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ABSTRACT

A modelingapproachis presentedhat incorporategdiscrimina-
tive training procedureswithin sggmentalMinimum Bayes-Risk
decoding(SMBR). SMBR is usedto segmentlatticesproduced
by a generalautomaticspeectrecognition(ASR) systeminto se-
guence®f separatelecisionproblemsanvolving smallsetsof con-
fusablewords. Acoustic modelsspecializedto discriminatebe-
tweenthecompetingvordsin theseclassesrethenappliedin sub-
sequenSMBR rescoringpasses Refinemenbf the searchspace
thatallows the useof specializeddiscriminatve modelsis shavn

to be animprovementover rescoringwith corventionallytrained
discriminatie models.

1. INTRODUCTION

The limitations of the Maximum Likelihood Estimation(MLE)
proceduresvidely usedin HiddenMarkov Model (HMM) speech
recognitionsystemsarewell knovn. Oneof the mostcommonly
cited problemsis the violation of the modelcorrectnessissump-
tion. Parameterizednodelsobtainedvia MLE canbe emploed
optimallyfor detectiorandclassificatiorif thedataencountereds
generatedby somedistribution from the modelfamily. The prob-
lem arisesdueto the variousconditionalindependencassump-
tions thatunderlieHMM models. Given theseassumptionsit is
unlikely that the processeshat actually generatespeechcan be
closelymodeledoy HMMs. ThereforeML estimationof HMMs
cannotberelieduponto yield modelsthatareoptimumfor ASR.

As analternatve to relying ontheasymptotidoehaior of ML
estimatiorunderthemodelcorrectnesassumptiontherearemod-
ified estimationand decodingprocedureghat directly attemptto
optimize ASR performanceriteria. This paperdescribesa mod-
eling frameavork that unifiesand extendstwo suchmodelingap-
proachesMaximum Mutual Information (MMI) estimationand
Minimum BayesRisk (MBR) decoding.

2. DISCRIMINATIVE ESTIMATION AND DECODING

Maximum Mutual Information estimation[1, 2] attemptsto im-
prove the likelihood of the correctsentencénypothesiggiven the
acousticevidence.Givenalabeledtraining setof word sequences
andacousticobserations{W, A}, MMI iteratively optimizesthe
modelparameter8 to increaseP (W | A; 6) over W, whichis usu-
ally takento bethesetof all word stringsallowedin thelanguage.
Thistrainingobjective is directly relatedto reducingthe Sentence
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Error Rateonthe acoustidrainingset. Thisimmediatelysuggests
thatbeyondthe usualdifficultiesof ensuringhatperformanceb-
tainedin training generalizeso the testset,theremayalsobeis-
suesin generalizatiorunderdifferentperformanceriteria. While
Sentencé&rror Rateis in somesenseheultimateperformanceri-
terion,theremaybevaluein estimationprocedureshatminimize
othercriteria,suchasWord Error Rate[3, 4].

Similar issuesarisein the maximuma-posteriori(MAP) de-
codingcriterionimplementedy the Viterbi procedure MAP de-
coding, which given an utteranced producesa sentencéiypoth-
esisaccordingto W = argmaxy, .y P(W|A), is the optimum
decodingcriterionwhenperformancas measuredinderthe Sen-
tenceError Ratecriterion. However for othercriteria, againsuch
asWord Error Rate otherdecodingschemesnaybebetter

2.1. Segmental Minimum Bayes-Risk Decoders

With this motivation, Minimum Bayes-Riskdecoderd5, 6] at-
temptto find the sentencéypothesisvith theleastexpectederror
undera given taskspecificlossfunction. If (W, W') is the loss
function betweenword stringsW and W', the MBR recognizer
seekgheoptimalhypothesisas

W = argmin Y (W, W')P(W|A). 1)
W'ew Wew

Prior work in MBR decodinghastreatedit essentiallyasa large
searchproblemin which W are N-Bestlists or latticesthat in-
corporateP (W |A) asa posteriordistribution on word stringsob-
tainedusingan HMM acousticmodel and an N-gram language
model[5, 6].

SgymentalMinimum BayesRisk decodingvasdeveloped[7]
to addresgshe MBR searchproblemover very large lattices. We
assumehateachword stringW € W is sggmentednto N sub-
stringsof zeroor morewords Wi, ... ,Wx. Sinceeachlattice
pathis aword stringW € W, this segmentsthe original lattice
into N sggmentsetsW;, 1 = 1,2, ..., N. Givena specificlattice
seggmentationthe MBR hypothesisW canthenbe obtainedasa
sequencef independendecisionrules

Wi = argmin » (W, W')P;(W|A) )
w'ew; Wew;

where W is the concatenatiorof W;, i = {1,2,...,N}, from
which theterm SegmentalMinimum BayesRisk follows.
Therearea variety of possiblesggmentationschemes.Here
we sggmentthelatticeword stringsby aligningeachpathin thelat-
ticetotheMAP sentencéiypothesig7, 8]. giventheMAP hypoth-
esisW, we seggmentthe pathsin the latticeto attainl(W, W') =
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SN W(Wi, WY). Thissegmentatiorprocedurés performeccare-
fully soasto retainthe structureof the original lattice in regions
of low confidencq8].

2.1.1. Seach SpaceRefinements

This procedurecan be usedboth to identify potentialerrorsin

the MAP hypothesisand to derive a newv searchspacefor the
subsequentdecodingpasses.For eachutterancehatis to be de-
coded,we definea new searchspacecalleda pinched attice, by

concatenatinghe segmentsetsfound by lattice cutting: W =

Wi --- Wn. In regionsof low confidencethe searchspacecon-
tainsportionsof the MAP hypothesislongwith confusablealter

natives.n regionsof highconfidencethesearctspacds restricted
to follow the MAP hypothesistself. Becausehe structureof the
original lattice is retainedwhen&er we wantto consideralterna-
tivesto the MAP hypothesiswe can performacousticrescoring
over this pinchedlattice.

2.1.2. RefinedDiscriminativeTraining for SMBRDecoding

Wehavetheopportunityto trainandapplyextremelyrefinedacous-
tic modelstrainedspecificallyto resole the errorsencountereéh
thetestset.In previousapproacheto MBR, P;(W|A) wasfound
via alatticeforward-backvardprocedurd?] usingfixedlikelihood
scoreobtainedrom theoriginal ASR system Evenif this system
wastrainedusingMMI, it is still intendedo discriminatebetween
all sentencem thelanguagehatmightbeuttered.

Ratherthanderive theseposteriordrom generabcoustianod-
els, our goalis to estimateeachP; (W |A) sothatit is optimized
for the distinct recognitionproblemto which it will be applied:
P;(W|A) will betrainedonly to discriminateword sequencem
W;. Therearetwo problemsherethatarise. Thefirst is the ap-
propriatetraining criterion. The secondss to find relevant train-
ing data. SMBR allows us to addresgshem simultaneously We
generatdatticeson the acoustictraining set, and performlattice
segmentatiorwith respecto thetruetranscription.Thisidentifies
patternsof recognitionerrorswithin thetrainingset. Givena par
ticular error patternfoundin thetestset,we canusetrainingdata
associatedvith similar errorsto train a discriminatve model.

In summaryour goalis to develop a joint estimationand de-
codingprocedurehatimprovesover MMI. After aninitial MAP
decodingpasswith MMI models for eachutteranceve uselattice
cuttingto producepinchedlatticesthat identify the segmentsets
thatarelikely to containrecognitionerrors. We thenturn to the
training setto find all relevantdatathatcanbe usedto train mod-
els P;(W|A) to pick the correcthypothesidrom thesesggment
sets.We finally applythesemodelsin a full acousticrescoringof
the pinchedlattice by applyingeachP;(W|A) in decodingover
theappropriatesegmentset.

3. MMI BASELINE PERFORMANCE

To develop the basic estimationand decodingmechanismsye
presentresultson the OGI Alpha-Digitstask[9]. Thisis afairly
challengingsmall vocalulary task on which we still encountera
relatively high baselineWER (approx. 10%). This ensureghat
we have a significantnumberof errorsto identify andcorrect.We
begin by presentinghe MMI baselinesystemand analyzingits
performancendtheerrorsit males.

| Errorpairs || & [ & || Errorpairs || & | &® |
F+S 58 | 60 6. 8+H 17 | 34
V+Z 54 42 7. A+8 10 40
M+N 45 35 8. L+OH 12 33
P+T 32 44 9. B+D 16 23
B+V 40 29 10. C+V 16 17

arwNE

Table 1. DominantConfusionPairsin UnconstrainedRecognition
afterThreeMMI Iterations.

Thebaselinesystemis built usingthe HTK Toolkit [10]. The
datais parameterizeas 13 elementMFCC vectorswith first and
secondorderdifferences Thetraining setconsistsof 46,730ut-
terances. The baselinemaximum likelihood modelscontain 12
mixturesper state estimatedaccordingto the usualHTK training
procedure Startingfrom thesemodels,severaliterationsof MMI
estimationwere performed. The AT&T Large Vocalulary De-
coder[11] wasusedto generatdatticesfor thetrainingsetwhere
arethentransformednto word posteriordasednthelatticetotal
acousticscore.MMI is thenperformedattheword level usingthe
word time boundariesaken from thelattices.Thetestsetconsists
of 3,112utterancesTheAlpha-Digitstaskdoesnothave a specific
languagemodel,thusrecognitionbothfor MMI lattice generation
andtestsetdecodings performedusinganunweightedvord loop
over the vocalulary. Table3, Row 1 shawvs that significantim-
provementover the baselinecanbe obtainedby MMI: theinitial
ML performancef 10.7%WER s reducedo 9.07%.

We now look closelyatthe changesn errorsasMMI training
proceeds. Table 1 presentghe mostfrequently confusedwords
(‘confusionpairs) obsered afterthreeiterationsof MMI estima-
tion. lteration3 is choserbecaus®MI performances nearlyop-
timal atthatpoint. We takulateerrorsover eachwordin eachclass.
The notationégs)(l) = 58 indicatesthatthereare58 instancesn
whichFis incorrectlyrecognizechss,andags)(l) = 60 indicates
thatthereare17 instancesn which Sis incorrectlyrecognizedas
F. The superscriptndicateshe MMI iteration.

As indicatedin Table3, overall WER doesdecreasas MMI
trainingprogresses-However, whenthe confusionpairsaremoni-
toredindividually, it becomespparenthattheimprovements not
uniform. Figurel tracksthe changen confusionpair countsrela-
tive to performancet MMI iteration2. Thetop plotindicateshat
c((f’) (1) (the numberof timesF is misrecognizeds S) decreases
by 18in going from the secondo third MMI iteration,andby 30
in thefourth iteration. However, c§4)(1) — c§2)(1) is positive and
larger than¢{® (1) — ¢{*) (1) which is also positive, which indi-
catesthatthe improved recognitionof F comesat the expenseof
errorsin therecognitionof S. Ideally, all thesechangeshouldbe
negative. However, that behaior is not guaranteedy the MMI
training procedurewhich is freeto introduceperformancelegra-
dationover individual confusionpairssolong asthe overall sen-
tenceposteriorscoreimproves.

4. CONFUSION PAIRSVIA LATTICE CUTTING

Theidentificationof ASRerrorsthroughconfidenceneasurements
is well-established12, 13], andour training approachbuilds on
this work. We needto establisHirst thatlattice cutting finds seg-
mentsetsthataresimilarto thedominantconfusionpairsobsered
in MMI decoding.We alsoneedto establishthatthe sggmentsets
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Fig. 1. ConfusionPair Errorsin MMI Decoding.Left ¢® (k) —
¢ (k); Right ¥ (k) — e? (k). The abscissé is the confu-
sipn pair index givenin Tablel. For eachconfusionpai'r index,
el (k) — 2{? (k) is givenin the left (black) bar and z{” (k) —
¥ (k) is givenin theright (white) bar

identifiedin thetestsetarealsofound consistentlyin thetraining
set. If thesetwo conditionshold, thereis the possibility of train-
ing discriminatze modelson the segmentsetsin thetrainingdata
andapplyingthemto the testdatato resole the dominanterrors
remainingafterMMI training.

We establishthe first point by comparingthe dominantMMI
confusionpairsin Table1 with the testsetsegmentsetsfoundin
Table 2 by lattice cutting. Thereis good agreemenamongthe
top eight setsidentified in eachcase,after which thereis some
divergence A similarrelationshipholdsbetweerthe sgmentsets
identifiedin testandtrainingreportedn Table2.

4.1. Unsupervised Selection of Segment Sets

As describedearlier we obtain sgmentsetsby aligning lattice
pathsto the MAP hypothesig8]. We usea particularversionof
the algorithm,known as‘Period-1’ cutting. This yields segment
setsthatcontainword sequencesf lengthat mostoneword, asin
themiddle panelof Fig. 2. Thisis suboptimain thatbetterWER
is canbeby optimizingthe cuttingperiod[8], howvever the Period-
1 caseis thesimplestto study We furthersimplify the problemby
restrictingthe sggmentsetsto containonly two competingword
sequences.

The processstartshy identifying the MAP pathin afirst-pass
ASRIattice(Fig. 2, Top). Period-Irisk-basedatticecuttingis used
toreducehelatticeto asequencef sggmentsets.In someregions
only theMAP pathremaingFig. 2, Middle); eacharcalsocontains

[ TestSet ]| Count] TrainingSet || Count ]|

1 F+S 1089 || 1 F+S 15197
4  P+T 843 4 P+T 10744
6 8+H 784 6 8+H 10370
3 M+N 772 3 M+N 10242
2 V+Z 557 2 V+Z 8068
9 B+D 389 9 B+D 5996
8 L+OH 343 8 L+OH 5108
5 B+V 314 5 B+V 4963
- A+K 292 - 5+l 4413
- 5+l 289 - J+K 3653

Table 2. Frequentonfusionpairsfoundby latticecutting. Indices
providedfor pairsin thedominantMMI confusablepairs.
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Fig. 2. Lattice Sgmentationfor Estimationand Search. Top:
First-pasdattice of likely sentencéypothesesvith MAP pathin
bold; Middle: Alignment of lattice pathsto MAP path; Bottom
RefinedsearchspacelV consistingof sggmentsetsselectedfor
discriminatve training.

a word posteriorderived from the original lattice. Segmentsets
thatoccurlessthantentimesarediscarded.

We thenperformthe sameproces®nthetrainingsetto obtain
a collection of sggmentsetsrepresentate of recognitionerrors
foundin thetrainingdata.We usethesewo collectionsto identify
the 50 testsegmentsetsthat were also obsered mostfrequently
in training. In this way we identify a final collectionof segment
setsthatarelik ely to containrecognitionerrorsandthatalsooccur
frequentlyin thetrainingset.

Thefinal stepin the searchspacerefinements to restrictthe
segmentsetsinitially identifiedin the testsetto the final 50 that
alsooccurfrequentlyin the training set(Fig. 2, Botton). Some
segmentsetsnotin thefinal collection(e.g. OH+4) arediscarded.

Theword hypothesef therefinedsearctspaceareidentified
by the segmentsetto which they belong. This malesit simpleto
performdiscriminatve training andto apply the discriminatvely
trainedmodelsappropriatelyin rescoring. Therewill be several
modelsfor A, for instance ThemodelA:17 will beusedwheneer
theword hypothesisA is foundin sggmentsetl7. Model A:17 is
trainedto distinguishA’s from J's, andis thereforedifferentfrom
A:7, whichis trainedto distinguishA’'s from 8's.

5. SMBR TRAINING AND DECODING

Our goal is to perform SMBR as describedn Equation2 using
modelsP;(W|A) trainedto minimize the expectedossover hy-
pothesegiravn from W;. The estimationis difficult in general,
althoughproceduresireavailable[3, 4]. However Period-1lattice
cutting reduceghis problemto MMI estimationover the compet-
ing word hypothesesn W;. This canbe seensimply by noting
thatthelossfunctionoverthestringsin Wi; is the1-0lossfunction
(trivially) consistentvith Levenshteirdistancebetweerstringsof
length 1. The minimum risk decoderis thereforethe MAP de-
coder andempiricalrisk is minimized by maximizingthe lik eli-
hoodof thecorrecthypothesis.

WeuseMMI to estimatevord modelsP; (A|W) for W € W;.
Modelsareinitialized usingword modelgrainedby three'normal’
MMI iterations(MMI-3 models).The P;(A|W) arerefinedusing
the training setsggmentsidentified for eachW;, asdescribedn
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[ teraton T o J 1 ] 2 ] 3 | 4715
MMI 10.7 | 9.98| 9.36 | 9.07* | 9.03 | 9.27
DT+SMBR * 8.47 | 8.17| 8.01 | 7.92| 7.86

Table 3. MMI vs. SMBR TrainingandDecodingin WER(%).
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Fig. 3. ConfusionPair Errorsin DT+SMBR Decoding. Left
e (k) —e® (k); Right ® (k) — ® (k). (seeFig. 1 caption).

the previous section. The training objective for eachsetof distri-
butionsis to maximize P;(A|W)/3" 1 ¢y, Pi(A|W"), whichis
doneusingMMI over theappropriatdrainingsetsegments.

The Period-1cutting usedto identify the segmentsetsalso
simplifiesthe SMBR decodingprocedureof Equation2. In asim-
ilar way aswas obsered in the estimationproblem,rescoringis
simply Viterbi searchover the refinedsearchspacesy). When
the searchspacds constrainedo follow the MAP hypothesisthe
MMI-3 modelsare used. In regions of the searchspacecorre-
spondingto a segmentsetW;, modelsP; (A|W) areused.

Theresultsof SMBR traininganddecodingaregivenin Ta-
ble 3. WefirstdiscusghesearchspaceefinementsWe performed
the ‘sanity check’ of rescoringhe pinchedlatticeswith the MMI-
3 models: performancevasidenticalto unconstrainedescoring.
This verifiesthat the searchspacerefinementntroducesno nev
errors.Pinchingdoesreducethe lattice searchspacesubstantially
howvever. The Lattice Word Error Rate of the original latticesis
1.27%,which increaseso 3.11%after pinching. Despitethis re-
strictionin the searchspacewe still seemorethana 1% WER re-
ductionbeyondthe bestMMI performanceWe alsonotethatthe
discriminatvely trainedmodelsareinextricably boundup with the
SMBR sggmentatiorprocessPerformanceegradedrasticallyif
thesemodelsareusedin unconstrainedearctdecodingpass.

Finally, we notethattheimprovementovertheconfusionpairs
is moreuniformthanunderMMI estimation.Figure3 shaws that
nearlyall theerrorcountsaredecreasingver all wordswithin the
confusionclasses.Overall performancegainsfoundwith SMBR
arenotbeingachievedattheexpenseof wordsin individual classes.

6. CONCLUSION

We have presentedan ASR modeling framewvork that incorpo-
ratesdiscriminate training in SMBR rescoring. It is a divide-
and-conqueapproactto identifying andeliminatingASR errors.
SMBR decodingis usedfirst to identify distinct regionsin the
searchspacethat are likely to containerrors, and then usedin
rescoringwith modelstrainedspecificallyto resohe theseerrors.
We have shavn onasmallvocahulary recognitiontaskthatthisre-
finementf thesearctspacellows usto improve theeffectiveness

of thewidely usedMMI estimationprocedure.

Castingthe ASR problemasa minimum Bayes-riskdecision
problemprovidesa rigorousframework for the integrationof dis-
criminative searchandestimationprocedures Althoughwe have
selecteda simplerecognitiontaskto develop andpreseniour ap-
proach,our ultimate goal is apply thesetechniquedo large vo-
calulary ASR. Due to the greatdiversity of ASR errorsin large
vocalulary taskswe expectthe primarychallengeto berobustes-
timation of discriminatve modelsfrom sparsetraining data. We
expectthatconstraineddiscriminatve estimationproceduresvill
prove usefulin theseproblemg14].
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