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ABSTRACT

We present a novel method for decomposing speech into
voiced and unvoiced components. After demodulating
variations in spectral envelope, energy and pitch, the
method involves applying a bank of Kaman filters to
separate the harmonic and non-harmonic components of
the signal. This approach relies on a state-space
representation of the composite signal, and provides a way
to accurately estimate the harmonic component without the
large delay required by a linear phase comb filter.
However it also requires prior knowledge of the variance
of the unvoiced component and the state transition
parameters. We present a novel method to accurately
determine these parameters based on a variant of the
Expectation-Maximization agorithm. Modifications for
dealing with unvoiced segments and voicing onset are also
described.

1. INTRODUCTION

The distinction between voiced and unvoiced sounds is
important in many areas of speech technology. This is
particularly true in speech coding, where different
mechanisms are often used to encode the voiced and
unvoiced parts of speech [6].

In early low bit rate vocoders, it was common to
classify any particular segment of speech as being either
purely voiced or purely unvoiced [1]. In reality, however,
many speech segments contain significant amounts of both
quasiperiodic and noise-like energy. For this reason, in
many more recent parametric coders, a measure of voicing
strength is used to control the relative amount of periodic
and non-periodic energy in the excitation of a linear
prediction filter [4].

In other cases, an attempt is made to explicitly
separate the voiced and unvoiced components. In
codebook-excited linear predictive coders, for example,
analysis-by-synthesis is used to identify optimal
contributions to the vocal tract excitation from adaptive
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and fixed codebooks, representing voiced and unvoiced
energy respectively [3].

In contrast, in interpolation-based coding a linear low
pass filter is used to separate slowly evolving and rapidly
evolving components of the pitch cycle [6], corresponding
to voiced and unvoiced speech. This is similar to the use
of alinear comb filter to isolate the voiced component of
speech based on its harmonic structure. A limitation of
this approach, however, is that its effectiveness depends
on having afilter with a sharp roll-off. Thisrequiresalong
impulse response and an undesirably large delay, and also
creates difficultiesin dealing with rapid transitions.

Achieving good decomposition without a large delay
requires the use of more prior knowledge about signal
behavior. One approach is to impose a deterministic
parametric model on the evolution of the harmonic
coefficients [8]. However, the signal model is then highly
non-linear, and parameter estimation becomes very
complex. Stochastic models of signal evolution have been
suggested in both [5] and [7]. However both of those
approaches aso involve very complex estimation
processes.

In this paper we present a new method of
decomposition that is also based on a stochastic model, but
which is much simpler to implement, and also permits
more control over the behavior of the decomposition.

2. SSIGNAL MODELING AND ESTIMATION

In keeping with common practice, we represent speech as
the response of an autoregressive (AR) system,
representing the vocal tract filter:

M
Z ==Y 8z + 9.k 1)
i=1
where
Vi = X + V- 2

g isagain factor, x, isaquasiperiodic signal, and v is
an uncorrelated Gaussian random variable with variance
03. The response of the vocal tract filter to each of the
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two components, X, and v, congtitute the voiced and

unvoiced components of speech respectively.
Fundamental to our approach to decomposing zy is

the assumption that x, evolves according to

X = X1 + Wt ©)
where T is the period of X, W, is an uncorrelated

Gaussian random variable with variance a\,z\,, and a isa

gainvaue.

Based on this model, the decomposition process is as
follows. In our implementation, processing is carried out
on a frame-by-frame basis with frames of 20ms duration.
We begin by demodulating the variation in the energy,
spectral envelope, and pitch of the signal. Energy is
estimated on a subframe basis (4 subframes/frame).
Demodulation of the spectra envelope variation is
achieved by applying an inverse filter estimated once per
frame by linear prediction. The linear prediction residual
is used to estimate the pitch period, and the period is used
to time-warp the signal to afixed period.

The demodulated signal is an approximation, ¥, , of

Yk defined on a warped time scale. Equations (2) and (3)
together constitute a state space representation of this
signal, with w, representing the process noise and v the
observation noise. Based on this, a Kalman filter can be
used to estimate the state variable X, , using the standard

recursion,
Xk = Ot TR ~OKgpr) - 4)
with
K=2y-1 /(Zk\k—T +oy), (5)
where
Sk =°Z ) T 0w (6)
is the variance of the error in the predicted state estimate,

Xyk-T » and

T = @ K)Z g 1 ()

is the variance in the error in the filtered state estimate,
ik‘k . 02 may be chosen to control the rate at which the

estimated quasiperiodic component evolves. However
a and 03 must be estimated from the input data. We
describe a new method to do thisin the next section.

Since the state variable is different for each samplein

the period, estimation of the entire period effectively
congtitutes a bank of multiple scalar Kalman filters. The

smoothing form of the Kalman filter may also be used to
take advantage of future pitch cycles to estimate each
current sample. The observation noise is estimated as
Ve = (Y —%X¢). The estimated quasiperiodic and noisy
components can then be remodulated using the estimated
period, LPC filter and energy to produce the voiced and
unvoiced components of the speech.

The model on which our method is based has some
similarity to those in [5]. However the use here of atime
domain state representation makes it possible to use only
scalar Kalman filter estimators, resulting in significantly
lower complexity. In addition, the methods in [5]

explicitly assumed that 03 is known in advance, and

made no allowance for an explicit state transition gain « .
The latter point is particularly important in decomposing
speech, because the overall amplitude of consecutive
cycles can change more rapidly than their shape.

The model developed in [7] is amost identical to that
described by (2) and (3), but again there was no allowance
there for a variable transition gain, and also no provision

for explicitly controlling a\,zv. In addition, because 03

was not known or determined prior to decomposition, it
was not possible to use a Kaman filter for signa
estimation. Instead a much more complex algorithm was
proposed based on singular value decomposition.

3. ESTIMATION OF DYNAMICAL SYSTEM
PARAMETERS

3.1 Estimation Based on Expectation M aximization

Good estimates of a and 03 are essential in order for the

decomposition described above to be effective.  An
iterative method for determining parameters, 8, of a
genera linear dynamic system from observations of its
output was developed by Digalakis et al [2] based on the
Expectation Maximization (EM) algorithm. Each iteration
involves maximizing the expected joint log likelihood of
the observed data sequence and the unknown state
sequence conditioned on the observed data and the
previous estimate of 4.

Using this procedure, the estimated values of a and

ol are

N N
a =2 E{XX-1} Z[fﬂf_ﬂ,\, +Zk—T|N] (8)
k=L k=1

ka|N) ©)

of = 2t
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where N represents a fixed interval over which a and
03 are assumed constant, and Xy _yy is the covariance of
(X%-T|N —X-T). The expectation in (8) should be
understood to be conditioned on both the observed data up
to N and initial estimates of a and 05.

However, the effectiveness of the recursion defined by
(8) and (9) depends significantly on the accuracy of the
initial estimates of a and 03. Inaccurate starting values

will lead to slow convergence, and may cause the
algorithm to converge to a local optimum. Although no
method to obtain initial estimates was suggested in [2], in
that case this was not a significant problem since the
application of interest there was training of acoustic
models for speech recognition. In that situation, estimation

occurs off-line. However, for our application, a and a\?

vary throughout the speech waveform, and must be
estimated on-line.

We present here a method to obtain these values using
only the observed data and past values of the estimated
state sequence. The method is derived from (8) and (9)
above, but relies on an assumption that a and 03 are

approximately constant over intervals of no more that one
period. Although, in principal these estimates may be
used as initial values for subsequent EM iterations, in our
experience they are generaly sufficiently accurate
themselves, without resorting to further recursion.

To estimate «a, we first note that since v, is
uncorrelated with x,_t the expectation in the numerator
of (8) can be written as E{(Yx = Vi) %1} = YiXk—T|N -
The smoothed state estimate X _t v , which also appears

in the denominator, is not known a priori. However, inthe
mean over the interval from 1..N, Xy is well

approximated by the filtered estimate, X _ty_r. In

addition, the error variance, Zy_y can be expected to

be small compared with )A(lf—T|N' Thus a can be

approximated by

a= ZYka Tl T/Z Xe—Tlk=T (10)

Provided the summation interval in (10) is no more than
one period, all termsin the right hand side are known.
Using a computed from (10) can be found as follows.

Again assuming that k<N, then Xy in (9)
equivalent to )?k|k. Using (4) to compute this value results
in

oy =

Mz

ZlH

k

o2
Ve =Y Xt )| ——— || (12)
1 k- + ol

Zyk-1 is determined from (6). Equation (11) can be
manipulated to produce a quadratic in a\?. Assuming that
the signal is not noisefree(a& =0), the value of 0’3 that
satisfiesthisis

N
2 _ 2 .

oy = Z[yk QY Xk-T-T |~ Zkk-1 (12
k=1

Z|l-

3.2 Maodifications for Unvoiced Speech and Voicing
Onsets

Despite the theoretical optimality of the procedure
described in the preceding section, in practice two
problems can arise. First, as speech moves from a voiced
to unvoiced segment, the value of a will decrease, and the

amplitude of the estimates >A(k‘k will drop accordingly.

However during the unvoiced segment, spurious
correlations between the harmonic component and

may cause large values of a to be calculated, resulting in
an undesired increase in the amplitude of )A(k‘ K

To overcome this problem, we have found it useful to
test the ratio of the energies of the predicted harmonic
component and the noise component. If the signal to noise
ratio is less than zero dB and the estimated predictor gain
islarge, we limit the gain to 1.0.

However at voiced onsets it is important to allow a
to be large. To detect onsets we compare ¥, within the
current period with values predicted based on both
)A(k—T\k—T and Yy _T , from the previous period. If the

residual in the previous period is a better predictor of the
current observed data than the previous harmonic
component, we assume that an onset has occurred. The
predictor gain is calculated based on the residua in the
previous period, and the harmonic component is reset to
the observed residual data. This procedure is aso
important in preventing the propagation of decomposition
errors due to inaccurate pitch estimates.

4. RESULTS AND DISCUSSION

Figure 1 illustrates the application of our algorithm to a
segment of speech consisting of a dominant unvoiced
component followed by a dominant voiced component.
The smoothing form of the Kalman filter was used with a
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Figure 1: (top to bottom) speech waveform, estimated voiced component, estimated unvoiced component

two period look-ahead. The results show that the algorithm
successfully decomposes the speech, with strong
attenuation of noisy energy in the voiced component, and
no visible harmonic energy in the unvoiced component.
The presence of unvoiced signal energy during segments
that would generally be classified as voiced is significant.
Listening tests indicate that the unvoiced component
retains the intelligibility of the original speech, but with a
whispered quality.

5. CONCLUSIONS

We have presented a novel method for decomposing
speech into voiced and unvoiced components in the time
domain. The algorithm is distinctive in its use of a Kalman
filterbank, based on dynamical system parameters
estimated on-line using a form of the Expectation-
Maximisation algorithm.
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