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ABSTRACT proposed by Gales [7], but commented on the tendency of their

) ) o ) technique to produce a transformation that was “effectively iden-
We present re-estimation formulae for semi-tied covariance (STC) jp, »

transformation matrices based on a maximum mutual information
(MMI) criterion. These re-estimation formulae are different from
those that have appeared previously in the literature. Moreover,
we present a positive definiteness criterion with which the regu-
larization constant present in all MMI re-estimation formulae can
be reliably set to provide both consistent improvements in the to-
tal mutual information of the training set, as well as fast conver-

?oernsceée\tllllgr?i?]gglr:aiél?\?;(é;ﬁ_sezzrg?/g?ig;%gul::? dvm;:g ke poth consistent improvements in the total mutual information of
pt duri ?\/IMI ker adapted traini ' MMISAT). Wi the training set, as well as fast convergence. We also combine
rameters during speaker adapted training ( ) ). We the STC re-estimation formulae with their like for the SI means

o e T vaances, and it parameers g WNI-SATrig.
' o0 demonstrate the effectiveness of the proposed techniques, we

zasr:scféggfa?;:\iﬂeiect:;] %Eg%r:qgg;: Kﬂongocéegn?\t/g;seity teractive Sys'present the results of two sets of speech recognition experiments

conducted on the the 1998 Broadcast News evaluation set, as well
as a corpus of Meeting Room data collected at the Interactive Sys-
1. INTRODUCTION tems Laboratories of the Carnegie Mellon University.

The balance of this work is organized as follows. In Sec-
Since Woodland [1] discovered that the word error rate (WER) re- tion 2 we briefly review the MMI-SAT mean and covariance re-
ductions provided by discriminative training techniques over and estimation formulae previously derived in [4]. We also present
above their maximum likelihood counterparts, could be greatly our derivation of a MMI re-estimation formula for STC transfor-
enhanced by scaling all acoustic log-likelihoods during training, mation matrices, along with a scheme for optimal regression class
MMI training has enjoyed a spate of renewed interest and a con-assignment. In Section 3 we present the results of our initial sets
comitant flurry of publications. Perhaps most noteable among of experiments combining the re-estimation of all relevant param-
these was the work by Gunawardana [2] which set forth a much eters during MMI-SATraining. Finally, in Section 4 we summarize
simplified derivation of Normandin’s [3] original continuous den- our efforts, and present plans for further work.
sity re-estimation formulae, one which does not require the dis-
crete density approximations Normandin used.

In [4] the current authors used Gunawardana’s theorem to de- 2. MAXIMUM MUTUAL INFORMATION ESTIMATION

rive re-estimation formulae for the speaker-independent (SI) means
and variances of a hidden Markov model (HMM) when speaker- ossyme we wish to estimate th&* meary; and diagonal covari-
adapted training [S] (SAT) is conducted on the latter under an MMI 5ce matrixD,, of a continuous density hidden Markov model. Let

criterion. It would appear that. since the puphcanon of [2], and s be an index over all speakers in the training set, andgfétde-
perhaps well before, research into MMI training schemes has fol- %) denote the
t

lowed similar if independent tracks at both the Johns Hopkins Uni- NOt€ thet'" observation from speaker Also letc;;
versity and the University of Karlsruhe. Indeed, Byrteal [6] posterior probability thatzts) was drawn from th&*" Gaussian in
presented a scheme for MMI-SATraining in which all parameters, the HMM whose parameters we wish to re-estimate. Let us define
including the speaker-dependent (SD) adaptation parameters, werthe quantities
estimated with an MMI criterion. The same authors also presented
a technique for performing MMI estimation of a transformation (s) _ Zcis:)s 025) _ Zcis:)s $£s) SI(:.) _ ROMOE:

t t

In this work, we also present re-estimation formulae for STC
transformation matrices based on an MMI criterion. As will be
shown, these re-estimation formulae are different from those in [6],
and the transformation matrices therewith obtained are distinctly
different from the identity. Moreover, we present a positive def-
initeness criterion, with which the regularization constant present
in all MMI re-estimation formulae can be reliably set to provide

matrix suitable for use with semi-tied covariance (STC) matrices * —
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which are typically accumulated during forward-backward train- whereﬂzﬁf) is then'™ component ofi) = A 49 ando?? is the

ing. In the sequel we le\;, = {ux, Dy} denote the parame-  current value of the variance.
ters of thek'” Gaussian component ard= {A;} the speaker-
independent parameters of the entire HMM. Semi-Tied Covariance Estimation

The mean and covariance re-estimation formulae for maxi-
mum mutual information Speaker adapted tra|n|ng (MM| SAT) haveFOI' reasons of brevity, we onIy summarize our derivation here; full
appeared in prior work by the current authors [4]. We summarize details can be found in [9]. Gales [7] definesemi-tied covari-
them here only to introduce the notation used in the current work. @nce matrix as¥, = P D P” where D, is, as before, the di-
Letz®), n(), andw® respectively denote observation, Gaussian agonal covariance matrix for tHé" Gaussian component, ariti

component and wordequences associated with an utterance of IS a transformation matrix shared by many Gaussian components.

speakess. Definemutual information as Both Dk'ar.\d.P can then be updated using a ML criterion. Rather
than optimizingP directly, however, Gales defind¢ = P! and
29, A, A) then optimizesM instead. According to Gales’ original formula-
W O; A Zlog i . . - (9 (s) .
(S) (S) ; ACA) tion, this can be achieved by settinf) = z{*) — j1;, and defining

the auxiliary function
where A®) is the matrix of maximum likelihood linear regres-

sion [8] parameters for speaker Let A° = {A?} denote the SW =" {cylog | M| — §ex log 27Dy |
current set of parameter values and defineathéliary function &

P t,s
=3 [SV (A + B 57 (Ax[AD)]
k wherec, =37, | c,c i andcfcst is the posterior probability that ob-

where servationz,® *) was drawn from Gaussian componéntlf speaker
g A|A° Zc(s)logp (s), CAG) AL adaptation is performed in the model space, Gales’ development

can be readily extend by setting

S(z) A|A0 Zd(s / z; A® Ak)logp(x AG) Ay da OES) :9058) _ (A(S)/Mc +b(s)) @

The component§m;;} = M can be updated using a recursive
Inthe above, itis necessary to def'téﬁ as the difference in poste-  procedure [7].

rior probabilities ofn(®) that comes from knowledge of the correct In order to estimaté/ using an MMI criterion, we need only
word transcription modify (6) slightly. Firstly, we redeflne(s) as the difference in
posterior probabilities (2). Now assume that we wish only to opti-
c,(jﬂ = p(n{® = klw®,z); A A mize M. Hence the Gaussian normalization factdy log |27 Dy |

can be excluded as it does not dependiénwhat remains is
—p(nf” = K|z A9, %) (2) penciony

and set s — E: cx log | M| — 1 E: ) (oOT prT D=1 a1
s s s s - g| | C [en Dk 0y
A =" p(nf” = klz; A A%) (3) k{ H )
t,s

The real constan® > 0 is typically chosen heuristically; formean ~ Let m; denote th@th row of M, and letf;” denote the'” row
and variance re-estimation, good results have been obtained withn the cofactor matrix of M. Hence (6) can be rewritten as
E=1.

Gunawardana [2] showed th@(A|A°) > Q(A°|A®) implies SO = 1) cloa(mT mTW(l)m 8
I(W,0;A) > I(W,0;A%). In prior work [4], the current au- 2 g(m! f:)” Z I ®
thors used (1) and Gunawardana’s theorem to derive the maximum

mutual information mean re-estimation formuyla = M,;l Vi wherec = Y, ¢ and
where .
(1) (s) (s) ()T
- () () AT =1 4(s) W = — Cr10f 0y
M= (7 + B d”) A7 Dt AC 4) j Zk:(,;’j 2 Cht
3
= ZA(S)T Dk—l [(OS) _ c,(:)b(s)) +E. d;(CS)A(S)M%] Turning now to the second term in (1), we must write

5) S (AJA®) ZZd(S)/ z; A AD PO).

The corresponding covariance re-estimation formula is
log p(z; A®), Ay, P) dx

(s) (s) 5 (s) (s) (s)2
-2 . ) .
Z {( Ok Mien + €% flien ) It is straightforward to show tha#® can be expressed as
s 0(s ~(s s s
+E- d( [Ukn + (ngz l‘l’;cn ]}/Z U +E- d( ) S =1 {dlog(m fi)? Zm]TW(z)m]} 9)
J

I-129



whered = 3", dx and
. 1 .
W =3 - (dk Zﬂgi pip; T)
k ] 7
In the abovep? denotes the*” column of P°. Substituting (8)
and (9) into (1), we find

QA" = 3 {<c+ B-d)log(m! £.)" = 3 m] W, m]}

whereW; = W + E - W*. Following the development in
Gales [7], it can easily be shown th@{A|A°) can be maximized
by iteratively updating the rows d¥f according to

T Ty—1 [+ E-d

Equation (10) cannot be used indiscriminately; care must be

taken to choos& large enough so that eadl; is positive defi-
nite. From the foregoing, it readily follows that

O*QAJA®) _

T
S O — _(C+E.d)i

7 — Wi
(m] fi)
A maximum of Q(A|A°) requires thad>Q/dmT dm, is negative
definite. Asc + E-d = E-d > 0 andf; f; is a symmetric rank-
one update, and hence positive definite, this will certainly hold if
Wi; is positive definite. It may be possible, however, to derive a
weaker condition.

Regression Class Estimation

In order to obtain the largest possible reduction in word error rate,

quite often we estimate not a single global transformati¢ti’, 5¢*))

for each speaker, but a set of transformatips’"’, b)) }. In this
case, it is of interest to reassign th& Gaussian to a regression

3. SPEECH RECOGNITION EXPERIMENTS

The speech experiments described below were conducted with the
Janus Recognition Toolkit (JRTk), which is developed and main-
tained jointly at Universét Karlsruhe, in Karlsruhe, Germany and

at the Carnegie Mellon University in Pittsburgh, Pennsylvania, USA.

For the experiments reported below, HMM training was con-
ducted on a combined training set consisting of the Broadcast News
(BN) corpus, which totals approximately 64 hours of speech, along
with the ESST set. The complete training set contains speech con-
tributed by 2,989 speakers. Two test sets were used to determine
system performance: the first was that set used for the 1998 Broad-
cast News evaluation which contains 15,310 words; the second
Meeting Room (MR) test set was collected at the Interactive Sys-
tems Laboratories (ISL) of the Carnegie Mellon University. The
MR test set contains 11,214 words spoken in discussions of various
research projects currently underway at ISL. The speech therein is
conversational and entirely spontaneous. Although the entire MR
corpus is English, many of the speaker are non-native. As such, it
makes for a very challenging automatic recognition task [11]. For
these experiments, our baseline recognizer was comprised of 4,144
continuous density codebooks, each of which contained either 16
or 32 Gaussians.

All speech data was digitally sampled at a rate of 16 kHz. The
speech features used for all experiments were obtained by first es-
timating 13 cepstral components, concatenating nine (9) succes-
sive features together, then performing linear discriminant analy-
sis to obtain a final feature of length 40. Features were calculated
every 10 ms using a 16 ms sliding window. Speaker-dependent
frequency-domain vocal tract length normalization (VTLN) was
used in calculating all speech feaures for both training and test.

The word lattices annotated with word start- and end-times
used for discriminative training were written with the Ibis decoder [12].
Training was conducted by first performing a Viterbi alignment
on the correct transcription for each utterance, and accumulating
the appropriateumerator statistics [13]. The correct utterance
together with its time markings was then inserted into the corre-
sponding lattice, and Viterbi rescoring was performed on each link
of this enhanced lattice based on the fixed start- and end-times.
Using these new acoustic scores, the posterior probability of each

classr so as to maximize the mutual information. This can be done link was calculated and used to accumulatedér@minator statis-

with a slight extension of the prior analysis, to wit: it is necessary
to calculate the actual value of the auxiliary function in addition to
the optimal parameters;. achieving its maximum. Letting

Qr(AxlA?) =8V + E- 5
it can be shown
Qr(Ak]AR) = ak + pi vi — 5k Mgy (11)

where

]. S S sI\T - S S s 3
ak:_52[(0£)b$)_01€)) Dkl(ci)bg)—oi))/c,(c)

E]

+E - )T AT DA g

andM,, andvy, are as given in (4) and (5). With these definitions,
it is possible to choose the optimal regression clédsss that class
which minimizes (11); see [184.5].

tics. As recommended in [1], the log acoustic scores were scaled
by a factor of 1/15 during discriminative training, and a unigram
language model was used in calculating the link posterior proba-
bilities.

Shown in Figure 1 are the results of our initial speech recog-
nition experiments on the BN and MR test sets. For these systems,
a STC transformation matrix was estimated during conventional
speaker-independent (SI) training, and held fixed thereafter for
both ML- and MMI-SAT. To generate these results, we first did a
complete decoding with the baseline MLE system, simultaneously
writing both word lattices and errorful transcripts. The word lat-
tices were then rescored with the appropriate acoustic models and,
where necessary, adaptation parameters to generate the subsequent
results. In our initial experiments, we used an acoustic with rela-
tively few parameters: 16 Gaussian components for each of 4,144
codebooks. To determine the susceptibility of the MMI models to
overtraining, we then trained a model with 32 Gaussians for each
of 4,144 codebooks. As is clear from the tabulated results, the rel-
ative gains for both systems were comparable. MMI-SATraining
gave a substantial improvements over MLE-SATraining, and best
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performance was obtained after two iterations of MMI-SAT for
both large and small models.

System % Word Error Rate

4,144 x 16 | 4,144 x 32

BN | MR | BN | MR

MLE Baseline || 23.6 | 45.3 | 21.4 | 42.9
MLE-SAT 20.0| 416 | 188 | 39.9
MMI-SAT-1 19.2 | 40.1 | 18.2| 38.8
MMI-SAT-2 18.6 | 39.9 | 17.6 | 38.3
MMI-SAT-3 19.4| 40.3 | 18.2| 39.2

Fig. 1. Word error rate results on the 1998 Broadcast News eval-
uation set (BN) and the Interactive Systems Laboratories Meeting
Room set (MR).

The next set of experiments was intended to determine if fur-
ther reductions in word error rate could be achieved by re-estimatin

the STC transformation matrix during both ML- and MMI-SATraining.

These experiments were conducted only on the ldrdd4 x 32
model. Training under both criteria was conducted by making a

first pass through the training set to re-estimate the STC transfor-

mation matrix, then making a second pass to re-estimate the S

means and variances. As a means of reducing computation, only 31

the contribution of each frame to tmaost likely Gaussian in any
given state was accumulated during STC estimation. The constan
E in (3) was set as follows: Firstthe matricgi§’ ("} and{W >}

were accumulated for all speakers in the training set. Thereffter
was set to the low value of 1/128 and successively doubled until all
matricesiV; = Wj(l)-i-E-W]@) were positive definite. The values
thereby obtained wer® = 1/16,1/2, and1/2 for the first, sec-
ond, and third iterations respectively. This procedure proved very
robust, providing both consistent improvements in the total mutual
information of the training set, as well as rapid convergence.

For the sake of comparison, a second system was trained by

holding the STC transformation matrix fixed after ML-SATraining,
and re-estimating only the S| means and varianes during MMI-
SATraining. The WER results obtained with both systems are tab-
ulated in Table 2.

System % Word Error Rate
ML-SAT STC | MMI-SAT STC
BN MR BN MR
MLE-SAT 18.8| 399 | 188 39.9
MMI-SAT-1 || 18.2| 38.8 | 18.1 39.1
MMI-SAT-2 176 | 38.3 19.1 40.7
MMI-SAT-3 || 18.2| 39.2 | 62.7 75.1

Fig. 2. WER results comparing STC transformation matrices esti-
mated during ML- and MMI-SATraining.

Unfortunately, re-estimation of the STC transformation matrix
provides no further reductions in WER, much the opposite in fact.
At present it is not fully understood why this is so.

4. CONCLUSIONS

We have presented a practical technique for performing SAT on a

continuous density hidden Markov model using an MMI criterion.

In a set of experiments on two large vocabulary speech recogni-
tion tasks, we have demonstrated the effectiveness of MMI-SAT in
reducing word error rate with respect to that obtained with MLE-
SAT. We have also enhanced the basic MMI-SAT estimation with
re-estimation formulae for the transformation matrices used with
semi-tied covariances. To date no further reductions in WER have
been obtained from STC estimation with an MMI criterion. This
remains an area of active research, however.
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