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ABSTRACT

A new linear predictive technique, All-pole modeling with
Symmetric Linear Prediction (ASLP), is presented. The starting
point of the method is an implementation of conventional linear
prediction (LP) with a parallel structure, where two symmetric
linear predictors are combined to pre-filters represented by first
order FIRs. Maodification of these pre-filters yields the ASLP
predictor, which is always minimum phase. Experiments indicate
that the new method models the formant structure of wide-band
speech more accurately than conventional LP, when the
prediction order is smaller than the one required by the sampling

frequency.

1. INTRODUCTION

Linear prediction (LP) is a widely used method in speech
processing. According to the classica "rule of thumb", the
prediction order (denoted by m hereafter) of LP analysis should
be selected to equa the sampling frequency in kHz added by a
small integer [3]. Hence, LP analysis of order m=10 is typically
used in compression of telephone band speech sampled with 8
kHz. Processing of wide-band speech, however, calls for using
higher prediction orders, which, in turn, increases the amount of
side information in LP-based wide-band coders. Therefore, in
order to save hits in quantization of the LP parameters of wide-
band speech, it would be tempted to use prediction orders
somewhat smaller than those given by the "rule of thumb". If, on
the other hand, the prediction order is too small, the formant
structure of speech becomes poorly modeled. In particular,
modeling of the first (F1) and second (F2) formant, which are
perceptually among the most important parameters of speech,
will deteriorate if LP with atoo small prediction order is used for
wide-band speech.

This study presents a new linear predictive method, which
gives stable all-pole models of wide-band speech with improved
modeling of lowest formants, when the prediction order is
smaler than the sampling frequency in kHz. The proposed
method is described in section 3.1 by first presenting in section 2
three different implementations for conventional LP.

2. BACKGROUND

We will first present shortly three background issues of the new
algorithm: conventiona LP, the Line Spectra Pairs
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decomposition, and symmetric linear prediction. For the sake of
conciseness, we will assume throughout the study that the
prediction order mis even. This is because LP models of odd
order occur seldom in applications and they can be treated, if
needed, similarly.

2.1 Conventional linear prediction

Conventional LP with the prediction order equal to m can be
presented as follows [2]. Given the signal x(n) and the predictor
parameters a (0<ism), denoted by x = [x(n)..x(n-m)]" and a =
[8o...aw] ", respectively, we can express the residual ase(n) = x"a.
The optimal predictor is defined by minimizing the expected
value of the residual energy E[x*(n)] = a'Ra subject to the
constraint a,;=1 or equivalently a'b=1, where b=[10...0]". The
solution can be written as: Ra=c2b, where 62 denotes the energy
of the residud. In the following, we will denote the transfer
function of the predictor given by conventional LP by A(Z).

2.2. L SP (Line Spectral Pairs) decomposition

Given an LP predictor A(Z), the Line Spectral Pair (LSP)
polynomials are defined as [5]: P(2) = A(2) + Z™A(ZY), Q@
= A(2) - Z™AZY). Predictor A(z) can be obtained from the LSP
polynomials simply as. A(2) = 1/2[P(2) + Q(2)].

The LSP decomposition is widely used in quantization of
LP parameters [4]. It is known that zeros of P(2) and Q(2) are
always on the unit circle and, for even values of m, P(2) and Q(2)
have trivia roots located at z=-1 and z=+1, respectively.
Furthermore, if the roots of P(z) and Q(z) interlace, the al-pole
filter /A(2) is stable.

2.3. Symmietric linear prediction

Symmetric linear prediction [6,7] is based on the predictor
polynomial defined as:

B(2) =1+byz 1+ + b0z ™ F 4y 2 M2
-m/2-1

@

m+1 m

+ bm/ 212 + ..b]_Z_ +z

In this structure, a predictor of order m can be defined
from my2 coefficients b; (1<i<sm/2) because of the symmetry of
the impulse response. The optimal predictor is obtained from the

following normal equations:
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m/2-1
Zbk(R(k‘j)+R(k‘m+j))+bm/2R(j‘m/2) o
=1
=-R())-R(j—m),jO[Lm/2]
where autocorrelation is estimated from samples of signa
L-1
x(n), 0<n<L-1, as: R(i) = Z x(n)x(n +i)
n=0
It has been proved that roots of B(z) are always on the unit
circle [6]. Interestingly, there is a close connection (although not
well known) between symmetric LP and the L SP decomposition:
the LSP polynomials (excepting the points z=+/- 1) are, in fact,
LP predictors, which minimize the energy of the prediction error
subject to the constraint that the zeros of the predictor are
restricted to the unit circle (i.e., residua is computed using
symmetric linear prediction) [7].
By summarizing the background issues, we can now
express conventional LP using three different implementations
asshowninFig. 1.
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Fig.1 Different implementations of conventional LP, x(n) and

e(n) denote the input and the residual, respectively.

(8 Conventional implementation with predictor A(z).

(b) Implementation based on the L SP decomposition.

(c) Implementation based on symmetric LP. Transfer functions
of symmetric linear predictors By(z) and By(z) obey the
structure given in Eq. 1 and they are optimized (using Eqg.
2) from x(n) filtered through pre-filters Py(z) and Py(2),

respectively. Transfer functions of prefilters are:
Py(2)=1+z" and P,(z)=1-z".

Normally, conventiona linear prediction is computed by
inverse filtering x(n) using the optimal predictor A(z) (Fig. 1(a)).
With the LSP decomposition, however, it is possible to
implement the same filtering using the parallel structure shown
in Fig. 1(b). This implementation requires more computations
than the one shown in Fig. 1(a). However, it serves as an
intermediate step to the third implementation of conventional LP
shown in Fig. 1(c). In this alternative, the trivial roots of the LSP
polynomials have been separated and, consequently, both P(z)
and Q(z) are expressed as cascades, where two symmetric LP
predictors (with transfer functions denoted by B1(z) and Bx(2))
are defined from x(n) filtered through pre-filters represented by
smple FIRs (1+z* and 1-z* for P(z) and Q(z), respectively).
Hence, the transfer function of the conventional LP predictor
computed by the structure shown in Fig. 1(c) can be expressed as

A(2) = 12 (By(2)P(2) + Bo(2) Po(2) ) ©)
where By(z) and B,(z) are transfer functions of the symmetric
linear predictors computed from x(n) filtered through pre-filters
Pi(2) = 1+z* and Py(2)=1-2".

Implementation of conventional LP using the structure
shown in Fig. 1(c) is, again, inferior to the one shown in Fig.1(a)
in terms of the computational load. However, this interpretation
of conventiona LP makes possible a dtraightforward
modification, which introduces the new a gorithm described next
in section 3.1.

3.METHOD
3.1. Algorithm

When interpreting conventional LP using Eq. 3 it is worth
noticing that the zeros of Py(z) and P,(z) are at z=-1 and z=+1,
respectively, which implies that the amplitude responses of these
two pre-filters at the low and high end of the frequency range are
considerably different. Therefore, the symmetric linear predictor
B1(2) in the upper branch of Fig.1(c) will most likely not locate
any of its roots at the highest frequencies due to extensive
damping of these frequencies by P;(z). (Recall that symmetric
LP is based on the mean square error criterion, which means that
it focuses on the strongest spectral components.) Similarly, roots
of B,(2) are not likely to occur at the lowest part of the frequency
range due to extensive attenuation of these frequencies by P,(2).
If there is a large distance between a root of By(z) (on the unit
circle) and its counterpart of B,(z) (also on the unit circle), the
corresponding root of the fina LP predictor (inside the unit
circle) will be at a distance from the unit circle. (This follows
from properties between LSP roots and LP.). Hence, the spectral
model given by LP will most likely not show a strong resonance
in the frequency range in question.

The proposed method, All-pole modeling with Symmetric
Linear Prediction (ASLP), is based on a straightforward
modification of the structure shown in Fig. 1(c) in order to
obtain all-pole models, which emphasize more the lowest and
highest frequencies of the input signal. The flow graph of ASLP
is shown in Fig. 2. In this method, pre-filters P;(z) and P,(z) of
Fig. 1(c) are replaced by first-order pre-filters, the transfer
functions of which are Pag p1(2) = 1+az" and Pag p2(2) = 1-az
in the lower and upper branch, respectively. If Jal<1, the
amplitude response of the pre-filter Pag p1(z) will introduce
smaller attenuation on the input spectral components at the
highest spectral range than Py(z). Similarly, Pag p2(z) will not
attenuate the lowest frequency range as much as Py(2).
Therefore, we would expect the roots of the symmetric linear
predictors to become closer to each other at the two ends of the
frequency range. Consequently, the final al-pole model should
indicate more prominent resonances especialy at the lower
frequencies of wide-band vowels. Selection of the parameter ain
the current study is described in section 4.

In order to guarantee the minimum phase property of the
final predictor, the two symmetric predictors Bag pi(z) and
BasLp2(z) have to be cascaded with pre-filters Py(z) and P,(2),
respectively. (This can be proved using properties of symmetric
polynomials as shown in [1], but it is beyond the scope of this
article.) Hence, the transfer function of the predictor given by
ASLP can be expressed as:
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Apsp(2) = U2 (Bagpi(2)Py(2) + Basp2(2) PA2)) (4)
where Bag pi(2) and Bas p2(2z) are symmetric linear predictors
defined from x(n) filtered through pre-filters Pag pi(z) and
PasLp2(2), respectively. Pi(z) and P,(z) are transfer functions of
the pre-filters used in the implementation of the conventional LP
with Py(2) = 1+z and P,(2)=1-z%.

It is worth noticing that the order of the predictor
determined with this new approach will be equal to m, because
the highest terms in products Bas_p1(2)P1(2) and Bas p2(2)Px(2)
cancel each other when summed together in Eq. 4. From the
point of view of speech coding, the proposed algorithm is similar
to conventional LP, because it makes possible presenting a
predictor of order mwith 2m roots located on the unit circle. (In
conventional LP, these are the roots of P(z) and Q(2), ie., the
LSPs, while in ASLP these are the roots of the two symmetric
LP polynomials Bas p1(z) and Bas p2(2)). Hence, same amount
of hits is needed in quantization of the mth order predictor in
conventional LPand in ASLP.

12
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Fig.2 Flow graph of the predictor in ASLP, x(n) and eag p(N)
denote the input and residual, respectively. Symmetric linear
predictors Bag pi(z) and Bas pa(2) are defined (using Eq. 2)
from signal x(n) filtered through pre-filters Pagpi(z) and
PasLp2(2), respectively. The ASLP predictor is obtained (Eq. 4)
by cascading the symmetric linear predictors with pre-filters
P.(z) and P,(z). The transfer functions of the pre-filters are:
Pi(2)=1+2", Px(2)=1-2", PasLpa(2)= 1+az ™, Pag po(2)=1-az .

4. EXPERIMENTS

As speech material we recorded vowels (/a/ and /o/) produced by
five femae and five maes subjects. The data were digitized
using a sampling frequency of 22.050 kHz. In the computer, the
sounds were high-pass filtered in order to remove low-frequency
fluctuations picked up in the recordings. The final analysis
bandwidth of the vowels was between 250 Hz and 11.025 kHz.

Both LP and ASLP were computed with the prediction
order m=16 and the frame size of 1000 samples (= approx. 45
ms). The autocorrelation terms were computed using Hamming
windowing. The al-pole models computed by ASLP might
sometimes show resonances that are too narrow (This happens
typically in modeling of the first formant.) To alleviate this
problem, the impulse response of the predictor computed by
ASL P was windowed with the exponential window w(n) = 0.99",
Osnsm.

Comparison of the all-pole spectra were computed using
the Spectral Distortion (SD) [4]. This distortion measure is
defined asfollows:

fLI
+ [120logo Py(f) -10logso Py (] df  (5)
|

where P(f) and P,(f) denote the all-pole spectra to be compared
and f, and f, denote the lower and upper limit, respectively, of
the frequency range to be analyzed. (In computation of SD, the
gains of the all-pole filters were adjusted so that their energies
equaled the energy of the analyzed speech sound.) Using SD, the
parameter a of pre-filters Pag p1(z) and Pas p2(z) in ASLP was
selected as follows. Firstly, ASLP was computed for each vowel
with 20 different values of a, by varying the value of a from 0.05
to 1.0 (i.e, conventional LP) with the step of 0.05. Secondly,
higher order LP analyses (m=26) were computed for al the
vowels. Each 26th order all-pole spectrum was then compared to
the twenty all-pole spectra given by ASLP using SD. In order to
assess the modeling of the lowest two formants, SD was
computed with f=250 Hz and f,=1500 Hz. It was found that the
value of SD was smallest for most of the sounds analyzed when
a equaled 0.45. Hence, we set a=0.45 and this value was kept
constant in all the further experiments.

1

u
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5.RESULTS

ASLP was compared to conventional LP using two approaches.
Firstly, conventional LP analysis of a high prediction order
(m=26) was computed for the vowels /a/ and /o/ produced by a
male speaker. The obtained al-pole filters were then excited by
an impulse train in order to create synthetic vowels with known
formant structures. Five versions of both vowels were produced
by varying the fundamental frequency (FO) from 100 Hz to 300
Hz with the step of 50 Hz. Finally, each synthetic vowel was
analyzed by conventional LP and ASLP of order m=16 and the
obtained all-pole spectra were compared to those of the 26th
order all-pole spectra used in the synthesis of the vowels. This
comparison was again done by using SD as described in section
4. The data obtained are shown in Table 1. Secondly, vowels of
all speakers were analyzed by using conventional LP and ASLP
of order m=16. The performance of LP and ASLP was then
compared by extracting the first and the second formant from
each all-pole spectrum. The formant was identified as a local
maximum in the all-pole spectrum in the frequency range, where
F1 and F2 of the vowels /a/ and /o/ are known to locate.

The SD values computed from the synthetic vowels show
that the 16th order all-pole spectra given by ASLP were closer to
the 26th order LP spectra than those given by the 16th order
conventional LP analysis. As shown by the data of Table 1,
ASLP yielded smaller SD values for all the ten vowels analyzed.
These data reflect especially the more accurate modeling of the
lowest two formants by the ASLP in comparison the
conventional LP analysis of the same prediction order.

Improved modeling of the lowest two formants by ASLP
was also supported by the number of the formants found. Both of
the two al-pole modeling techniques indicated the first formant
in all 20 sounds analyzed, but conventional LP analysis failed to
indicate the second formant in eight cases, whereas ASLP found
both of the lowest two formants for al the sounds analyzed. Fig.
3 shows two examples demonstrating the improved modeling of
the lowest two formants by ASLP.
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Vowel /a/ Vowel /o/
FO SDp SDasip SDp SDasip
100 1.15 0.55 0.88 0.54
150 1.20 0.50 1.50 0.95
200 1.26 0.87 1.26 1.18
250 1.16 0.92 1.69 1.07
300 1.18 0.63 1.53 1.05

Table 1. Spectral distortion (SD, in dB) computed from the
synthetic vowels with different values of the fundamental
frequency (FO, in Hz). SD was computed using Eq. 5 with the
following parameters. Py(f) was the 26th order all-pole spectrum
used in the synthesis of the sounds, P,(f) was the 16th order all-
pole spectrum given either by conventional LP (SD.p) or by
ASLP (SDasg p). The analysis was computed over the frequency
range, where the lowest two formants are located (f=250 Hz and
f,=1500 Hz).
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Fig. 3 Examples of 16th order all-pole spectra computed for the
vowel /a/ by conventional LP (dotted line) and by ASLP (solid
line). Analysis bandwidth was up to 11.025 kHz, but, in order to
make figures clear, spectra are shown only up to 5 kHz. Upper
graph: male speaker, lower graph: female speaker.
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6. SUMMARY
We have presented a new linear predictive technique that gives
stable all-pole filters to model wide-band speech spectra. The
method is based on an implementation of a linear predictor as a
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paralel structure, where two symmetric linear predictors are
determined by filtering the input through two pre-filters. By
applying prefilters different from those used in the
corresponding implementation of conventional LP, the proposed
method makes possible emphasizing especially the lowest
frequencies of wide-band speech prior to the computation of the
symmetric linear predictors. Consequently, the poles of the all-
pole filter obtained are more likely to locate at low frequencies
than in conventional LP. This phenomenon was corroborated by
the experiments which showed that the proposed ASLP method
models the first and second formant of wide-band vowels more
accurately then conventional LP of the same prediction order.
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