AUTOMATIC SPEAKER RECOGNITION USING DYNAMIC BAYESIAN NETWORK

Lifeng Sang, Zhaohui Wu, Yingchun Yang, Wanfeng Zhang

Department of Computer Science and Technology,
Zhejiang University, Hangzhou, P.R.China, 310027
{lfsang, wzh, yyc, wizhang} @cs.zju.edu.cn

ABSTRACT

This paper presents a novel approach to automatic speaker
recognition using dynamic Bayesian network (DBN).
DBNs have a precise and well-understand probabilistic
semantics, and it has the ability to incorporate prior
knowledge, to represent arbitrary non-linearities, and to
handle hidden variables and missing data in a principled
way with high extensibility. Experimental evaluation over
YOHO corpus shows promising results compared to other
classical methods.

1. INTRODUCTION

Analysis and classification of temporal sequences in
automatic speaker recognition has been a focus of
research for many years. Many approaches have been
developed in this field such as vector quantization (VQ),
Gaussian mixture model (GMM), Hidden Markov Model
(HMM), that deal with speech and speaker variability to
accomplish the task of speaker recognition, but general
paradigm is in no way exhausted. Recently, a new
statistical approach from the perspective of Bayesian
networks was proposed for time series data modeling, as
is referred to Dynamic Bayesian Network (DBN). DBNs
are knowledge representation schemes that can
characterize probability relationships among time series
data and perform exact or approximate inference. Zweig
[1] first applied DBNs in isolated speech recognition and
achieved considerable results. Up to now, DBNs is little
used in speaker recognition community. In this paper, we
present a novel approach to automatic speaker recognition
using dynamic Bayesian network specifically.

As a result of a combination of anatomical
differences inherent in the vocal tract and the learned
speaking habits, voices of different individuals contain the
speaker-related information, and this information can be
used to discriminate between speakers. The advantages of
using DBNs in speaker recognition lie in two aspects: (1)
Time series data of a speaker’s voice can be represented
by DBNs with high interpretability and flexibility in a
unifying statistical framework. (2) Some prior knowledge
(e.g. gender, noise) can be described by DBNs
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conveniently. Our experimental results also show that
DBNs is a promising way to modelize the speaker
variability.

This paper is organized as the following: as DBNs
are not used often in speaker recognition community, we
give a brief introduction in section 2. In section 3 and 4,
we propose details of inference and learning algorithms in
dynamic Bayesian network to the needs of automatic
speaker recognition. In section 5, we describe how to
recognize a person given his utterances in arithmetic level.
Experimental comparison between DBNs and other
classical methods such as VQ, GMM, HMM is discussed
in section 6. Finally, we give a conclusion in section 7.

2. DYNAMIC BAYESIAN NETWORK

For time-series modeling we can assume that an event can
cause another event in the future, but not vice-versa. This
simplifies the design of dynamic Bayesian networks
allowing directed arcs to flow forward in time.

Figurel: A simple Bayesian network

Figure 2: A dynamic Bayesian network with 3 slices

A DBN is a specific type of Bayesian network and is
almost always assumed to satisfy the following two
conditions: (1) it has the same structure at each time slice ¢
and (2) the cross-slice arcs can only be extended from
slice ¢ to slice t+1. Condition (1) means that DBNs are
time-invariant so that the topology of the network is a
repeating structure, and its conditional probabilities do not
change in each time-slice. According to condition (2),
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DBNss satisfy the Markov assumption: the future states of
the domain are conditionally independent of the past
states given the present state. Figure 2 is a simple example
of a DBN with 3 slices.

Now, we are going to calculate the joint probability
and marginal probability through a simple Bayesian
network structure. For simple Bayesian network, as that
of figure 1, the joint probability model can be expressed
by chain rule:

P(O,X,0)=p(O|X.0)*P(X[Q)*P(Q) (1)

Since the variable X is independent of variable Q, the
joint probability can then be calculated by:

P(Q,X,0)=p(0] X,0)* P(X)* P(Q) 2

So probability of target P(O|Q) is calculated by
marginalization over X:

P0,0) X, P0,0.X=x)

PO %0 = P
L POIX =20 PX=0*PQ)
P(0)

=2 . P(O| X =x,0)* P(X =x)

For many practical applications, O can be considered as
observation, Q is state variable that drives observation O,
and X is other factor wvariable. The probability
P(O|X=x,0) can be assumed to satisfy Gaussian

mixture distributions, and their parameters (means,
covariances and weights) can be estimated by the standard
EM algorithm from training data.

This is a simple case of Bayesian network. We are
going to investigate the complex structure of DBNs and
present more general inference algorithm in the following
section.

3. INFERENCE IN DBNS

The goal of inference in dynamic Bayesian network is to
estimate the posteriori probability of the hidden states of
the network given some known sequence of observations
O and the known model parameters. Each variable has a
probability distribution conditioned on its parent nodes.
When a set of observations O is assigned to a subset of
the variables in a DBN, the variables left unobserved have
their prior probability distribution P( X, | parent(X;)), but
need to have their posteriori probability distribution
inferred:
P(X, | parent(X,),0) )

so the log-likelihood of the observation set
0={0,,0,,---,0,,} is a sum of terms, one for each node:

M
L=log[[Pr(O,, |G)
N oM ®)
=> > log P(X;| parent(X,;),0,,)

i=lm=1

Here G is a DBN model with N variables.

There are a few of exact and approximate inference
algorithms that can be applied to calculate the posteriori
probability distributions. One of the most commonly used
algorithms is the junction tree algorithm [3], which is
similar to the Baum-Welch algorithm used in HMM.
Zweig [1] introduced a tailored version to the needs of
speech recognition. The junction tree algorithm works
with variable A and r as the following,

i 0 - .
A’j:P(Oi O 1 X =) (6)
j

=P(O; . X, =)) 7)

Here O] is any observation for X, itself, O; are the
observations for nodes in the subtrees rooted in

X ;s children in the junction tree, O, are all the

i
remaining observations. Equation (6) and (7) can then be
used to compute the marginal probability distribution as
well as the joint posteriori probability for each variable.

According to chain rule,

P(X, =j,0=P(0;,0; ,0; X, =))
=P(0; . X; = )HP(O; .0/ 10/ . X;=j) (8)
=P(Of . X; = )P(O] .0} | X; =)

So the marginal and joint posteriori probability
distribution is calculated as the following,

/13 *72’;
PX;=jl0)=——"——, Vi ©)
2 AT
P(O):Ziﬂ‘j*n;, Vi (10)

As we can see, the variables A and 7 are analogous to the
aand f variables used in HMM respectively. These two

variables can be calculated as the following:

1) Computing /1’]
If X;is a leaf node, then
Ay =1, VjwithX;=j (11
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Otherwise,
/’Uj :H(;‘eC(Xi)ZAflcf" *P(X.=f1X;=)) (12)

Here C(X;)is the set of X ;s children nodes. Note that to

compute a variable’s 4, you need to first compute its
children’s As.

2) Computing n;
If X, is the root node, then
7t =P(X, = ) (13)
Otherwise,
=2 PX;= ]| X, =v)*

. (14)
) *HSES(X,)Zf;Lf*P(XS =f1X,=v)

Here S(X,) is the set of X, s siblings nodes. This shows

that to compute the value 7[;, you need to compute its

parent’s 7 as well as the conditional probabilities, and its
siblings’ As .

4. LEARNING IN DBNS

In our speaker recognition, each speaker is modelized by a
DBN model. And all the DBN models are trained
independently. Generally, the methods of learning
Bayesian network can be divided into 4 types according to
the structure and observability of the DBNs [4]: (1)
known structure and full observability; (2) known
structure and partial observability; (3) unknown structure
and full observability; (4) unknown structure and partial
observability. Practically, different type of learning
method can be applied to different applications under
different assumptions. However, this topic is out of the
scope of this paper and will be researched in the future. In
this speaker recognition, we assume the structure of the
DBNs are known for simplicity but have not observed all
of the data. In other words, some of the nodes in these
DBNs are hidden and some others are observable.

Since discrete DBNs will lose a lot of information,
we specify the graph structure and the conditional
probability distributions and make it work with
continuous variables directly. The most common
distribution is a Gaussian, since it is analytically tractable
and works successfully in many statistical problems. So
for observable node X with a discrete parent node Q (Q is
a hidden node in our DBN5s), the Gaussian distribution is

1
P(x|0=i)=¢|Z;| 2 exp(-5(r—p) 57 (v— 1)) (10)

Where ¢=(27)"%'? is a constant and |xl=d , pis the
mean vector and X ; is the covariance matrix. Given the

training sequences, we re-estimate the means and
covariance matrices in each iteration using EM algorithm
to get the Maximum Likelihood as the following:

> whE(x, |0, =i,0,)

i . (11)
mW;”
Y W B X |0 = X,)
2 == i —pip; o (12)
mWm

Here, function E(x)is the expected likelihood of x, and
wfn :E(qf,, |O0,,) . The variable qf,, =1 if Q has value i in

the m'th data cases, and 0 otherwise. See [2] for more
general learning techniques in DBNs.

5. HOW TO PERFORM RECOGNITION

Usually, speaker recognition is divided into identification
and verification according to its functionality. We will
introduce them respectively in the following.

5.1. Identification

The task of identification is to determine if the speaker is
a specific one in the group of N known speakers given his
utterance. In the closed set problem, it is assured that it
belongs to one of the registered speakers. So we need to

find the speaker i whose DBN model M ; maximizes a
posteriori probability P(M;|0), i=L,---,N . According
to Bayes’ rule,

P(M,|0)=P(O|M)*P(M)/P(O)  (13)

Since we haven’t any prior knowledge of P(M;)/P(O),

we consider it be the same for all speakers. Then the
decision rule can be simplified to

f:argmaxP(OlMi), i=L--,N (14)

Here M, is the DBN model of speaker i, and i is the

identified speaker. We need to calculate the posteriori
probabilities P(O|M;) , corresponding to each of the

speaker model, and this is can be done using equation (5).
5.2. Verification

The task of verification is to decide whether the speaker is
whom he claims to be or not. In many classical
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approaches to this binary problem, the decision is made
by comparing the utterance score of the claimant
speaker’s model with some prior threshold determined at
the training phase. Since the absolute value of utterance
score not only represents the speaker’s model itself, but
also depends on the speech content. Hence a stable
threshold can not be set independently. One successful
solution is to apply score normalization technique [5].

The decision rule of the verification task is stated as
a likelihood ratio given by
l//(O,»){ >0  accept i (15)
w(0,)| <0 reject i

where (0O;) is the probability density function for the
hypothesis that observation O, belongs to the speaker i,
while ¥ (0O,;) means that O; does not belong to the

speaker i . The decision threshold for accepting or
rejecting is € . In this speaker recognition, we use
background speaker set [5] to deal with the decision rule,
so equation (13) can be restated in log domain as

>0 ¢
logP(0,1M,) | R (16)

Z '10gp(0i M) 1<¢9 reject i

j=1,j#i
6. EXPERIMENTS AND DISCUSSIONS

We use YOHO corpus [6] to evaluate our method in
speaker recognition. For computational reasons, only the
first enroll session (24 sentences) is used for training and
all verify sessions (40 sentences) are used for testing for
each speaker. In the feature extraction, the hamming
window is 32 mm and the frame shift is 16mm. The
silence and unvoiced segments are discarded based on an
energy threshold. The feature vectors are composed by 16
MFCC and their delta coefficients.

In our experiments, we define the topology of the
DBNs as Figure 3, which is unrolled for first two slices.

q; ,i=1,2,3,j=1,2,---T are hidden nodes and have discrete
values, oj ,i=1,2,3,j=1,2,---T can be observed and satisfy

Gaussian distributions, here T is the length of time slices.

Figure 3: The DBNs used in our experiments

In order to investigate if the method is robust under
different sets of different number of speakers, we made
experiments on some subsets of YOHO corpus: first 30,
first 50 and all 138 speakers. We also compare the DBNs
model to other classical methods such as VQ, GMM,
HMM. The results are listed in table 1. The considerable
performance achieved in the test shows that it is a
promising way of using DBNs in speaker recognition.

Method First 30 First 50 Total 138

1 (%) V (%) 1(%) V (%) 1 (%) V (%)
VQ 88.17 5.79 85.90 5.68 74.18 | 6.82
GMM 95.25 3.99 94.95 4.03 87.30 | 5.78
HMM 94.47 4.99 94.20 4.66 86.76 | 5.87
DBN 96.67 3.00 96.55 3.00 89.93 | 422

Table 1: Experimental results under different speaker number of
test sets. I means identification rate, V means equal error rate
(EER). In our experiments, the code book size of VQ is 64; The
mixture number of GMM is 32. HHM is with 5 states and 10
mixture Gaussian density outputs.

7. CONCLUSIONS

This paper presents an approach of using dynamic
Bayesian network in speaker recognition. We discuss how
to do inference, learning and testing in DBN for speaker
recognition. Encouraging results of experiments on
YOHO corpus demonstrate that DBN is a promising way
for classification.

This work is supported by National Natural Science
Foundation of P.R.China(No0.60273059), National High
Technology Research & Development Programme (863)
of P.R.China (No0.2001AA4180), Zhejiang Provincial
Natural Science Foundation for Young Scientist of
P.R.China (No.RC01058), Zhejiang Provincial Education
Office Foundation(20020721), and Zhejiang Provincial
Doctoral Subject Foundation (20020335025).

8. REFERENCES

[1]. Zweig, G.G., “Speech Recognition with Dynamic
Bayesian Networks. Ph.D. thesis,” U.C. Berkeley, 1998

[2]. Murphy, K.,
Representation, Inference and Learning,” Ph.D. thesis, U.C.
Berkeley, 2002

[3]. Cowell, R, “Introduction to inference for Bayesian
networks,” In Jordan, p9-26, 1999

[4]. Murphy, K. and Mian, S., “Modeling gene expression data

“Dynamic ~ Bayesian ~ Networks:

using dynamic Bayesian networks,” Technical Report, U.C.
Berkeley, 1999

[5]. Reynolds, D. A., et al., “Speaker verification using adapted
Gaussian mixture models,” Digital Signal Processing,
vol.10, pp. 19-41, 2000

[6]. Campbell, J.Jr., “Testing with the YOHO CD-ROM Voice
Verification Corpus,” ICASSP 95, pp. 341-345

I-191




