 
speaker model, and this is can be done using equation (5). 
 
5.2. Verification 
 
The task of verification is to decide whether the speaker is 
whom he claims to be or not. In many classical 
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approaches to this binary problem, the decision is made 
by comparing the utterance score of the claimant 
speaker’s model with some prior threshold determined at 
the training phase. Since the absolute value of utterance 
score not only represents the speaker’s model itself, but 
also depends on the speech content. Hence a stable 
threshold can not be set independently. One successful 
solution is to apply score normalization technique [5].  

The decision rule of the verification task is stated as 
a likelihood ratio given by 
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where )( iOψ  is the probability density function for the 
hypothesis that observation iO  belongs to the speaker i , 
while )( iOψ means that iO  does not belong to the 
speaker i .  The decision threshold for accepting or 
rejecting is θ .  In this speaker recognition, we use 
background speaker set [5] to deal with the decision rule, 
so equation (13) can be restated in log domain as  
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6. EXPERIMENTS AND DISCUSSIONS 

 
We use YOHO corpus [6] to evaluate our method in 
speaker recognition. For computational reasons, only the 
first enroll session (24 sentences) is used for training and 
all verify sessions (40 sentences) are used for testing for 
each speaker. In the feature extraction, the hamming 
window is 32 mm and the frame shift is 16mm. The 
silence and unvoiced segments are discarded based on an 
energy threshold. The feature vectors are composed by 16 
MFCC and their delta coefficients.  
        In our experiments, we define the topology of the 
DBNs as Figure 3, which is unrolled for first two slices. 

Tjiq i
j L,2,1,3,2,1, == are hidden nodes and have discrete 

values, Tjioi
j L,2,1,3,2,1, == can be observed and satisfy 

Gaussian distributions, here T is the length of  time slices. 
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Figure 3: The DBNs used in our experiments 

In order to investigate if the method is robust under 
different sets of different number of speakers, we made 
experiments on some subsets of YOHO corpus: first 30, 
first 50 and all 138 speakers. We also compare the DBNs 
model to other classical methods such as VQ, GMM, 
HMM. The results are listed in table 1. The considerable 
performance achieved in the test shows that it is a 
promising way of using DBNs in speaker recognition. 

 
First 30 First 50 Total 138 Method

 I (%) V (%) I (%) V (%) I (%) V (%) 
VQ 88.17 5.79 85.90 5.68 74.18 6.82 
GMM 95.25 3.99 94.95 4.03 87.30 5.78 
HMM 94.47 4.99 94.20 4.66 86.76 5.87 
DBN 96.67 3.00 96.55 3.00 89.93 4.22 
Table 1: Experimental results under different speaker number of 
test sets. I means identification rate, V means equal error rate 
(EER). In our experiments, the code book size of  VQ is 64; The 
mixture number of GMM is 32. HHM is with 5 states and 10 
mixture Gaussian density outputs.  
 

7. CONCLUSIONS 
 
This paper presents an approach of using dynamic 
Bayesian network in speaker recognition. We discuss how 
to do inference, learning and testing in DBN for speaker 
recognition. Encouraging results of experiments on 
YOHO corpus demonstrate that DBN is a promising way 
for classification. 
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