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ABSTRACT

Frequency domain models for the vocal tract with
distributed sources are introduced. Pressure and vol-
ume velocity distributed sources are modeled within
incremental lossy cylindrical pipes in a manner similar
to that of modeling electrical components. Equations
for transmission matrices of uniform-area vocal tract
scections with distributed sources are derived. Transfer
functions for pressure and volume velocity at various
segments of the vocal tract are computed. Comparison
of distributed source models with point source models
reveal several improvements on the traditional lumped
source modeling method and shows that the effects of
the finite impedence constriction and back cavity can-
not be adequately modeled using point sources. The
distributed source vocal tract framework is important
for building articulatory and acoustic models for frica-
tive sounds and other phoneme categories. This paper
provides such a mathematical framework for the first
time.

1. INTRODUCTION

Turbulence noise generated in the production of frica-
tives has traditionally being modeled as a point pres-
sure source some distance anterior to the constriction
[1]. Other representations have included monopole vol-
ume velocity source, dipole flow source, and multiple
point pressure sources [2].

Experimental studies indicate that the noise source
is in fact distributed over some distance anterior to
the constriction [3]. Lack of a mathematical frame-
work for distributed sources has prevented from the
realization of such a configuration. This paper devel-
ops a mathematical model for distributed pressure and
flow sources in several stages. Section 2 derives dis-
tributed models for an incremental section of the vocal
tract. Section 3 presents transfer functions for point
source systems. Section 4 discusses the transfer func-
tions for distributed sources. Section 5 compares dis-
tributed modeling to point source modeling for a vocal
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Fig. 1. Incremental section for distributed pressure.
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Fig. 2. Incremental section for distributed flow.

tract configuration of a fricative /s/. Tt is shown that
point source models are inadequate in representing an
accurate accoustic model.

2. INCREMENTAL MODELS

The vocal tract is considered a contiguous lossy tube
consisting of air surrounded by tissues such as the tongue,
cheeks, pharyngeal wall, hard palate, and terminated
by the glottis and radiation load at the mouth or nos-
trils. This three dimensional system is represented us-
ing one-dimensional acoustic wave equations for fre-
quencies below 4000 Hz. The tube may be modeled as
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a concatenation of incremental lossy sections of uniform
properties.

Figures 1 and 2 illustrate the proposed incremen-
tal section models in the frequency domain with dis-
tributed pressure source and flow source respectively.
The acoustic pressure and volume velocity are E{x, s)
and I(z, s) at distance = from the glottis and complex
frequency s.

The passive properties of the incremental scction
are incorporated in the cross impedance per unit length,
Z(x,s), and shunt admittance per unit length, Y (z, s)

The input/output relations for a uniform section
of length [, and uniformly distributed volume velocity
source Q(1,8) = Qols)/l, are similar to those for the
distributed pressure source in the previous subsection,
with the same p, q, 7, $; Qo replacing Vo; and e = Zp{1—
cosh{~0)}/(y1), f = sinh(~yl)/(~1).

3. POINT SOURCE SYSTEM FUNCTION

We present the transfer function equations for the lumped
(point) source models represented by the system conig-

[4]. The propogation constant, 7, characteristic impedance, uration of Figure 3, to provide comparison with the

Zy, and characteristic admittance, Yy, are given by
Yy=VIY, 70 =\/Z]Y., Yo =\ /Y/Z.

We propose a frequency domain model for an in-
cremental section with distributed pressure source and
flow source in the next two subsections.

2.1. Pressure Source

The distributed pressure source is modeled as a pres-
sure increase of dV (z, s) across the incremental section
of length dz, as illustrated in Figure 1. The differential
equations are given below, where V(x, s) is pressure per
unit length:

V(x, s)dz
(5 215 3]s

The solution to the equation for a uniform (non-
incremental) section of length I, uniform distribution
of pressure source V(I, $) = Vo (s)/I, input pressure and
volume velocity, F1 and I;, and output pressure and
volume velocity Fs and Is is as follows.

FE . P oq F e
n] = Rl ]
p = cosh(yl), g = —Zpsinh(yl), r = —Yp sinh(~l),

s = cosh(vl), e sinh(y)/(v1), and f = Yo{l —
cosh(yD) }/(¥1).

(]

(M)

2.2. Flow Source

The distributed flow source is modeled as an injection
of volume velocity dQ(z, s) = Q(x, s)dz into the incre-
mental section of length dx, as illustrated in Figure 2.
The differential cquations are the same as that of the
pressure source in the previous section, with Q(z,s)
replacing V(z, s), and a source multiplier of [0 1]7 in-
stead of [1 0]7

results of the distributed models derived in the next
section. The diamond represents the part of the sys-
tem consisting of the point source with an amplitude Vp
for a pressure source and amplitude Qg for a volume
velocity source. The rectangle represents the passive
part of the system governed by the following equation,
and represents the relationship for a concatenation of
uniform (non-incremental) tubes.

Pout . a b Pin
Uout N ¢ d Uin
3.1. Pressure Source

The transfer functions for a pressure source with infi-
nite output impedence are as follows.

D = (d—cZ)
Pin/Vo = d/D
Pout/Vo = 1/D
Un/Vo = —¢/D
Uput/Vo = 0/D
Zin = d/(—c)

The system functions for an arbitrary output impedance

are given below.

D = [(aZy—0b)— Z(cZp — d)]
Pin/Vo = (Zed—1b)/D
Poui/Vo = Z./D
Un/Vo = (a— Zec)/D
Uput/Vo = 1/D
Zin = (Zed—1)/(a— Zcc)

3.2. Flow Source

The transfer functions for a volume velocity source with
input admittance, Y3, and Z, = oo are described below.
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Fig. 3. System model for point and distibuted source.

D (Yod —¢)
Pin/Qo = d/D
Pout/Qo = 1/D
Uin/Qo = —¢/D
Uout/Qo = 0/D
Zin = df(—c¢)

The equations for a finite output impedance arc
given by:

D = [(a=Yb) = Z(c—Ypd)]
Pm/QO - (Zed - b)/D
Pout/Qo = Zc/D
Uin/Qo = (a—Z.c)/D
Uout/Qo = 1/D
Zin = (Zed—0)/(a— Zcc)

4. DISTRIBUTED SOURCE SYSTEM FUNCTTON

The transfer functions for distributed pressure and vol-
ume velocity sources arc derived in this section by solv-
ing circuit equations resulting from the vocal tract sys-
tem configuration in Figure 3 and utilizing the relations
developed in section 2.

4.1. Pressure Source

The formulas for a distributed pressure source system
with the load modeled as infinite impedance are:

N = [(se—fq)+ Zo(fp—re)]
D = [(eq+ds)— Zp(ep + dr)]
U /Vo = —(ce+df)/D
PVo = Zicet df)/D

Pin/Vo dN/D
Un/Vo = —¢N/D
Pout/Vo = N/D
Uput/Vo = 0/D
Zin = df(—c¢)

The cquations

I'(‘,Sllltillg from a pressure source for

the general case are given below:

N = [(se— fo)+ Zolfp—re)]
D = [Zy(ap+br) — (aq + bs)]
=7 Zy(ep + dr) — (cq+ ds))
U/Vo = (e +bf) — Zelce +df)}/D
PVe = —Zyl(ae+bf) — Za(ce +df)}/D
Pn/Vo = (Zed—B)N/D
Un/Vo = (a—Z.c)N/D
Uout/Vo = N/D
Pout/Vo = (ZeN)/D
Zin = (Zed—=0)/(a— Z.)

4.2. Flow Source

The relationships
a distributed flow

N [(pf — er) + Yi(es — qf)]
D = [Yy(cqg+ds)— (cp+dr))
Pi/Qo = (ce+df)/D
U/Qo = Yilee tdf)/D
Pin/Qo = dN/D
Un/Qo = —¢N/D
Pout/Qo N/D
Uout/Qo = 0/D
Zin = dJf(—c)

The general equations for a distributed volume ve-

locity source are:

for the infinite load impedance with

source are:

N = [(pf —er)+Yy(es—qf)]
D = [lap+br)—Yi(aq+ bs))
—Z|(ep +dr) = Yy (cq + ds))
Pi/Qo = [Zc(ce+df)— (ae+0bf)]/D
Ui/Qo = =Yu[Ze(ce +df) — (ae+bf)]/D
Pin/Qo = (Zed—b)N/D
Unn/Qo = (a— Z)N/D
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Qutput spectrum for distributed and point source at constriction
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Fig. 4. Output spectrum for distributed and point

source at finite impedance constriction.

Uom‘/QO = N/D
Pout/QO - (ZBN)/D
Zin = (Zed—W)/(a Zc)

5. EXAMPLE

The vocal tract configuration for the fricative conso-
nant /s/ in the context of the vowel /a/ is used to
compare the distributed source model with the point
source model. The shape can be approximated by con-
catenation of three uniform arca tubes: back cavity,
constriction, and front cavity [5].

The back cavity, residing immediately in front of the
glottis has an area of 4.0cm?, and length 13.5¢m. The
constriction in front of the back cavity has a length of
lem and arca of 0.1em?. The front cavity has a length
of 2.5¢m and an arca of 1em?. The glottis is modeled
as an orifice of length lem and arca 0.1em?, the impe-
dence of the glottis and the constriction are computed
using traditional methods [6]. Similarly existing mod-
els for the tube passive elements and losses due to wall
vibration are used [7].

Figure 4 shows the spectrum of output volume ve-
locity for a pressure source at the constriction. The
solid line is for a source distributed uniformly across
2¢m of the front cavity, and the dashed line is for a
point source immediately anterior to the constriction.
The point source model predicts the resonances and
anti-resonances properly but is inadequate in modeling
the spectral shape and low frequency behavior.

Figure 5 illustrates the spectrum with a point pres-
sure source 0.5¢m anterior to the constriction. The
solid line is for a finite impedance constriction with

Qutput spectrum with point source 0.5 cm anterior to constriction
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Fig. 5. Output spectrum for point source 0.5 cm ante-
rior to constriction.

a back cavity, and the dashed line is for an infinite
impedance constriction. The predictions for the for-
mants / anti-formants and the spectral shape in the fi-
nite case are substantially different from the distributed
model. The infinite impedance model is inaccurate for
low frequencies and the spectral shape, but predicts the
resonant frequency properly.

Thus, incorporation of the constriction and back
cavity necessitates the use of distributed source models.

6. REFERENCES

[1] G. Fant, Acoustic Theory of Speech Production.
Mouton, 1960.

[2] K. Stevens, “Airflow and turbulence noise for frica-
tive and stop consonants,” Journal of the Acoustical
Society of America, vol. 50, pp. 1180-1192, 1971.

[3] M. Landahl, “Wave mechanics of boundary layer
turbulence and noise,” Journal of the Acoustical
Society of America, vol. 57, pp. 824-831, 1975.

[4] J. L. Flanagan, Speech Analysis Synthesis and Per-
ception. Springer Verlag, 1972.

[5] P. Badin, “Fricative consonants: Acoustic and x-
ray measurements,” Journal of Phonetics, vol. 19,

pp. 397-408, 1991.

[6] T. Ananthapadmanabha and G. Fant, “Calculation
of tue glottal flow and its components,” Speech
Communication, vol. 1, pp. 167 184, 1982.

[7] S. Maeda, “A digital simulation method of the
vocal-tract system,” Speech Communication, vol. 1,

pp. 199-229, 1982.

I-151




