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ABSTRACT

A new linear predictive technique, All-pole modeling with
Symmetric Linear Prediction (ASLP), is presented. The starting
point of the method is an implementation of conventional linear
prediction (LP) with a parallel structure, where two symmetric
linear predictors are combined to pre-filters represented by first
order FIRs. Modification of these pre-filters yields the ASLP
predictor, which is always minimum phase. Experiments indicate
that the new method models the formant structure of wide-band
speech more accurately than conventional LP, when the
prediction order is smaller than the one required by the sampling
frequency.

1. INTRODUCTION

Linear prediction (LP) is a widely used method in speech
processing. According to the classical "rule of thumb", the
prediction order (denoted by m hereafter) of LP analysis should
be selected to equal the sampling frequency in kHz added by a
small integer [3]. Hence, LP analysis of order m=10 is typically
used in compression of telephone band speech sampled with 8
kHz. Processing of wide-band speech, however, calls for using
higher prediction orders, which, in turn, increases the amount of
side information in LP-based wide-band coders. Therefore, in
order to save bits in quantization of the LP parameters of wide-
band speech, it would be tempted to use prediction orders
somewhat smaller than those given by the "rule of thumb". If, on
the other hand, the prediction order is too small, the formant
structure of speech becomes poorly modeled. In particular,
modeling of the first (F1) and second (F2) formant, which are
perceptually among the most important parameters of speech,
will deteriorate if LP with a too small prediction order is used for
wide-band speech.

This study presents a new linear predictive method, which
gives stable all-pole models of wide-band speech with improved
modeling of lowest formants, when the prediction order is
smaller than the sampling frequency in kHz. The proposed
method is described in section 3.1 by first presenting in section 2
three different implementations for conventional LP.

2. BACKGROUND

We will first present shortly three background issues of the new
algorithm: conventional LP, the Line Spectral Pairs

decomposition, and symmetric linear prediction. For the sake of
conciseness, we will assume throughout the study that the
prediction order m is even. This is because LP models of odd
order occur seldom in applications and they can be treated, if
needed, similarly.

2.1. Conventional linear prediction

Conventional LP with the prediction order equal to m can be
presented as follows [2]. Given the signal x(n) and the predictor
parameters ai (0≤i≤m), denoted by x = [x(n)...x(n-m)]T and a =
[a0...am]T, respectively, we can express the residual as e(n) = xTa.
The optimal predictor is defined by minimizing the expected
value of the residual energy E[x2(n)] = aTRa subject to the
constraint a0=1 or equivalently aTb=1, where b= [1 0...0]T. The
solution can be written as: Ra=σ2b, where σ2 denotes the energy
of the residual. In the following, we will denote the transfer
function of the predictor given by conventional LP by A(z).

2.2. LSP (Line Spectral Pairs) decomposition

Given an LP predictor A(z), the Line Spectral Pair (LSP)
polynomials are defined as [5]: P(z) = A(z) + z-m-1A(z-1),    Q(z)
= A(z) - z-m-1A(z-1). Predictor A(z) can be obtained from the LSP
polynomials simply as: A(z) = 1/2[P(z) + Q(z)].

The LSP decomposition is widely used in quantization of
LP parameters [4]. It is known that zeros of P(z) and Q(z) are
always on the unit circle and, for even values of m, P(z) and Q(z)
have trivial roots located at z=-1 and z=+1, respectively.
Furthermore, if the roots of P(z) and Q(z) interlace, the all-pole
filter 1/A(z) is stable.

2.3. Symmetric linear prediction

Symmetric linear prediction [6,7] is based on the predictor
polynomial defined as:
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In this structure, a predictor of order m can be defined
from m/2 coefficients bi (1≤i≤m/2) because of the symmetry of
the impulse response. The optimal predictor is obtained from the
following normal equations:
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It has been proved that roots of B(z) are always on the unit
circle [6]. Interestingly, there is a close connection (although not
well known) between symmetric LP and the LSP decomposition:
the LSP polynomials (excepting the points z=+/- 1) are, in fact,
LP predictors, which minimize the energy of the prediction error
subject to the constraint that the zeros of the predictor are
restricted to the unit circle (i.e., residual is computed using
symmetric linear prediction) [7].

By summarizing the background issues, we can now
express conventional LP using three different implementations
as shown in Fig. 1.
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Fig.1 Different implementations of conventional LP, x(n) and
e(n) denote the input and the residual, respectively.
(a) Conventional implementation with predictor A(z).
(b) Implementation based on the LSP decomposition.
(c) Implementation based on symmetric LP. Transfer functions

of symmetric linear predictors B1(z) and B2(z) obey the
structure given in Eq. 1 and they are optimized (using Eq.
2) from x(n) filtered through pre-filters P1(z) and P2(z),
respectively. Transfer functions of pre-filters are:
P1(z)=1+z-1 and P2(z)=1-z-1.

Normally, conventional linear prediction is computed by
inverse filtering x(n) using the optimal predictor A(z) (Fig. 1(a)).
With the LSP decomposition, however, it is possible to
implement the same filtering using the parallel structure shown
in Fig. 1(b). This implementation requires more computations
than the one shown in Fig. 1(a). However, it serves as an
intermediate step to the third implementation of conventional LP
shown in Fig. 1(c). In this alternative, the trivial roots of the LSP
polynomials have been separated and, consequently, both P(z)
and Q(z) are expressed as cascades, where two symmetric LP
predictors (with transfer functions denoted by B1(z) and B2(z))
are defined from x(n) filtered through pre-filters represented by
simple FIRs  (1+z-1 and 1-z-1 for P(z) and Q(z), respectively).
Hence, the transfer function of the conventional LP predictor
computed by the structure shown in Fig. 1(c) can be expressed as

A(z) = 1/2 ( B1(z)P1(z) + B2(z) P2(z) ) (3)
where B1(z) and B2(z) are transfer functions of the symmetric
linear predictors computed from x(n) filtered through pre-filters
P1(z) = 1+z-1 and P2(z)=1-z-1.

Implementation of conventional LP using the structure
shown in Fig. 1(c) is, again, inferior to the one shown in Fig.1(a)
in terms of the computational load. However, this interpretation
of conventional LP makes possible a straightforward
modification, which introduces the new algorithm described next
in section 3.1.

3. METHOD

3.1. Algorithm

When interpreting conventional LP using Eq. 3 it is worth
noticing that the zeros of P1(z) and P2(z) are at z=-1 and z=+1,
respectively, which implies that the amplitude responses of these
two pre-filters at the low and high end of the frequency range are
considerably different. Therefore, the symmetric linear predictor
B1(z) in the upper branch of Fig.1(c) will most likely not locate
any of its roots at the highest frequencies due to extensive
damping of these frequencies by P1(z). (Recall that symmetric
LP is based on the mean square error criterion, which means that
it focuses on the strongest spectral components.) Similarly, roots
of B2(z) are not likely to occur at the lowest part of the frequency
range due to extensive attenuation of these frequencies by P2(z).
If there is a large distance between a root of B1(z) (on the unit
circle) and its counterpart of B2(z) (also on the unit circle), the
corresponding root of the final LP predictor (inside the unit
circle) will be at a distance from the unit circle. (This follows
from properties between LSP roots and LP.). Hence, the spectral
model given by LP will most likely not show a strong resonance
in the frequency range in question.

The proposed method, All-pole modeling with Symmetric
Linear Prediction (ASLP), is based on a straightforward
modification of the structure shown in Fig. 1(c) in order to
obtain all-pole models, which emphasize more the lowest and
highest frequencies of the input signal. The flow graph of ASLP
is shown in Fig. 2. In this method, pre-filters P1(z) and P2(z) of
Fig. 1(c) are replaced by first-order pre-filters, the transfer
functions of which are PASLP,1(z) = 1+az-1 and PASLP,2(z) = 1-az1

in the lower and upper branch, respectively. If |a|<1, the
amplitude response of the pre-filter PASLP,1(z) will introduce
smaller attenuation on the input spectral components at the
highest spectral range than P1(z). Similarly, PASLP,2(z) will not
attenuate the lowest frequency range as much as P2(z).
Therefore, we would expect the roots of the symmetric linear
predictors to become closer to each other at the two ends of the
frequency range. Consequently, the final all-pole model should
indicate more prominent resonances especially at the lower
frequencies of wide-band vowels. Selection of the parameter a in
the current study is described in section 4.

In order to guarantee the minimum phase property of the
final predictor, the two symmetric predictors BASLP,1(z) and
BASLP,2(z) have to be cascaded with pre-filters P1(z) and P2(z),
respectively. (This can be proved using properties of symmetric
polynomials as shown in [1], but it is beyond the scope of this
article.) Hence, the transfer function of the predictor given by
ASLP can be expressed as:
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   AASLP(z) = 1/2 ( BASLP,1(z)P1(z) + BASLP,2(z) P2(z) ) (4)
where BASLP,1(z) and BASLP,2(z) are symmetric linear predictors
defined from x(n) filtered through pre-filters PASLP,1(z) and
PASLP,2(z), respectively. P1(z) and P2(z) are transfer functions of
the pre-filters used in the implementation of the conventional LP
with P1(z) = 1+z-1 and P2(z)=1-z-1.

It is worth noticing that the order of the predictor
determined with this new approach will be equal to m, because
the highest terms in products BASLP,1(z)P1(z) and BASLP,2(z)P2(z)
cancel each other when summed together in Eq. 4. From the
point of view of speech coding, the proposed algorithm is similar
to conventional LP, because it makes possible presenting a
predictor of order m with 2m roots located on the unit circle. (In
conventional LP, these are the roots of P(z) and Q(z), ie., the
LSPs, while in ASLP these are the roots of the two symmetric
LP polynomials BASLP,1(z) and BASLP,2(z)). Hence, same amount
of bits is needed in quantization of the mth order predictor in
conventional LP and in ASLP.

x(n)

PASLP,1(z) BASLP,1(z) P1(z)

PASLP,1(z)

PASLP,2(z) BASLP,2(z)
P2(z)
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1/2

1/2

eASLP(n)

Fig.2 Flow graph of the predictor in ASLP, x(n) and eASLP(n)
denote the input and residual, respectively. Symmetric linear
predictors BASLP,1(z) and BASLP,2(z) are defined (using Eq. 2)
from signal x(n) filtered through pre-filters PASLP,1(z) and
PASLP,2(z), respectively. The ASLP predictor is obtained (Eq. 4)
by cascading the symmetric linear predictors with pre-filters
P1(z) and P2(z). The transfer functions of the pre-filters are:
P1(z)=1+z-1, P2(z)=1-z-1, PASLP,1(z)= 1+az-1, PASLP,2(z)=1-az-1.

4. EXPERIMENTS

As speech material we recorded vowels (/a/ and /o/) produced by
five female and five males subjects. The data were digitized
using a sampling frequency of 22.050 kHz. In the computer, the
sounds were high-pass filtered in order to remove low-frequency
fluctuations picked up in the recordings. The final analysis
bandwidth of the vowels was between 250 Hz and 11.025 kHz.

Both LP and ASLP were computed with the prediction
order m=16 and the frame size of 1000 samples (= approx. 45
ms). The autocorrelation terms were computed using Hamming
windowing. The all-pole models computed by ASLP might
sometimes show resonances that are too narrow (This happens
typically in modeling of the first formant.) To alleviate this
problem, the impulse response of the predictor computed by
ASLP was windowed with the exponential window w(n) = 0.99n,
0≤n≤m.

Comparison of  the all-pole spectra were computed using
the Spectral Distortion (SD) [4]. This distortion measure is
defined as follows:
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where P1(f) and P2(f) denote the all-pole spectra to be compared
and fl and fu denote the lower and upper limit, respectively, of
the frequency range to be analyzed. (In computation of SD, the
gains of the all-pole filters were adjusted so that their energies
equaled the energy of the analyzed speech sound.) Using SD, the
parameter a of pre-filters PASLP,1(z) and PASLP,2(z) in ASLP was
selected as follows. Firstly, ASLP was computed for each vowel
with 20 different values of a, by varying the value of a from 0.05
to 1.0 (i.e., conventional LP) with the step of 0.05. Secondly,
higher order LP analyses (m=26) were computed for all the
vowels. Each 26th order all-pole spectrum was then compared to
the twenty all-pole spectra given by ASLP using SD. In order to
assess the modeling of the lowest two formants, SD was
computed with fl=250 Hz and fu=1500 Hz. It was found that the
value of SD was smallest for most of the sounds analyzed when
a equaled 0.45. Hence, we set a=0.45 and this value was kept
constant in all the further experiments.

5. RESULTS

ASLP was compared to conventional LP using two approaches.
Firstly, conventional LP analysis of a high prediction order
(m=26) was computed for the vowels /a/ and /o/ produced by a
male speaker. The obtained all-pole filters were then excited by
an impulse train in order to create synthetic vowels with known
formant structures. Five versions of both vowels were produced
by varying the fundamental frequency (F0) from 100 Hz to 300
Hz with the step of 50 Hz. Finally, each synthetic vowel was
analyzed by conventional LP and ASLP of order m=16 and the
obtained all-pole spectra were compared to those of the 26th
order all-pole spectra used in the synthesis of the vowels. This
comparison was again done by using SD as described in section
4. The data obtained are shown in Table 1. Secondly, vowels of
all speakers were analyzed by using conventional LP and ASLP
of order m=16. The performance of LP and ASLP was then
compared by extracting the first and the second formant from
each all-pole spectrum. The formant was identified as a local
maximum in the all-pole spectrum in the frequency range, where
F1 and F2 of the vowels /a/ and /o/ are known to locate.

The SD values computed from the synthetic vowels show
that the 16th order all-pole spectra given by ASLP were closer to
the 26th order LP spectra than those given by the 16th order
conventional LP analysis. As shown by the data of Table 1,
ASLP yielded smaller SD values for all the ten vowels analyzed.
These data reflect especially the more accurate modeling of the
lowest two formants by the ASLP in comparison the
conventional LP analysis of the same prediction order.

Improved modeling of the lowest two formants by ASLP
was also supported by the number of the formants found. Both of
the two all-pole modeling techniques indicated the first formant
in all 20 sounds analyzed, but conventional LP analysis failed to
indicate the second formant in eight cases, whereas ASLP found
both of the lowest two formants for all the sounds analyzed. Fig.
3 shows two examples demonstrating the improved modeling of
the lowest two formants by ASLP.
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Vowel /a/ Vowel /o/
F0 SDLP SDASLP SDLP SDASLP

100 1.15 0.55 0.88 0.54
150 1.20 0.50 1.50 0.95
200 1.26 0.87 1.26 1.18
250 1.16 0.92 1.69 1.07
300 1.18 0.63 1.53 1.05
Table 1. Spectral distortion (SD, in dB) computed from the
synthetic vowels with different values of the fundamental
frequency (F0, in Hz). SD was computed using Eq. 5 with the
following parameters: P1(f) was the 26th order all-pole spectrum
used in the synthesis of the sounds, P2(f) was the 16th order all-
pole spectrum given either by conventional LP (SDLP) or by
ASLP (SDASLP). The analysis was computed over the frequency
range, where the lowest two formants are located (fl=250 Hz and
fu=1500 Hz).

Fig. 3 Examples of 16th order all-pole spectra computed for the
vowel /a/ by conventional LP (dotted line) and by ASLP (solid
line). Analysis bandwidth was up to 11.025 kHz, but, in order to
make figures clear, spectra are shown only up to 5 kHz. Upper
graph: male speaker, lower graph: female speaker.

6. SUMMARY
We have presented a new linear predictive technique that gives
stable all-pole filters to model wide-band speech spectra. The
method is based on an implementation of a linear predictor as a

parallel structure, where two symmetric linear predictors are
determined by filtering the input through two pre-filters. By
applying pre-filters different from those used in the
corresponding implementation of conventional LP, the proposed
method makes possible emphasizing especially the lowest
frequencies of wide-band speech prior to the computation of the
symmetric linear predictors. Consequently, the poles of the all-
pole filter obtained are more likely to locate at low frequencies
than in conventional LP. This phenomenon was corroborated by
the experiments which showed that the proposed ASLP method
models the first and second formant of wide-band vowels more
accurately then conventional LP of the same prediction order.
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