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ABSTRACT

We present re-estimation formulae for semi-tied covariance (STC)
transformation matrices based on a maximum mutual information
(MMI) criterion. These re-estimation formulae are different from
those that have appeared previously in the literature. Moreover,
we present a positive definiteness criterion with which the regu-
larization constant present in all MMI re-estimation formulae can
be reliably set to provide both consistent improvements in the to-
tal mutual information of the training set, as well as fast conver-
gence. We combine the STC re-estimation formulae with their like
for speaker-independent means and variances, and updateall pa-
rameters during MMI speaker adapted training (MMI-SAT). We
present the results of two sets of speech recognition experiments
conducted on the the 1998 Broadcast News evaluation set, as well
as a corpus of Meeting Room data collected at the Interactive Sys-
tems Laboratories of the Carnegie Mellon University.

1. INTRODUCTION

Since Woodland [1] discovered that the word error rate (WER) re-
ductions provided by discriminative training techniques over and
above their maximum likelihood counterparts, could be greatly
enhanced by scaling all acoustic log-likelihoods during training,
MMI training has enjoyed a spate of renewed interest and a con-
comitant flurry of publications. Perhaps most noteable among
these was the work by Gunawardana [2] which set forth a much
simplified derivation of Normandin’s [3] original continuous den-
sity re-estimation formulae, one which does not require the dis-
crete density approximations Normandin used.

In [4] the current authors used Gunawardana’s theorem to de-
rive re-estimation formulae for the speaker-independent (SI) means
and variances of a hidden Markov model (HMM) when speaker-
adapted training [5] (SAT) is conducted on the latter under an MMI
criterion. It would appear that since the publication of [2], and
perhaps well before, research into MMI training schemes has fol-
lowed similar if independent tracks at both the Johns Hopkins Uni-
versity and the University of Karlsruhe. Indeed, Byrneet al [6]
presented a scheme for MMI-SATraining in which all parameters,
including the speaker-dependent (SD) adaptation parameters, were
estimated with an MMI criterion. The same authors also presented
a technique for performing MMI estimation of a transformation
matrix suitable for use with semi-tied covariance (STC) matrices

proposed by Gales [7], but commented on the tendency of their
technique to produce a transformation that was “effectively iden-
tity.”

In this work, we also present re-estimation formulae for STC
transformation matrices based on an MMI criterion. As will be
shown, these re-estimation formulae are different from those in [6],
and the transformation matrices therewith obtained are distinctly
different from the identity. Moreover, we present a positive def-
initeness criterion, with which the regularization constant present
in all MMI re-estimation formulae can be reliably set to provide
both consistent improvements in the total mutual information of
the training set, as well as fast convergence. We also combine
the STC re-estimation formulae with their like for the SI means
and variances, and updateall parameters during MMI-SATraining.
To demonstrate the effectiveness of the proposed techniques, we
present the results of two sets of speech recognition experiments
conducted on the the 1998 Broadcast News evaluation set, as well
as a corpus of Meeting Room data collected at the Interactive Sys-
tems Laboratories of the Carnegie Mellon University.

The balance of this work is organized as follows. In Sec-
tion 2 we briefly review the MMI-SAT mean and covariance re-
estimation formulae previously derived in [4]. We also present
our derivation of a MMI re-estimation formula for STC transfor-
mation matrices, along with a scheme for optimal regression class
assignment. In Section 3 we present the results of our initial sets
of experiments combining the re-estimation of all relevant param-
eters during MMI-SATraining. Finally, in Section 4 we summarize
our efforts, and present plans for further work.

2. MAXIMUM MUTUAL INFORMATION ESTIMATION

Assume we wish to estimate the��� mean�� and diagonal covari-
ance matrix�� of a continuous density hidden Markov model. Let
� be an index over all speakers in the training set, and let�

���
� de-

note the��� observation from speaker�. Also let ������� denote the

posterior probability that����� was drawn from the��� Gaussian in
the HMM whose parameters we wish to re-estimate. Let us define
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which are typically accumulated during forward-backward train-
ing. In the sequel we let�� � ���	 ��� denote the parame-
ters of the��� Gaussian component and� � ���� the speaker-
independent parameters of the entire HMM.

The mean and covariance re-estimation formulae for maxi-
mum mutual information speaker-adapted training (MMI-SAT) have
appeared in prior work by the current authors [4]. We summarize
them here only to introduce the notation used in the current work.
Let����, 
���, and���� respectively denote observation, Gaussian
component and wordsequences associated with an utterance of
speaker�. Definemutual information as

��
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where���� is the matrix of maximum likelihood linear regres-
sion [8] parameters for speaker�. Let �� � ���

�� denote the
current set of parameter values and define theauxiliary function
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In the above, it is necessary to define�
���
��� as the difference in poste-

rior probabilities of
��� that comes from knowledge of the correct
word transcription
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The real constant� � 
 is typically chosen heuristically; for mean
and variance re-estimation, good results have been obtained with
� � �.

Gunawardana [2] showed that������� � �������� implies
��
	�� �� � ��
	�� ���. In prior work [4], the current au-
thors used (1) and Gunawardana’s theorem to derive the maximum
mutual information mean re-estimation formula�� � �
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The corresponding covariance re-estimation formula is
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where
�����
�� is the
�� component of
��

� � ������
� and�� �

�� is the
current value of the variance.

Semi-Tied Covariance Estimation

For reasons of brevity, we only summarize our derivation here; full
details can be found in [9]. Gales [7] defines asemi-tied covari-
ance matrix as�� � � ���

� where�� is, as before, the di-
agonal covariance matrix for the��� Gaussian component, and�
is a transformation matrix shared by many Gaussian components.
Both�� and� can then be updated using a ML criterion. Rather
than optimizing� directly, however, Gales defines� � ��� and
then optimizes� instead. According to Gales’ original formula-
tion, this can be achieved by setting����� � �

���
� ��� and defining

the auxiliary function
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where�� �
�

��� �
���
��� and������� is the posterior probability that ob-

servation����� was drawn from Gaussian component�. If speaker
adaptation is performed in the model space, Gales’ development
can be readily extend by setting
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(7)

The components��	
� � � can be updated using a recursive
procedure [7].

In order to estimate� using an MMI criterion, we need only
modify (6) slightly. Firstly, we redefine������� as the difference in
posterior probabilities (2). Now assume that we wish only to opti-
mize� . Hence the Gaussian normalization factor��

�
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can be excluded as it does not depend on� ; what remains is
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Let ��
	 denote the��� row of � , and let��	 denote the��� row

in thecofactor matrix of� . Hence (6) can be rewritten as
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where� �
�

� �� and



���

 �

�
�

�

��
��


�
���

�
���
��� �

���
� �

����
�

Turning now to the second term in (1), we must write
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It is straightforward to show that���� can be expressed as
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where� �
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In the above,��	 denotes the��� column of� �. Substituting (8)
and (9) into (1), we find
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where
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 . Following the development in

Gales [7], it can easily be shown that������� can be maximized
by iteratively updating the rows of� according to
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Equation (10) cannot be used indiscriminately; care must be
taken to choose� large enough so that each

 is positive defi-
nite. From the foregoing, it readily follows that
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A maximum of������� requires that�������
	 ��	 is negative

definite. As�	� � � � � � � � 
 and�	��	 is a symmetric rank-
one update, and hence positive definite, this will certainly hold if

	 is positive definite. It may be possible, however, to derive a
weaker condition.

Regression Class Estimation

In order to obtain the largest possible reduction in word error rate,
quite often we estimate not a single global transformation�����	 �����

for each speaker, but a set of transformations���
���
� 	 �

���
� ��. In this

case, it is of interest to reassign the��� Gaussian to a regression
class so as to maximize the mutual information. This can be done
with a slight extension of the prior analysis, to wit: it is necessary
to calculate the actual value of the auxiliary function in addition to
the optimal parameters�� achieving its maximum. Letting
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and�� and�� are as given in (4) and (5). With these definitions,
it is possible to choose the optimal regression class � as that class
which minimizes (11); see [10,�4.5].

3. SPEECH RECOGNITION EXPERIMENTS

The speech experiments described below were conducted with the
Janus Recognition Toolkit (JRTk), which is developed and main-
tained jointly at Universit¨at Karlsruhe, in Karlsruhe, Germany and
at the Carnegie Mellon University in Pittsburgh, Pennsylvania, USA.

For the experiments reported below, HMM training was con-
ducted on a combined training set consisting of the Broadcast News
(BN) corpus, which totals approximately 64 hours of speech, along
with the ESST set. The complete training set contains speech con-
tributed by 2,989 speakers. Two test sets were used to determine
system performance: the first was that set used for the 1998 Broad-
cast News evaluation which contains 15,310 words; the second
Meeting Room (MR) test set was collected at the Interactive Sys-
tems Laboratories (ISL) of the Carnegie Mellon University. The
MR test set contains 11,214 words spoken in discussions of various
research projects currently underway at ISL. The speech therein is
conversational and entirely spontaneous. Although the entire MR
corpus is English, many of the speaker are non-native. As such, it
makes for a very challenging automatic recognition task [11]. For
these experiments, our baseline recognizer was comprised of 4,144
continuous density codebooks, each of which contained either 16
or 32 Gaussians.

All speech data was digitally sampled at a rate of 16 kHz. The
speech features used for all experiments were obtained by first es-
timating 13 cepstral components, concatenating nine (9) succes-
sive features together, then performing linear discriminant analy-
sis to obtain a final feature of length 40. Features were calculated
every 10 ms using a 16 ms sliding window. Speaker-dependent
frequency-domain vocal tract length normalization (VTLN) was
used in calculating all speech feaures for both training and test.

The word lattices annotated with word start- and end-times
used for discriminative training were written with the Ibis decoder [12].
Training was conducted by first performing a Viterbi alignment
on the correct transcription for each utterance, and accumulating
the appropriatenumerator statistics [13]. The correct utterance
together with its time markings was then inserted into the corre-
sponding lattice, and Viterbi rescoring was performed on each link
of this enhanced lattice based on the fixed start- and end-times.
Using these new acoustic scores, the posterior probability of each
link was calculated and used to accumulate thedenominator statis-
tics. As recommended in [1], the log acoustic scores were scaled
by a factor of 1/15 during discriminative training, and a unigram
language model was used in calculating the link posterior proba-
bilities.

Shown in Figure 1 are the results of our initial speech recog-
nition experiments on the BN and MR test sets. For these systems,
a STC transformation matrix was estimated during conventional
speaker-independent (SI) training, and held fixed thereafter for
both ML- and MMI-SAT. To generate these results, we first did a
complete decoding with the baseline MLE system, simultaneously
writing both word lattices and errorful transcripts. The word lat-
tices were then rescored with the appropriate acoustic models and,
where necessary, adaptation parameters to generate the subsequent
results. In our initial experiments, we used an acoustic with rela-
tively few parameters: 16 Gaussian components for each of 4,144
codebooks. To determine the susceptibility of the MMI models to
overtraining, we then trained a model with 32 Gaussians for each
of 4,144 codebooks. As is clear from the tabulated results, the rel-
ative gains for both systems were comparable. MMI-SATraining
gave a substantial improvements over MLE-SATraining, and best
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performance was obtained after two iterations of MMI-SAT for
both large and small models.

System % Word Error Rate
�	 ���� �� �	 ��� � ��
BN MR BN MR

MLE Baseline 23.6 45.3 21.4 42.9
MLE-SAT 20.0 41.6 18.8 39.9

MMI-SAT-1 19.2 40.1 18.2 38.8
MMI-SAT-2 18.6 39.9 17.6 38.3
MMI-SAT-3 19.4 40.3 18.2 39.2

Fig. 1. Word error rate results on the 1998 Broadcast News eval-
uation set (BN) and the Interactive Systems Laboratories Meeting
Room set (MR).

The next set of experiments was intended to determine if fur-
ther reductions in word error rate could be achieved by re-estimating
the STC transformation matrix during both ML- and MMI-SATraining.
These experiments were conducted only on the large�	 ��� � ��
model. Training under both criteria was conducted by making a
first pass through the training set to re-estimate the STC transfor-
mation matrix, then making a second pass to re-estimate the SI
means and variances. As a means of reducing computation, only
the contribution of each frame to themost likely Gaussian in any
given state was accumulated during STC estimation. The constant
� in (3) was set as follows: First the matrices�


���

 � and�
 ���


 �
were accumulated for all speakers in the training set. Thereafter�
was set to the low value of 1/128 and successively doubled until all
matrices

 � 


���

 	� �


���

 were positive definite. The values

thereby obtained were� � ����	 ���, and��� for the first, sec-
ond, and third iterations respectively. This procedure proved very
robust, providing both consistent improvements in the total mutual
information of the training set, as well as rapid convergence.

For the sake of comparison, a second system was trained by
holding the STC transformation matrix fixed after ML-SATraining,
and re-estimating only the SI means and varianes during MMI-
SATraining. The WER results obtained with both systems are tab-
ulated in Table 2.

System % Word Error Rate
ML-SAT STC MMI-SAT STC
BN MR BN MR

MLE-SAT 18.8 39.9 18.8 39.9
MMI-SAT-1 18.2 38.8 18.1 39.1
MMI-SAT-2 17.6 38.3 19.1 40.7
MMI-SAT-3 18.2 39.2 62.7 75.1

Fig. 2. WER results comparing STC transformation matrices esti-
mated during ML- and MMI-SATraining.

Unfortunately, re-estimation of the STC transformation matrix
provides no further reductions in WER, much the opposite in fact.
At present it is not fully understood why this is so.

4. CONCLUSIONS

We have presented a practical technique for performing SAT on a
continuous density hidden Markov model using an MMI criterion.

In a set of experiments on two large vocabulary speech recogni-
tion tasks, we have demonstrated the effectiveness of MMI-SAT in
reducing word error rate with respect to that obtained with MLE-
SAT. We have also enhanced the basic MMI-SAT estimation with
re-estimation formulae for the transformation matrices used with
semi-tied covariances. To date no further reductions in WER have
been obtained from STC estimation with an MMI criterion. This
remains an area of active research, however.
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