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ABSTRACT 

 
We present a novel method for decomposing speech into 
voiced and unvoiced components.  After demodulating 
variations in spectral envelope, energy and pitch, the 
method involves applying a bank of Kalman filters to 
separate the harmonic and non-harmonic components of 
the signal.  This approach relies on a state-space 
representation of the composite signal, and provides a way 
to accurately estimate the harmonic component without the 
large delay required by a linear phase comb filter.  
However it also requires prior knowledge of the variance 
of the unvoiced component and the state transition 
parameters.  We present a novel method to accurately 
determine these parameters based on a variant of the 
Expectation-Maximization algorithm. Modifications for 
dealing with unvoiced segments and voicing onset are also 
described. 

 

1. INTRODUCTION 
 
The distinction between voiced and unvoiced sounds is 
important in many areas of speech technology.  This is 
particularly true in speech coding, where different 
mechanisms are often used to encode the voiced and 
unvoiced parts of speech [6].  

In early low bit rate vocoders, it was common to 
classify any particular segment of speech as being either 
purely voiced or purely unvoiced [1].  In reality, however, 
many speech segments contain significant amounts of both 
quasiperiodic and noise-like energy. For this reason, in 
many more recent parametric coders, a measure of voicing 
strength is used to control the relative amount of periodic 
and non-periodic energy in the excitation of a linear 
prediction filter [4].  

In other cases, an attempt is made to explicitly 
separate the voiced and unvoiced components. In 
codebook-excited linear predictive coders, for example, 
analysis-by-synthesis is used to identify optimal 
contributions to the vocal tract excitation from adaptive 

and fixed codebooks, representing voiced and unvoiced 
energy respectively [3]. 

In contrast, in interpolation-based coding a linear low 
pass filter is used to separate slowly evolving and rapidly 
evolving components of the pitch cycle [6], corresponding 
to voiced and unvoiced speech. This is similar to the use 
of a linear comb filter to isolate the voiced component of 
speech based on its harmonic structure.  A limitation of 
this approach, however, is that its effectiveness depends 
on having a filter with a sharp roll-off. This requires a long 
impulse response and an undesirably large delay, and also 
creates difficulties in dealing with rapid transitions. 

Achieving good decomposition without a large delay 
requires the use of more prior knowledge about signal 
behavior.  One approach is to impose a deterministic 
parametric model on the evolution of the harmonic 
coefficients [8].  However, the signal model is then highly 
non-linear, and parameter estimation becomes very 
complex. Stochastic models of signal evolution have been 
suggested in both [5] and [7].  However both of those 
approaches also involve very complex estimation 
processes.  

In this paper we present a new method of 
decomposition that is also based on a stochastic model, but 
which is much simpler to implement, and also permits 
more control over the behavior of the decomposition.  

 
2. SIGNAL M ODELING AND ESTIM ATION 

 
In keeping with common practice, we represent speech as 
the response of an autoregressive (AR) system, 
representing the vocal tract filter: 
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where 

 kkk vxy += . (2) 

g  is a gain factor, kx  is a quasiperiodic signal, and kv  is 

an uncorrelated Gaussian random variable with variance 
2
vσ . The response of the vocal tract filter to each of the 
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two components, kx  and kv , constitute the voiced and 

unvoiced components of speech respectively. 
Fundamental to our approach to decomposing kz  is 

the assumption that kx  evolves according to 

 TkTkk wxx −− += α  (3) 

where T is the period of kx , kw  is an uncorrelated 

Gaussian random variable with variance 2
wσ , and α  is a 

gain value. 
Based on this model, the decomposition process is as 

follows. In our implementation, processing is carried out 
on a frame-by-frame basis with frames of 20ms duration. 
We begin by demodulating the variation in the energy, 
spectral envelope, and pitch of the signal. Energy is 
estimated on a subframe basis (4 subframes/frame). 
Demodulation of the spectral envelope variation is 
achieved by applying an inverse filter estimated once per 
frame by linear prediction. The linear prediction residual 
is used to estimate the pitch period, and the period is used 
to time-warp the signal to a fixed period.  

The demodulated signal is an approximation, kŷ , of 

ky  defined on a warped time scale. Equations (2) and (3) 

together constitute a state space representation of this 
signal, with kw  representing the process noise and kv  the 

observation noise. Based on this, a Kalman filter can be 
used to estimate the state variable kx , using the standard 

recursion, 

 )ˆˆ(ˆˆ TkTkkkTkTkkkk xyKxx −−−− −+= αα  (4) 

with 

 )( 2
vTkkTkkK σ+ΣΣ= −− , (5) 

where 

 22
wTkTkTkk σα +Σ=Σ −−−  (6) 

is the variance of the error in the predicted state estimate, 

Tkkx −ˆ , and 

 Tkkkk K −Σ−=Σ )1(  (7) 

is the variance in the error in the filtered state estimate, 

kkx̂ .  2
wσ  may be chosen to control the rate at which the 

estimated quasiperiodic component evolves.  However 

α and 2
vσ  must be estimated from the input data.  We 

describe a new method to do this in the next section. 
Since the state variable is different for each sample in 

the period, estimation of the entire period effectively 
constitutes a bank of multiple scalar Kalman filters.  The 

smoothing form of the Kalman filter may also be used to 
take advantage of future pitch cycles to estimate each 
current sample.  The observation noise is estimated as 

)ˆˆ(ˆ kkk xyv −= .  The estimated quasiperiodic and noisy 

components can then be remodulated using the estimated 
period, LPC filter and energy to produce the voiced and 
unvoiced components of the speech. 

The model on which our method is based has some 
similarity to those in [5]. However the use here of a time 
domain state representation makes it possible to use only 
scalar Kalman filter estimators, resulting in significantly 
lower complexity.  In addition, the methods in [5] 

explicitly assumed that 2
vσ  is known in advance, and 

made no allowance for an explicit state transition gain α .  
The latter point is particularly important in decomposing 
speech, because the overall amplitude of consecutive 
cycles can change more rapidly than their shape. 

The model developed in [7] is almost identical to that 
described by (2) and (3), but again there was no allowance 
there for a variable transition gain, and also no provision 

for explicitly controlling 2
wσ .  In addition, because 2

vσ  

was not known or determined prior to decomposition, it 
was not possible to use a Kalman filter for signal 
estimation.  Instead a much more complex algorithm was 
proposed based on singular value decomposition. 

 
3. ESTIM ATION OF DYNAM ICAL SYSTEM  

PARAM ETERS 
 
3.1 Estimation Based on Expectation M aximization 
 

Good estimates of α and 2
vσ  are essential in order for the 

decomposition described above to be effective.  An 
iterative method for determining parameters, θ , of a 
general linear dynamic system from observations of its 
output was developed by Digalakis et al [2] based on the 
Expectation Maximization (EM) algorithm. Each iteration 
involves maximizing the expected joint log likelihood of 
the observed data sequence and the unknown state 
sequence conditioned on the observed data and the 
previous estimate of θ . 

Using this procedure, the estimated values of α  and 
2
vσ  are: 
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where N represents a fixed interval over which α  and 
2
vσ are assumed constant, and NTk |−Σ  is the covariance of 

)ˆ( | TkNTk xx −− − .  The expectation in (8) should be 

understood to be conditioned on both the observed data up 

to N and initial estimates of α  and 2
vσ .  

However, the effectiveness of the recursion defined by 
(8) and (9) depends significantly on the accuracy of the 

initial estimates of α  and 2
vσ .  Inaccurate starting values 

will lead to slow convergence, and may cause the 
algorithm to converge to a local optimum.  Although no 
method to obtain initial estimates was suggested in [2], in 
that case this was not a significant problem since the 
application of interest there was training of acoustic 
models for speech recognition. In that situation, estimation 

occurs off-line.  However, for our application, α  and 2
vσ  

vary throughout the speech waveform, and must be 
estimated on-line. 

We present here a method to obtain these values using 
only the observed data and past values of the estimated 
state sequence.  The method is derived from (8) and (9) 

above, but relies on an assumption that α  and 2
vσ  are 

approximately constant over intervals of no more that one 
period.  Although, in principal these estimates may be 
used as initial values for subsequent EM iterations, in our 
experience they are generally sufficiently accurate 
themselves, without resorting to further recursion. 

To estimate α , we first note that since kv  is 

uncorrelated with Tkx −  the expectation in the numerator 

of (8) can be written as NTkkTkkk xyxvyE |ˆ}){ ( −− =− .  

The smoothed state estimate NTkx |ˆ − , which also appears 

in the denominator, is not known a priori.  However, in the 
mean over the interval from N�1 , NTkx |ˆ −  is well 

approximated by the filtered estimate, TkTkx −− |ˆ .  In 

addition, the error variance, NTk |−Σ  can be expected to 

be small compared with 2
|

ˆ
NTkx − .  Thus α  can be 

approximated by 

 ��
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Provided the summation interval in (10) is no more than 
one period, all terms in the right hand side are known. 

Using α computed from (10) can be found as follows.  
Again assuming that Nk ≤ , then Nkx |ˆ  in (9) is 

equivalent to kkx |ˆ .  Using (4) to compute this value results 

in 
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Tkk −Σ |  is determined from (6).  Equation (11) can be 

manipulated to produce a quadratic in 2
vσ . Assuming that 

the signal is not noise-free ( 02 =vσ ), the value of 2
vσ  that 

satisfies this is 
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3.2  M odifications for  Unvoiced Speech and Voicing 

Onsets 
 
Despite the theoretical optimality of the procedure 
described in the preceding section, in practice two 
problems can arise. First, as speech moves from a voiced 
to unvoiced segment, the value of α  will decrease, and the 

amplitude of the estimates kkx̂  will drop accordingly.  

However during the unvoiced segment, spurious 
correlations between the harmonic component and kŷ  

may cause large values of α  to be calculated, resulting in 

an undesired increase in the amplitude of kkx̂ .  

To overcome this problem, we have found it useful to 
test the ratio of the energies of the predicted harmonic 
component and the noise component. If the signal to noise 
ratio is less than zero dB and the estimated predictor gain 
is large, we limit the gain to 1.0. 
 

However at voiced onsets it is important to allow α  
to be large. To detect onsets we compare kŷ  within the 

current period with values predicted based on both 

TkTkx −−ˆ and Tky −ˆ , from the previous period. If the 

residual in the previous period is a better predictor of the 
current observed data than the previous harmonic 
component, we assume that an onset has occurred. The 
predictor gain is calculated based on the residual in the 
previous period, and the harmonic component is reset to 
the observed residual data. This procedure is also 
important in preventing the propagation of decomposition 
errors due to inaccurate pitch estimates. 
 

4. RESULTS AND DISCUSSION 
 
Figure 1 illustrates the application of our algorithm to a 
segment of speech consisting of a dominant unvoiced 
component followed by a dominant voiced component. 
The smoothing form of the Kalman filter was used with a 
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two period look-ahead. The results show that the algorithm 
successfully decomposes the speech, with strong 
attenuation of noisy energy in the voiced component, and 
no visible harmonic energy in the unvoiced component. 
The presence of unvoiced signal energy during segments 
that would generally be classified as voiced is significant. 
Listening tests indicate that the unvoiced component 
retains the intelligibility of the original speech, but with a 
whispered quality. 
 

5. CONCLUSIONS 
 
We have presented a novel method for decomposing 
speech into voiced and unvoiced components in the time 
domain. The algorithm is distinctive in its use of a Kalman 
filterbank, based on dynamical system parameters 
estimated on-line using a form of the Expectation-
Maximisation algorithm. 
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Figure 1: (top to bottom) speech waveform, estimated voiced component, estimated unvoiced component 
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