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ABSTRACT

A modelingapproachis presentedthat incorporatesdiscrimina-
tive training procedureswithin segmentalMinimum Bayes-Risk
decoding(SMBR). SMBR is usedto segment latticesproduced
by a generalautomaticspeechrecognition(ASR) systeminto se-
quencesof separatedecisionproblemsinvolving smallsetsof con-
fusablewords. Acousticmodelsspecializedto discriminatebe-
tweenthecompetingwordsin theseclassesarethenappliedin sub-
sequentSMBR rescoringpasses.Refinementof thesearchspace
thatallows theuseof specializeddiscriminative modelsis shown
to be an improvementover rescoringwith conventionallytrained
discriminativemodels.

1. INTRODUCTION

The limitations of the Maximum Likelihood Estimation(MLE)
procedureswidely usedin HiddenMarkov Model (HMM) speech
recognitionsystemsarewell known. Oneof themostcommonly
cited problemsis the violation of the modelcorrectnessassump-
tion. Parameterizedmodelsobtainedvia MLE canbe employed
optimallyfor detectionandclassificationif thedataencounteredis
generatedby somedistribution from themodelfamily. Theprob-
lem arisesdue to the variousconditionalindependenceassump-
tions that underlieHMM models. Given theseassumptions,it is
unlikely that the processesthat actually generatespeechcan be
closelymodeledby HMMs. ThereforeML estimationof HMMs
cannotberelieduponto yield modelsthatareoptimumfor ASR.

As analternative to relyingon theasymptoticbehavior of ML
estimationunderthemodelcorrectnessassumption,therearemod-
ified estimationanddecodingproceduresthat directly attemptto
optimizeASR performancecriteria. This paperdescribesa mod-
eling framework that unifiesandextendstwo suchmodelingap-
proaches,Maximum Mutual Information (MMI) estimationand
Minimum BayesRisk (MBR) decoding.

2. DISCRIMINATIVE ESTIMATION AND DECODING

Maximum Mutual Informationestimation[1, 2] attemptsto im-
prove the likelihoodof the correctsentencehypothesisgiven the
acousticevidence.Givena labeledtrainingsetof word sequences
andacousticobservations �������
	 , MMI iteratively optimizesthe
modelparameters� to increase��
���� ������� over � , which is usu-
ally takento bethesetof all wordstringsallowedin thelanguage.
This trainingobjective is directly relatedto reducingtheSentence
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ErrorRateon theacoustictrainingset.This immediatelysuggests
thatbeyondtheusualdifficultiesof ensuringthatperformanceob-
tainedin traininggeneralizesto thetestset,theremayalsobeis-
suesin generalizationunderdifferentperformancecriteria. While
SentenceErrorRateis in somesensetheultimateperformancecri-
terion,theremaybevaluein estimationproceduresthatminimize
othercriteria,suchasWordErrorRate[3, 4].

Similar issuesarisein the maximuma-posteriori(MAP) de-
codingcriterionimplementedby theViterbi procedure.MAP de-
coding,which given an utterance� producesa sentencehypoth-
esisaccordingto ����������! "�$#&%('*)+��
���� �,� , is the optimum
decodingcriterionwhenperformanceis measuredundertheSen-
tenceError Ratecriterion. However for othercriteria,againsuch
asWordErrorRate,otherdecodingschemesmaybebetter.

2.1. Segmental Minimum Bayes-Risk Decoders

With this motivation, Minimum Bayes-Riskdecoders[5, 6] at-
temptto find thesentencehypothesiswith theleastexpectederror
undera given taskspecificlossfunction. If -.
����/�102� is the loss
function betweenword strings � and � 0 , the MBR recognizer
seekstheoptimalhypothesisas3�4�5������ 7698%�:�'!) ;%('*) -.
����/� 0 �.��
���� �,�/< (1)

Prior work in MBR decodinghastreatedit essentiallyasa large
searchproblemin which � are N-Best lists or latticesthat in-
corporate��
���� �,� asa posteriordistributionon word stringsob-
tainedusing an HMM acousticmodel and an N-gram language
model[5, 6].

SegmentalMinimum BayesRisk decodingwasdeveloped[7]
to addressthe MBR searchproblemover very large lattices. We
assumethateachword string �>=?� is segmentedinto @ sub-
stringsof zeroor morewords �BAC�C<C<D<E�/�GF . Sinceeachlattice
path is a word string �H=I� , this segmentsthe original lattice
into @ segmentsets�KJ , LM�ON��QPR�C<9<9<9�/@ . Givena specificlattice
segmentation,the MBR hypothesis

3� canthenbe obtainedasa
sequenceof independentdecisionrules3�GJS�5�$���! 7698%�:T'*)VU�;%('*)VU -.
����W� 0 �.�SJ�
��X� �
� (2)

where
3� is the concatenationof

3� J , LY�Z��N!�QP��C<9<9<[�/@\	 , from
which thetermSegmentalMinimum BayesRisk follows.

Therearea variety of possiblesegmentationschemes.Here
wesegmentthelatticewordstringsby aligningeachpathin thelat-
ticeto theMAP sentencehypothesis[7, 8]: giventheMAP hypoth-
esis �� , we segmentthepathsin thelatticeto attain -.
]��^�/�+0_�`�
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a FJcb A -.
]��dJ��/�+0J � . Thissegmentationprocedureisperformedcare-
fully so asto retainthestructureof theoriginal lattice in regions
of low confidence[8].

2.1.1. Search SpaceRefinements

This procedurecan be usedboth to identify potentialerrors in
the MAP hypothesisand to derive a new searchspacefor the
subsequentdecodingpasses.For eachutterancethat is to be de-
coded,we definea new searchspace,calleda pinchedlattice, by
concatenatingthe segmentsetsfound by lattice cutting: �� ��5AfegeCeW�KF . In regionsof low confidence,thesearchspacecon-
tainsportionsof theMAP hypothesisalongwith confusablealter-
natives.In regionsof highconfidence,thesearchspaceis restricted
to follow theMAP hypothesisitself. Becausethestructureof the
original lattice is retainedwhenever we want to consideralterna-
tives to the MAP hypothesis,we canperformacousticrescoring
over thispinchedlattice.

2.1.2. RefinedDiscriminativeTraining for SMBRDecoding

Wehavetheopportunityto trainandapplyextremelyrefinedacous-
tic modelstrainedspecificallyto resolve theerrorsencounteredin
thetestset.In previousapproachesto MBR, �hJW
���� �,� wasfound
viaalatticeforward-backwardprocedure[7] usingfixedlikelihood
scoresobtainedfrom theoriginalASRsystem.Evenif thissystem
wastrainedusingMMI, it is still intendedto discriminatebetween
all sentencesin thelanguagethatmightbeuttered.

Ratherthanderivetheseposteriorsfromgeneralacousticmod-
els,our goal is to estimateeach � J 
���� �
� so that it is optimized
for the distinct recognitionproblemto which it will be applied:�hJW
���� �
� will be trainedonly to discriminateword sequencesin� J . Therearetwo problemsherethat arise. The first is the ap-
propriatetraining criterion. The secondis to find relevant train-
ing data. SMBR allows us to addressthemsimultaneously. We
generatelatticeson the acoustictraining set,andperformlattice
segmentationwith respectto thetruetranscription.This identifies
patternsof recognitionerrorswithin thetrainingset.Givena par-
ticular errorpatternfoundin thetestset,we canusetrainingdata
associatedwith similarerrorsto trainadiscriminativemodel.

In summary, our goal is to developa joint estimationandde-
codingprocedurethat improvesover MMI. After an initial MAP
decodingpasswith MMI models,for eachutteranceweuselattice
cutting to producepinchedlatticesthat identify the segmentsets
that arelikely to containrecognitionerrors. We thenturn to the
trainingsetto find all relevantdatathatcanbeusedto train mod-
els � J 
���� �
� to pick the correcthypothesisfrom thesesegment
sets.We finally applythesemodelsin a full acousticrescoringof
the pinchedlattice by applyingeach �hJ�
���� �,� in decodingover
theappropriatesegmentset.

3. MMI BASELINE PERFORMANCE

To develop the basicestimationand decodingmechanisms,we
presentresultson the OGI Alpha-Digits task[9]. This is a fairly
challengingsmall vocabulary taskon which we still encountera
relatively high baselineWER (approx. 10%). This ensuresthat
wehave asignificantnumberof errorsto identify andcorrect.We
begin by presentingthe MMI baselinesystemandanalyzingits
performanceandtheerrorsit makes.

ErrorPairs ij�k9l�mn ij�k9l�mA ErrorPairs ij�k9l�mn ij�k9l�mA
1. F+S 58 60 6. 8+H 17 34
2. V+Z 54 42 7. A+8 10 40
3. M+N 45 35 8. L+OH 12 33
4. P+T 32 44 9. B+D 16 23
5. B+V 40 29 10. C+V 16 17

Table 1. DominantConfusionPairsin UnconstrainedRecognition
afterThreeMMI Iterations.

Thebaselinesystemis built usingtheHTK Toolkit [10]. The
datais parameterizedas13 elementMFCC vectorswith first and
secondorderdifferences. The trainingsetconsistsof 46,730ut-
terances. The baselinemaximumlikelihood modelscontain12
mixturesperstate,estimatedaccordingto theusualHTK training
procedure.Startingfrom thesemodels,several iterationsof MMI
estimationwere performed. The AT&T Large Vocabulary De-
coder[11] wasusedto generatelatticesfor thetrainingsetwhere
arethentransformedinto wordposteriorsbasedonthelatticetotal
acousticscore.MMI is thenperformedat theword level usingthe
word timeboundariestakenfrom thelattices.Thetestsetconsists
of 3,112utterances.TheAlpha-Digitstaskdoesnothaveaspecific
languagemodel,thusrecognitionbothfor MMI latticegeneration
andtestsetdecodingis performedusinganunweightedword loop
over the vocabulary. Table3, Row 1 shows that significantim-
provementover the baselinecanbe obtainedby MMI: the initial
ML performanceof 10.7%WERis reducedto 9.07%.

Wenow look closelyat thechangesin errorsasMMI training
proceeds.Table1 presentsthe most frequentlyconfusedwords
(‘confusionpairs’) observedafterthreeiterationsof MMI estima-
tion. Iteration3 is chosenbecauseMMI performanceis nearlyop-
timal atthatpoint. Wetabulateerrorsovereachwordin eachclass.
Thenotation ij�k9l�mn 
�N$�`�po�q indicatesthat thereare58 instancesin
whichF is incorrectlyrecognizedasS,and ij k9l�mA 
�N��r�ts�u indicates
that thereare17 instancesin which S is incorrectlyrecognizedas
F. ThesuperscriptindicatestheMMI iteration.

As indicatedin Table3, overall WER doesdecreaseasMMI
trainingprogresses.However, whentheconfusionpairsaremoni-
toredindividually, it becomesapparentthattheimprovementis not
uniform. Figure1 tracksthechangein confusionpair countsrela-
tive to performanceatMMI iteration2. Thetopplot indicatesthatj kvl�mn 
�N�� (the numberof timesF is misrecognizedasS) decreases
by 18 in goingfrom thesecondto third MMI iteration,andby 30
in thefourth iteration.However, j k9w�mA 
�N��rx j k[yWmA 
�N�� is positive and
larger than j�k9l�mA 
�N��zx j�k[yWmA 
�N$� which is alsopositive, which indi-
catesthat the improved recognitionof F comesat theexpenseof
errorsin therecognitionof S. Ideally, all thesechangesshouldbe
negative. However, that behavior is not guaranteedby the MMI
trainingprocedure,which is freeto introduceperformancedegra-
dationover individual confusionpairsso long astheoverall sen-
tenceposteriorscoreimproves.

4. CONFUSION PAIRS VIA LATTICE CUTTING

Theidentificationof ASRerrorsthroughconfidencemeasurements
is well-established[12, 13], andour training approachbuilds on
this work. We needto establishfirst that latticecuttingfindsseg-
mentsetsthataresimilarto thedominantconfusionpairsobserved
in MMI decoding.Wealsoneedto establishthatthesegmentsets
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Fig. 1. ConfusionPair Errorsin MMI Decoding.Left: ij kvl�m 
|{}�~xij k[yWm 
|{&� ; Right: ij kvw�m 
|{}�`x�ij k[yWm 
|{&� . The abscissa{ is the confu-
sion pair index given in Table1. For eachconfusionpair index,ij k J mn 
|{}��x�ij k[yWmn 
|{&� is given in the left (black) bar and ij k J mA 
|{&��xij�k[yWmA 
|{&� is givenin theright (white)bar.

identifiedin thetestsetarealsofoundconsistentlyin thetraining
set. If thesetwo conditionshold, thereis thepossibilityof train-
ing discriminative modelson thesegmentsetsin thetrainingdata
andapplyingthemto the testdatato resolve the dominanterrors
remainingafterMMI training.

We establishthefirst point by comparingthedominantMMI
confusionpairsin Table1 with the testsetsegmentsetsfoundin
Table 2 by lattice cutting. Thereis good agreementamongthe
top eight setsidentified in eachcase,after which thereis some
divergence.A similar relationshipholdsbetweenthesegmentsets
identifiedin testandtrainingreportedin Table2.

4.1. Unsupervised Selection of Segment Sets

As describedearlier we obtain segmentsetsby aligning lattice
pathsto the MAP hypothesis[8]. We usea particularversionof
the algorithm,known as‘Period-1’ cutting. This yields segment
setsthatcontainword sequencesof lengthat mostoneword,asin
themiddlepanelof Fig. 2. This is suboptimalin thatbetterWER
is canbeby optimizingthecuttingperiod[8], however thePeriod-
1 caseis thesimplestto study. Wefurthersimplify theproblemby
restrictingthe segmentsetsto containonly two competingword
sequences.

Theprocessstartsby identifying theMAP pathin a first-pass
ASRlattice(Fig.2,Top). Period-1risk-basedlatticecuttingisused
to reducethelatticeto asequenceof segmentsets.In someregions
only theMAP pathremains(Fig.2,Middle); eacharcalsocontains

TestSet Count TrainingSet Count

1 F+S 1089 1 F+S 15197
4 P+T 843 4 P+T 10744
6 8+H 784 6 8+H 10370
3 M+N 772 3 M+N 10242
2 V+Z 557 2 V+Z 8068
9 B+D 389 9 B+D 5996
8 L+OH 343 8 L+OH 5108
5 B+V 314 5 B+V 4963
- A+K 292 - 5+I 4413
- 5+I 289 - J+K 3653

Table 2. Frequentconfusionpairsfoundby latticecutting.Indices
providedfor pairsin thedominantMMI confusablepairs.
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Fig. 2. Lattice Segmentationfor Estimationand Search. Top:
First-passlatticeof likely sentencehypotheseswith MAP pathin
bold; Middle: Alignment of lattice pathsto MAP path; Bottom:
Refinedsearchspace �� consistingof segmentsetsselectedfor
discriminative training.

a word posteriorderived from the original lattice. Segmentsets
thatoccurlessthantentimesarediscarded.

Wethenperformthesameprocessonthetrainingsetto obtain
a collection of segmentsetsrepresentative of recognitionerrors
foundin thetrainingdata.Weusethesetwo collectionsto identify
the 50 testsegmentsetsthat werealsoobserved mostfrequently
in training. In this way we identify a final collectionof segment
setsthatarelikely to containrecognitionerrorsandthatalsooccur
frequentlyin thetrainingset.

Thefinal stepin thesearchspacerefinementis to restrictthe
segmentsetsinitially identifiedin the testsetto the final 50 that
alsooccur frequentlyin the training set (Fig. 2, Bottom). Some
segmentsetsnot in thefinal collection(e.g.OH+4)arediscarded.

Thewordhypothesesin therefinedsearchspaceareidentified
by thesegmentsetto which they belong.This makesit simpleto
performdiscriminative trainingandto apply the discriminatively
trainedmodelsappropriatelyin rescoring. Therewill be several
modelsfor A, for instance.ThemodelA:17 will beusedwhenever
theword hypothesisA is foundin segmentset17. Model A:17 is
trainedto distinguishA’s from J’s, andis thereforedifferentfrom
A:7, which is trainedto distinguishA’s from 8’s.

5. SMBR TRAINING AND DECODING

Our goal is to performSMBR asdescribedin Equation2 using
models �hJW
���� �,� trainedto minimize the expectedlossover hy-
pothesesdrawn from � J . The estimationis difficult in general,
althoughproceduresareavailable[3, 4]. However Period-1lattice
cuttingreducesthis problemto MMI estimationover thecompet-
ing word hypothesesin � J . This canbe seensimply by noting
thatthelossfunctionover thestringsin �KJ is the1-0lossfunction
(trivially) consistentwith Levenshteindistancebetweenstringsof
length 1. The minimum risk decoderis thereforethe MAP de-
coder, andempiricalrisk is minimizedby maximizingthe likeli-
hoodof thecorrecthypothesis.

WeuseMMI to estimatewordmodels�hJW
|��� �p� for ��=���J .
Modelsareinitializedusingwordmodelstrainedby three’normal’
MMI iterations(MMI-3 models).The � J 
|��� �p� arerefinedusing
the training setsegmentsidentifiedfor each �KJ , asdescribedin
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Iteration 0 1 2 3 4 5

MMI 10.7 9.98 9.36 9.07 � 9.03 9.27
DT+SMBR � 8.47 8.17 8.01 7.92 7.86

Table 3. MMI vs. SMBRTrainingandDecodingin WER(%).
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Fig. 3. ConfusionPair Errors in DT+SMBR Decoding. Left:ij k9w�m 
|{&�hx?ij k9l�m 
|{}� ; Right: ij k[�Wm 
|{&�hxKij kvl�m 
|{}� . (seeFig. 1 caption).

theprevioussection.Thetrainingobjective for eachsetof distri-
butionsis to maximize � J 
|��� �p�.� a %�:|'*)VU � J 
|��� � 0 � , which is
doneusingMMI over theappropriatetrainingsetsegments.

The Period-1cutting usedto identify the segmentsetsalso
simplifiestheSMBRdecodingprocedureof Equation2. In asim-
ilar way aswasobserved in the estimationproblem,rescoringis
simply Viterbi searchover the refinedsearchspaces �� . When
thesearchspaceis constrainedto follow theMAP hypothesis,the
MMI-3 modelsare used. In regions of the searchspacecorre-
spondingto asegmentset � J , models� J 
|��� �p� areused.

The resultsof SMBR traininganddecodingaregiven in Ta-
ble3. Wefirst discussthesearchspacerefinements.Weperformed
the‘sanitycheck’of rescoringthepinchedlatticeswith theMMI-
3 models:performancewasidenticalto unconstrainedrescoring.
This verifiesthat the searchspacerefinementintroducesno new
errors.Pinchingdoesreducethelatticesearchspacesubstantially,
however. The Lattice Word Error Rateof the original latticesis
1.27%,which increasesto 3.11%afterpinching. Despitethis re-
strictionin thesearchspace,westill seemorethana1% WERre-
ductionbeyondthebestMMI performance.We alsonotethatthe
discriminatively trainedmodelsareinextricablyboundupwith the
SMBRsegmentationprocess.Performancedegradesdrasticallyif
thesemodelsareusedin unconstrainedsearchdecodingpass.

Finally, wenotethattheimprovementover theconfusionpairs
is moreuniform thanunderMMI estimation.Figure3 shows that
nearlyall theerrorcountsaredecreasingoverall wordswithin the
confusionclasses.Overall performancegainsfoundwith SMBR
arenotbeingachievedattheexpenseof wordsin individualclasses.

6. CONCLUSION

We have presentedan ASR modeling framework that incorpo-
ratesdiscriminative training in SMBR rescoring. It is a divide-
and-conquerapproachto identifying andeliminatingASR errors.
SMBR decodingis usedfirst to identify distinct regions in the
searchspacethat are likely to containerrors,and then usedin
rescoringwith modelstrainedspecificallyto resolve theseerrors.
Wehaveshown onasmallvocabularyrecognitiontaskthatthisre-
finementof thesearchspaceallowsusto improvetheeffectiveness

of thewidely usedMMI estimationprocedure.
CastingtheASR problemasa minimumBayes-riskdecision

problemprovidesa rigorousframework for theintegrationof dis-
criminative searchandestimationprocedures.Althoughwe have
selecteda simplerecognitiontaskto develop andpresentour ap-
proach,our ultimategoal is apply thesetechniquesto large vo-
cabulary ASR. Due to the greatdiversity of ASR errorsin large
vocabulary tasks,weexpecttheprimarychallengeto berobustes-
timation of discriminative modelsfrom sparsetraining data. We
expectthatconstrained,discriminative estimationprocedureswill
prove usefulin theseproblems[14].

Acknowledgments Wegratefullyacknowledgediscussionswith
S. Kumar in formulating theseexperiments. We also thank M.
Riley andM. Saraclarof AT&T Researchfor assistancewith the
FSM toolsandASRdecoder.

7. REFERENCES

[1] Y. Normandin, “Maximum Mutual Information Estima-
tion of Hidden Markov Models,” in Automatic Speech
and Speaker Recognition: AdvancedTopics, Chin-Hui Lee,
FrankK. Soong,andKuldip K. Paliwal, Eds.Kluwer, 1996.

[2] P. C. Woodlandand D. Povey, “Large ScaleDiscrimina-
tive Training for SpeechRecognition,” in Proc. ITRW ASR.
ISCA, 2000.

[3] J.Kaiser, B. Horvat, andZ. Kačič, “A Novel LossFunction
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