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ABSTRACT

We describe a new pitch tracking method based on a time delay
estimation technique and we incorporate an adaptive frame length
iteration stage. Given two frames of voiced speech and it’s time
delay, we will run a linear regression on the unwrapped phase of
the quotient of the spectrum of both frames. A weighted linear
regression will allow us to avoid the effect of phases corrupted by
spectral leakage and noise. Iterations adapting the frame length
will allow us to have better time resolution, less spectral leakage
and more noise robustness, avoiding inaccuracies that could come
from pitch doubling and jitter.

1. INTRODUCTION

Many methods for tracking the pitch period of a voiced segment
of speech have been proposed. Some of the most widely accepted
ones are the Cepstrum method ([1]) and and the SIFT method([2]).
In both of them the analysis frame used is several times the pitch
period itself, causing jitter and pitch doubling to be a problem.
Other methods like the autocorrelation function method and (ACF,
[3]) and the average magnitude difference function method (AMDF,
[4]) keep the formant structure of the signal, making the pitch es-
timation hard in the presence of high energy, high frequency har-
monics.

In [5], we presented a method based on a time delay estima-
tion technique and we called it linear regression of the phase. We
assumed two different frames of a sampled voiced speech signal:���������	��
������ 
������������ (1)���������	��
������ � �"!�$#&% 
������������ (2)

and we defined our problem as to find the period � given that we
know the frames � � ����� , �'�(���)� , and the time delay between them:� �*! . If we assume that the time length of both frames is T
(i.e. both frames are pitch synchronous, ++(, �*� ) we can use the-/.10(243�57680:9<;=.?>�@)AB>�6C9<D�E�3FD � 24D property of the DFT:G �B�1H��G � �1H�� � DJI �LK�MONP ,RQ 
S��HT���U�"� (3)

where
G � and

G � are the DFT coefficients of �)� and � � respec-
tively. The unwrapped phase of the term in formula 3 is bilinear inH and ! . Then, given � � and �'� , we can calculate the unwrapped
phase of formula 3 and make a linear regression vs H . The result
gives us ! which gives us the value of � . Although this is an unre-
alistic case (in pitch synchronous frames � is known beforehand),

it is shown in [5] that the use of non-pitch synchronous frames ( �
unknown) will give us an accurate answer if we use the right phase
unwrapping method and weighting scheme in linear regression.

Work has been done on the field of phase Unwrapping. Phase
unwrapping has been used to to calculate the Complex Cepstrum.
We have compared the following phase unwraping methods:

1.1. Basic Unwrapping (BU)

This method adds VJW or � V(W to the phase of all the frequency
bins greater or equal than q if the difference between the phase of
the frequency bins q and q-1 is lower than � W or greater than W
respectively.

1.2. Slope Forced Unwrapping (SFU)

At frequency bin
E
, we calculate the slope of the line that departs

from frequency bin zero to frequency bin
E ��� . An estimate of

the phase at
E

will be calculated using that slope, and the actual
phase at frequency bin

E
will be unwrapped around that estimate.

Since we want only reliable frequency bins to modify the estimated
slope, the slope will be recalculated only in the frequency bins
where the magnitude is greater or equal than X times the maximum
magnitude in the spectrum.

1.3. Linear Regression Slope Forced Unwrapping (LRSFU)

The most widely used method for phase unwrapping is [6], and a
less general version of it was implemented in [7]. For intermediate
estimate at frequency bin

E
, frequency bins 
 to

E ��� are used to
perform a linear regression. The calculated slope is used to predict
an estimate of the phase of frequency bin

E
, unwrapping the actual

phase around that estimate. The value X was used in the same way
as in section 1.2.

After unwrapping the phase, we want to apply a linear regres-
sion to the unwrapped phase of formula 3. The problem is stated
as: Y�Z\[]_^^^^J` ab �Fc � V(W !� # �ed % ^^^^ problem (4)f!C� � # �hg d + ` cjiV(W � ^^^ ` ab d ^^^ � % solution (5)

k � ^^^ ` abTl c � �LKBm]+(,Rn dpo ^^^^^^ � + ` ab ^^^ error (6)
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Fig. 1. Flow Chart describing the ILRP method.

where W is an NxN diagonal matrix with the weights as the diag-
onal elements. Q is a vector containing the frequency bin indexesE ��
 to

E � � � � , and c is the vector containing the unwrapped
phase of each of the frequency bins of formula 3. We know that
the phase of frequency bins with low magnitude will be more sus-
ceptible to be corrupted by both spectral leakage and white noise.
For these reasons we propose the following weighting scheme:

` ��� � ��� G � � E ��� � (7)

where � is a real number greater than one to emphasize the fre-
quencies with high amplitude over the ones with low amplitude.

The objective of this paper is to design an iterative method
to find the pitch period from scratch. In section 2 we design two
iterative methods to find the pitch. One that finds an initial estimate
of the pitch using a long window (20ms), and another that finds an
accurate estimate of the pitch using an adaptive window length,
avoiding pitch doubling and jitter effects. In section 3 we find the
thresholds used to classify a speech segment as voiced or unvoiced
based on experimentaal data. We also evaluate the performance of
our method with both clean and noisy speech, comparing it to the
performance of the cepstrum method ([1]) and the autocorrelation
method ([8]).

2. ITERATIVE METHOD FOR EXTRACTING THE
PITCH

We saw in [5] that the estimated pitch
f� and the regression errork

calculated from formulas 4, 5 and 6 would be able to tell us that
either

f� � 
 or
f� is the pitch (given that � � ! is between 0
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Fig. 2. a) Mean of estimation errors vs regression error
k

for the
set
- �1
	� 
	�4
�� 
�� k � using ILRP. b) Mean of estimation errors vs

regression error
k

for the set
- �1
�� ����� 
	� ��� k � using AFLILRP. c)

Mean of estimation errors vs � !�� in for the set
- ��!�� 
	� �	����� using

AFLILRP. Dashed, dotted and continuous lines stand for BU,SFU
and LRSFU respectively. Lines with crosses are for � �O� while
lines without crosses are for � ��� .

and 1.5 times the pitch period). It would also tell us that
f� is a

wrong estimate of the pitch period if the regression error
k

is too
high. Using this information we can perform several iterations of
linear regressions of the phase, fixing the position of frame � � , and
shifting frame � � regarding the estimated pitch

f� and regression
error
k

of the last linear regression iteration. This method is what
we call Iterative Linear Regressions of the Phase (ILRP).

Figure 1 gives a glimpse of the ILRP method. The algorithm
starts with a frame length of 20ms. It assumes the beginning of � �
fixed, and the beginning of � � initially shifted 1ms after the begin-
ning of � � . ( � � !p�*��� 
:��
 ;=.?>�@ ). Then, the algorithm begins.
At any iteration, a linear regression of the phase will be performed
using formulas 3, 4, 5, 6 and 7. As a result,

f� and
f! will be calcu-

lated. More iterations will be performed until the regression errork
and the estimated

f ! are below the thresholds, in which case,
f�

will be the output of the algorithm. In case the number of itera-
tions goes above a maximum threshold the algorithm outputs that
a pitch couldn’t be found. After each iteration, the beginning of ���
is intended to be shifted to a position that gets closer to one pitch
period after the beginning of �)� .

To avoid covering several pitch periods in one 20ms window,
and to approximate the method to the ideal pitch synchronous case
treated in section 1, a variation of the ILRP method is imple-
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mented. This variation is used after the first pitch period has been
successfully found by ILRP. This variation sets the frame length to
the last pitch period found. The beginning of � � is initially shiftedf� after the beginning of � � . This method is called Adaptive Frame
Length Iterative Linear Regression of the Phase (AFLILRP).

The threshold for
k

in ILRP is 0.2. The threshold for �
f ! � in

ILRP is 0.5ms. The threshold for
k

in AFLILRP is 1.5.The � f ! �
threshold for AFLILRP is 0.2ms. The value for � in ILRP is 6,
while the � value used for AFLILRP is 1. The reason we chose
these thresholds is stated in section 3. The maximum number of
DFTs that can be executed in both AFLILRP and ILRP is 10. For
both SFU and LRSFU we used X � 
	� V ([5]).

To avoid further errors, we will assume that the pitch cannot
occur over silence (low energy) and that consecutive pitch periods
must not be too different. This difference is given by the following
similarity condition:
	� � � f����� � � f��� ��� �\� � f����� � (8)

where � ��� � and � � are consecutive periods found by consecutive
AFLILRP iterations.

Table 1. Pitch Estimation Performance For Different Phase Un-
wrapping Methods In ILRP And AFLILRP

Male Data, Clean Speech
Measure 1-1 1-2 2-1 2-2 ceps ac
GPE(%) 10.60 7.33 10.04 6.58 9.94 3.09
V-UV(%) 30.66 10.31 29.82 9.67 6.27 9.84
UV-V(%) 2.54 4.06 2.56 3.77 9.81 11.62
GEC(%) 2.73 2.73 2.76 3.02 6.00 7.95
FPEAV(ms) 0.096 0.057 0.049 0.059 0.047 0.13
FPESD(ms) 0.29 0.30 0.30 0.30 0.32 0.40
FFTV 5.1 4.75 5.0 4.6 2.0 - -
FFTUV 13.65 13.53 11.0 10.9 2.0 - -

Female Data, Clean Speech
Measure 1-1 1-2 2-1 2-2 ceps ac
GPE(%) 11.68 10.73 10.12 8.99 4.87 5.60
V-UV(%) 9.43 8.11 6.96 6.68 5.07 4.51
UV-V(%) 2.59 3.66 6.57 6.86 6.34 12.14
GEC(%) 1.84 2.44 2.77 1.91 2.59 6.55
FPEAV(ms) -0.014 0.008 0.001 0.012 0.021 0.045
FPESD(ms) 0.17 0.144 0.15 0.15 0.18 0.19
FFTV 4.97 4.49 4.42 4.36 2.0 - -
FFTUV 14.00 13.71 13.35 9.75 2.0 - -

The steps followed to classify the frame � � as voiced or un-
voiced and to extract the pitch period at the location of � � are
performed by the following two states machine:

1. Unvoiced Segment. Go to next frame. If the energy is high
apply an iteration of ILRP. If a pitch period is found apply
one AFLILRP iteration to the same frame. If both pitch
periods follow the similarity condition, go to state 2. Else,
restart 1.

2. Voiced Segment. Go to next frame. If energy is high, apply
AFLILRP. If a pitch period is found and the last two pitch
periods found follow the similarity condition restart state 2.
Else, apply another AFLILRP iteration to the next frame. If
pitch period is found restart state 2. Else, start in state 1.

3. RESULTS

3.1. Test Data

For the results in this section we used 164 seconds of speech among
5 male speakers and 196 seconds of speech among 12 female speak-
ers. To label each speech file we recognize either a negative or pos-
itive maximum that is easy recognize in all the voiced segments.
The time difference between two adjacent maximums (or mini-
mums) is in fact the pitch period which is stored in our reference
database.

3.2. Estimation Accuracy vs. Regression Error (
k
) and Delta

( � !�� )
To make the measurements of the three plots in figure 2, we used
82 seconds of male speech. For both ILRP and AFLILRP and for
each unwrapping method we chose the beginning of each pitch
period as the beginning of frame � � and performed a linear re-
gression of the phase positioning � � for each ! in the interval� � 
	� 
 � � 
	� 
 �	� . Then we stored the resulting estimation error� � + � m++ � � , regression error (

k
) and estimated delta (

f ! ). Lets give
each of these results a data index

.
and define:- ��! � f!	� k � ��
 . �
���� ! I� I ���� ��! � ����� � ! I� I ����� � f!	� � k I �8� k�� (9)

� � �I���� � ] � m] � � � ��� f� I � � I ���� I�� (10)

where M is the number of elements in the set
- ��! � f!�� k � . � is

defined in formula 10 as the mean error of all the estimation errors
in set

-
.

Figure 2 shows that unwrapping methods BU and LRSFU are
the most accurate for finding the pitch in ILRP. We can also see
that, having 0.2 as a threshold for

k
will give us an expected error

of less than 0.05 times the actual period. Figure 2 b) shows that
the AFLILRP method behaves more accurately for � �*� than for
� � � that means that we don’t need aggressive weights when
the frame length is almost pitch synchronous. Figure 2 c) shows
that, it is better to use Basic Unwrapping for AFLILRP only in
situations where ! is known to be small.

From figure 2 we can justify the threshold values used for
ILRP and AFLILRP stated in section 2.

3.3. Performance

Table 1 shows the performance measure in each row for the differ-
ent phase unwrapping methods in each column. Number 1 stands
for SFU and 2 stands for LRSFU. For example, method 2-1 means
LRSFU in ILRP and SFU in AFLILRP. We also compared the
the performance of our method with the Cepstrum pitch detection
method ([1]) and the Autocorrelation method ([8]). The perfor-
mance measures we used are the ones defined in [9]. We added the
measures FFTV and FFTUV that stand for the number of fourier
transforms that had to be executed to decide that a frame is voiced
or unvoiced respectively.

We can see that 2-2 is the method that performs the best in
terms of GPE. In temrs of V-UV and UV-V, 2-2 performs the best
for male data, while it performs almost the same as 1-2 for female
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ILRP for male speech.

data. In terms of GEC, FPEAV and FPESD, 1-2 and 2-2 performs
almost the same. However, 2-2 is faster and more efficient in find-
ing out if a segment is voiced or unvoiced. For this reason we
will use 2-2 for our noise analysis and for a comparison with the
cepstrum method and autocorrelation method.

For male data, 2-2 performs clearly better than cepstrum.
2-2 performs considerably better than autocorrelation in the UV-V,
GEC and FPESD measures. For female data, cepstrum performs
slightly better than 2-2 in the V-UV and UV-V measures, while
considerably better in the GPE measure. In terms of GEC and
FPESD, 2-2 performs better than cepstrum. The autocorrelation
method performs considerably worse than 2-2 in the UV-V, GEC
and FPESD measures. The high UV-V measure in the autocorrela-
tion method makes it hard to make a comparison regarding V-UV
and GPE.

In summary, our method, 2-2, performs better always in terms
of GEC and FPESD, while it performs similarly or better in the rest
of the measures depending on if the data is from male or female.

Since the noise in a signal will be reflected in the linear re-
gression error � of the phase of our method, we can adjust the
tresholds discussed in section 2 to improve the performance of our
method over nosy data. Figure 3 shows the performance measures
over male and female data at 5db SNR. We run our pitch detection
method (2-2, LRSFU-LRSFU) with the following set of tresholds:

1. ILRP: ������� �	� , 
������ �	��
�� . AFLILRP: ������� ��� , 
������ ����
�� .
2. ILRP: ������� ��� , 
������ ���	
�� . AFLILRP: ������� �	� , 
������ �	��
�� .
3. ILRP: ������� ��� , 
������ ���	
�� . AFLILRP: ������� �	� , 
������ �	��
�� .
4. ILRP: ������� ��� , 
������ ����
�� . AFLILRP: ������� �	� , 
������ ����
�� .
5. ILRP: ������� ��� , 
������ �	��
�� . AFLILRP: ������� ��� , 
������ �	��
�� .
6. ILRP: ������� �	� , 
������ �	��
�� . AFLILRP: ������� �	� , 
������ ����
�� .
7. ILRP: ������� ��� , 
������ �	��
�� . AFLILRP: ������� ��� , 
������ �	��
�� .

Figure 3 shows that we can reach excellent V-UV and UV-V mea-
sures without hurting the GEC and FPESD measures at 5db SNR.
We can also see that the V-UV and UV-V measures are highly
sensible to parameter variations, while GEC and FPESD are less
sensible to parameter variation. Table 2 shows the superior perfor-
mance of our method compared to the cepstrum and autocorrela-
tion method. The flexibility of our method gives us great advan-
tages for tuning up parameters in noisy situations.

Table 2. Pitch Estimation For 5db Nosy Speech
Male Data, SNR = 5db

Measure Our Method Cepstrum Autocorr.
V-UV(%) 5.31 18.43 0.71
UV-V(%) 6.42 14.55 15.64
GEC(%) 3.33 11.47 8.23
FPEAV(ms) 0.051 0.027 0.12
FPESD(ms) 0.31 0.33 0.40

Female Data, SNR = 5db
Measure Our Method Cepstrum Autocorr.
V-UV(%) 6.63 10.80 0.48
UV-V(%) 7.01 15.53 38.35
GEC(%) 7.22 18.17 8.16
FPEAV(ms) -0.004 0.038 0.039
FPESD(ms) 0.20 0.20 0.20

4. CONCLUSIONS

We have described a new method that uses a time delay estimation
technique to extract the pitch of a speech signal. We have found
that using the right phase regression method along with the right
weights will find faster and more accurately the pitch period. We
have also defined an iterative method to find the pitch period at
every frame in the waveform. We have shown that long windows
(20ms) with agressive weights will give a fast finding of a rough
estimate of the pitch, while pitch synchronous windows with fair
weights will give a more accurate finding of the pitch. Finally,
experimental results have shown low fine pitch errors and gross
error counts compared to the cepstrum and autocorrelation meth-
ods. Experimental results have also shown the flexibility of our
method to attain better results in 5db SNR speech.

5. REFERENCES

[1] A.M. Noll, “Cepstrum Pitch Determination,” J. Acoust. Soc.
America. Vol 41, pp. 293-309, 1967.

[2] J.D. Markel, “The SIFT algorithm for fundamental fre-
quency estimation,” IEEE Trans. Audio Electroacust, pp
367-377, Dec. 1972.

[3] L.R. Rabiner, “On the use of autocorrelation analysis for
pitch detection,” IEEE Trans. Acoust, Speech, Signal Pro-
cessing, pp. 24-33, Feb 1977.

[4] M.J. Ross, et. al., “Average magnitude difference function
pitch extractor,” IEEE Acoust, Speech, Signal Processing,
pp. 353-362, Oct. 1974.

[5] R.E. Prieto, S. Kim, “Robust Pitch Tracking using Linear
Regression of the Phase,” 9th Aust. Conf. on Speech Science
and Tech., Dec, 2002.

[6] J.M. Tribolet, “A new phase unwrapping algorithm,” in IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-25,
pp. 170-177, 1977.

[7] Michael S. Brandstein, et. al., “A Practical Time-Delay Es-
timator for Localizing Speech Sources with a Microphone
Array,” Computer, Speech, and Language, April 1995.

[8] B. G. Secrest, G. R. Doddington, ”An integrated pitch track-
ing algorithm for speech systems,”

[9] L.R. Rabiner, et. al., “A comparative performance study of
several pitch detection algorithms,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-24, pp. 399-417, Oct.
1976.

I - 167

➡ ➠


