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ABSTRACT

A hybrid acoustic model of Partly Hidden Markov Model
(PHMM) and HMM is proposed.

PHMM was proposed in our previous work to deal with
the complicated tempora changes of acoustic features. It
can realize the observation dependent behaviors in both ob-
servations and state transitions. It achieved good perfor-
mance but some errors with different trend from HMM still
remained.

In this paper, we designed a new acoustic model on the
basis of PHMM, in which the observation and state tran-
sition probabilities are defined by the geometric means of
PHMM-based ones and HMM-based ones. In this frame-
work, if a word hypothesis is given a low score by either
PHMM or HMM, it almost loses possibilities to be a proba-
ble candidate. Since many errors are due to the high-scores
of incorrect categories rather than the low-score of the cor-

rect category, this property contributed to reduce errors. More-

over, the proposed model is more stable than PHMM be-
cause the higher order statistics of PHMM, which is gen-
erally accurate but sometimes less reliable, is smoothed by
the lower order statistics of HMM, which is not so accurate
but robust.

Experimental results showed the effectiveness of pro-
posed model: it reduced the word errors by 25% compared
with HMM.

1. INTRODUCTION

Many efforts have been made toward better acoustic mod-
els for speech recognition [1] [2] [3] [4] [5] [6] [7]. We
also proposed Partly Hidden Markov Model (PHMM) aim-
ing at treating the more complicated temporal changes of
feature parameters. The previous papers reveaded the ef-
fectiveness of PHMM for the modeling of speech and also
gestures [8] [9]. In the framework of PHMM, the pair of
the hidden state (H-state) and the observable state (O-state)
determines the stochastic phenomena of not only current
observations but also next state transitions. The existence
of O-state realizes the observation-dependent behavior (not
state-dependent piecewise-stationary behavior) in both ob-
servations and state transitions.
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PHMM achieved better performancethan HMM but some
errorswith different trend from HMM 4till remained. Inthis
paper, we attempt to improve the performance of PHMM by
utilizing this different trend of errorsin PHMM and HMM.

Many errorsin general recognizers, which usually adopt
maximum likelihood (ML) estimation, are due to the high-
scores of incorrect categories rather than the low-score of
the correct category. The score of correct category is prop-
erly high even if the case of errors. The error arises when
some scores of incorrect categories are unduly high. This
is quite natural in ML estimation paradigm because model
parameters are estimated so as to assure the high score for
the data of the correct category.

The fact above implies that it is effective to use many
recognizerswith different trend of errorsand regard theword
hypothesis as the answer only if al recognizers give high
scoresto the hypothesis. In this paper, we propose anew hy-
brid acoustic model named Smoothed Partly Hidden Markov
Models (SPHMM) based on PHMM and HMM. In the pro-
posed model, the observation and the state transition prob-
abilities are defined by geometric mean of PHMM-based
ones and HMM-based ones.

This framework is also expected to have the following
merit. PHMM is sometimes less reliable without sufficient
training data, since the model uses higher order statistics
than HMM. In this sense, the proposed model ismore stable
than PHMM because the higher order statistics of PHMM,
which is generally accurate but sometimes less reliable, is
smoothed by the lower order statistics of HMM, which is
not so accurate but robust.

In the next section, PHMM is briefly surveyed as the
base of the proposal in this paper. In section 3, thebasic idea
and the formulation of the new stochastic model, SPHMM,
is proposed. Finaly in section 4, the evaluation results for
continuous speech of the proposed model are shown.

2. PARTLY HIDDEN MARKOV MODEL

In the proposed model, the observation probability and the
state transition probability are conditioned by the two states
sh, s¢ asfollows:
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observation probability
transition probability

We call sl H-state (Hidden state). And we call s¢ O-
state (Observable state). We call this model “Partly Hidden
Markov Modedl (PHMM).”

If both of these states, s/, s¢, are uniquely determined
from past observations, this model is equivalent to Markov
Model. If both of them are stochastically determined, it is
equivalent to Hidden Markov Model.

In PHMM, different combination of H-state and O-state
are used to determine the observation probability and the
state transition probability. In order to realize this frame-
work, we introduce two kinds of observable states, OO-
State (s§°) and OS-State (s9°). Here, s¢° is used to de-
termine the observation probability, and s¢* is used to de-
termine the state transition one. The state-observation de-
pendency graph in this framework is shown in Fig. 1. In
PHMM, s¢° and s¢¢ are observable from any past observa-
tions.
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Fig. 1. Dependency of the observation sequence and the
state transition sequence in PHMM. Solid lines express
probabilistic dependencies and dotted lines express deter-
ministic dependencies. s{° isobservableonly from N frame
previous observation and s¢° is observable only from last
observation.

In this paper, we adopt the framework, in which s{° is
observable only from N frame previous observation z;— n
and s9° is observable only from last observation z;_;. The
simplified dependency graph of PHMM using the above re-
lation s{° = x4, s§° = x4 iSshownin Fig. 2.
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Fig. 2. The simplified dependency graph of PHMM using
therelation s{° = z;_ N, s7° = ©4_1.

HMM can deal with only the state-dependent piecewise-
stationary behavior in both observations and state transi-
tions. While, in PHMM, the pair of the hidden state and

the observable state determines the stochastic phenomena
of not only current observations but also next state transi-
tions. By introducing O-state, the observation-dependent
behavior is realized in both observations and state transi-
tions. Therefore, the model can deal with more complicated
process than piecewise stationary. In the PHMM, the prob-

ability that the observation sequence z1, x5, - - - , £ COMeES
from the mode! with the H-state transition s?, s% - .- | sk is
defined by the following equation.
P5 = P””($17$27"'7$T73?7Sga"'73}%‘73(1)7837'”78%)
= Pi(st,a-n+1)Pr(z1]st, oo n41)
T-1
T Pr(stalst, wemn) Pr(@esa|sipr, @e-n41)
t=1
= P(s)Pr(x—n1,21s7)
T-1
_ H P, (st1|st) Pr (st si1)
Pl Pr(@i-a]s})
Py (@-n1, Topa|sty) o)
Pr(xt—N+1|5?+1)
P.(z1,z2,--- ,zy) can be obtained by summing up Eq.(1)

for all possible combinations of H-statetransition s, s% - - -
From the above discussion, it is found that PHMM can
be expressed by following 6 parameters.
o= Pr(s}f = Sf) :
the probability that the initial H-state is .
aij = Pr(sty = S}lst = SI')
the probability that the next H-state is Sf in the case that
the current H-state is S?.
bi($t71) = PT($t71|S,’; = Szh) :
the probability that the last observation is ;1 in the case
that the current H-state is S?.
cij(we—1) = Pr(ze-a|st = ST, 5140 = S})
the probability that the last observation is ;1 in the case
that the current H-state is S} and the next H-state is 5.
di(ith) = PT($t7N|S? = S,Z-L) .
the probability that the V frames previous observation is
z:_ n inthe case that the current H-state is S%.
ej(xi—n, ) = Pr(ith,$t|S,’;L = S]h) :
the probability that the current observation is z; and the v
frames previous observation is z:— n in the case that the
current H-state is .

3. SPHMM: AHYBRID MODEL OF PHMM AND
HMM

In the framework of maximum likelihood estimation, the
model parameters are estimated so as to assure the high
score for all data of the correct category. Since preciseness
of the model expression cannot be perfect, a slight differ-
ence occurs between the area of feature parameter where
the model gives high score (high-scored-area) and the area
where the data of correct category is actually distributed
(correct-category-area). So, the model gives unfairly high
score to some data of incorrect category also. Thisis one of
the substantial causes of recognition errors.
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Fig. 3. The conceptua image of effectiveness of Hybrid
Model.

However, the areas with unfairly high score (unfairly-
high-scored-area) are dependent on the recognizers. Thus,
asshowninFig.3, it isthought that we can remove unfairly-
high-scored-areas and extract the closer areato the correct-
category-area by extracting the common area of each high-
scored-area given by each recognizer.

From above point of view, we propose integration of the
state transition and the observation probabilities of PHMM
and those of HMM.

We utilize geometric mean to extract the common area
of high-scored-areas. The value of geometric mean remains
high only if the all values are high. By replacing the ob-
servation and the state transition probabilities of PHMM by
the geometric mean of those of PHMM and those of HMM,
Eq.(1) becomes,

P, = Pu(s1)- Pr(z—ni1,@is))

T-1
H {(PT(5?+1|5?)PT($1£—1|5?;S?Jrl))wt

Py (ze-1]sy)

t=1

Pr(shy sty L (Pr(xt—N+17$t+1|S?+1))w°
e Pr(xt—N+1|5?+1)

(l_wo)
Po(esa]slsy) } @

We call this model “Smoothed Partly-Hidden Markov
Model.” In Eq.(2), w; is a smoothing weight of the state
transition probability and w, isthat of the observation prob-
ability. By changing these smoothing weights w; and w,,
various models can be represented. Those are shown in Ta-
ble 1.

If parameters of PHMM and HMM are estimated inde-
pendently before they are integrated, it means that the pa-
rameter estimation of SPHMM is performed based on the
assumption that the state transitions of PHMM and HMM

Table 1. The relation between smoothing weight and mod-
els.

Wy w, Model

0 0 HMM

0 1 conditional HMM

1 1 PHMM
O<w;<1|0<w,<1 SPHMM

are differ. The formulation of EQ.(2) is requiring to inte-
grate the observation and the state transition probability of
PHMM and those of HMM mutually. With such a method,
the optimality as a parameter of the stochastic model for-
mulized by the Eq.(2) is not assured. Thus, we let smooth-
ing weight w; and w, in EQ.(2) be aconstant, and training of
SPHMM is performed by applying EM algorithm for every
smoothing weight.

This integration is also interesting from the view point
of gaining the reliability of model. In HMM, the observa-
tion probability and the state transition onein each state are
independent of the previous observations. Whilein PHMM,
those are represented by conditional probability of the pre-
vious observations. Because of this complexity of the struc-
ture, PHMM is sometimes less reliable without sufficient
training data. The hybrid structure proposed here can be re-
garded as the smoothing of higher statisticsin PHMM with
the lower order statisticsin HMM. Thisissimilar to the well
known example that the trigram language model smoothed
with bigram performs better than simple trigram.

4. CONTINUOUS SPEECH RECOGNITION
EXPERIMENT

In order to evaluate the effectiveness of SPHMM for speech
recognition, continuous speech recognition experiment was
done.

4.1. Experimental Setup

Training data and test data are represented by 12 MFCCs,
power, delta MFCCs and delta power, sampled every 10ms.

The acoustic models we used are trained with 20414
sentences from the ASJ speech database of phonetically bal-
anced sentences (ASJ-PB) and newspaper article sentences
(ASFINAS)[11]. We adopted the demi-syllable models,
which consist of the on-glide and the stationary parts (no off
glide), because PHMM is excellent at expressing the transi-
tional part. The distribution function of each statein models
is represented by anormal distribution with full covariance.

We use 3-gram language model s, which were constructed
using the lexicon of 20K vocabulary size. The vocabulary
set consists of the most frequent words in Mainichi newspa-
per articles from Jan. 1991 to Sep. 1994.
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Fig. 4. Word accuracy of HMM, PHMM and SPHMM.

For the evaluation, we used 100 utterances of ASFINAS
speech database which are not used for training of the acous-
tic models. We picked up 20 speakers and 5 utterances per
speaker.

Since the ASJ speech database has no phonetic labels,
we automatically labeled ASJ data using HMM and used
them for the training of initial parameters. Then, the fina
parameters of models are obtained by repeating re-estimation
by EM algorithm. The recognition engine we used for the
evaluation performs one-pass search using word 3-gram.
A frame synchronous beam search is performed in search
algorithm using the tree-structured lexicon which makes a
phoneme the unit of the node.

4.2. Experimental Results

We evaluate the effectiveness of smoothing only of the ob-
servation probability of PHMM, because the performance
of the state transition probability of PHMM is sufficient and
effectiveness of smoothing is not appeared. Here, frame in-
tervals of inter-frame observation correlation (given by NV
in Eq.(1)) of PHMM are fixed to the value with which the
model gave the best score. From the preliminary experi-
ments, PHMM gives the best score (95.5%) when the frame
interval equals 7 frames.

Fig. 4 shows the word accuracy of HMM, PHMM, and
SPHMM. Fig. 5 shows the error reduction rate of SPHMM
compared with HMM and PHMM.

Here, SPHMM givesthe best score (96.2%) when smooth-
ing weight w, equals 0.2. This is 25% reduction in er-
ror rate compared with HMM (94.9%). This improvement
represents the effectiveness of conditioning the state transi-
tion and the observation probabilities by the previous fea
ture observations. SPHMM reduced errors by 12% com-
pared with PHMM (95.5%). This improvement represents
the effectiveness of integrating the observation probability
of PHMM and those of HMM.
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Fig. 5. Error reduction rate of SPHMM.

5. CONCLUSION

We proposed Smoothed Partly-Hidden Markov Model (SPHMM),

in which probabilities of PHMM are smoothed with those of
HMM, and evaluated effectiveness of SPHMM using con-
tinuous speech recognition. The performance wasimproved
by smoothing of observation probabilities of PHMM and
those of HMM. SPHMM reduced word error by 25% com-
pared with HMM.

In the next stage, we would like to apply SPHMM to the
spontaneous speech.
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