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ABSTRACT

We have proposed a new speech recognition technique that
generates a speech trajectory from HMMs by maximizing the
likelihood of the trajectory, while accounting for the relation
between the cepstrum and the dynamic cepstrum coefficients.
This method has the major advantage that the relation, which
is ignored in conventional speech recognition, is directly used
in the speech recognition phase. This paper describes an ex-
tension of the method for dealing with HMMs whose distri-
butions are mixture Gaussian distributions. The method
chooses the sequence of Gaussian distributions by selecting
the best Gaussian distribution in the state during Viterbi de-
coding. Speaker-independent speech recognition experiments
were carried out. The proposed method obtained an 18.2%
reduction in error rate for the task, proving that the proposed
method is effective even for Gaussian mixture HMMs.

1. INTRODUCTION

In each state of HMMSs, an acoustic parameter vector is pro-
duced by a piecewise stationary process, and the probability
of a given acoustic parameter vector is independent of the
sequence of acoustic parameter vectors preceding, and fol-
lowing, the current vector. This means that HMMs cannot
treat the time-dependent characteristics of speech within the
state. This is one of the drawbacks of speech recognition
using HMMs.

Several attempts to introduce time-dependence concept into
speech recognition have been proposed to improve recogni-
tion performance [1][2][3]1[4][5]. Some of these, referred to as
parametric trajectory modeling methods, or segmental model-
ing methods, represent the speech trajectories using linear or
polynomial functions to treat the time-dependence in the
speech signal. Such functions act as trajectories that are used
to model observed sequences of moving points of the speech
signal in the acoustic parameter space [3][4][5]. Although seg-
mental modeling methods show some improvement in limited
tasks, these methods are not widely used in speech recogni-
tion. This may be due to their tendency to be overly sensitive
to variation in speaker and speaking style. The main cause of
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this is that the modeled trajectories are often not suited to use
of a time warping function.

We have previously proposed a new method that uses the
cepstrum trajectory generated directly from HMM statistics
[6][7]. The technique maximizes the likelihood of the gener-
ated trajectory, taking into account the relation between the
cepstrum and the dynamic cepstral coefficients (delta cep-
strum and delta-delta cepstrum). This method can generate a
trajectory for any HMM state sequence. As a result, we can
introduce time warping mechanics into our method by select-
ing HMM state sequences so that the generated trajectory
fits the input speech feature vector series. In addition, our
method has the major advantage that the relations between
the cepstrum and the dynamic cepstral coefficients, which are
ignored in conventional speech recognition phase, can be
introduced. In our previous paper, speaker-independent word
recognition results showed that the proposed method was
effective when a single Gaussian distribution in each state of
HMMs is used. In this paper, we extend it so that our method
can use mixture Gaussian distributions in HMMs.

2.TRAJECTORY GENERATION FROM HMMS

In this section, we present the method to generate a trajectory
from given HMMs. This method is based on the studies of
Tokuda et al. and Masuko et al. [8][9]. Figure 1 illustrates this
procedure. A trajectory is generated from an input state se-
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Figure 1. Diagram of generating trajectory from HMMs.
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quence by maximizing the HMM likelihood while respecting
the relations between cepstrum and the dynamic cepstral co-
efficients. Here, it is assumed that each state of the HMM has
only a single Gaussian distribution, that the speech param-
eters consist of cepstrum, delta-cepstrum and delta-delta cep-
strum, and that all HMMs have already been trained using a
sufficient amount of data. It is also assumed that the HMM
state sequence is given. Let O ={0,,0,,...,0,} s
AO ={Ao,,Ao,,....,Ao,} , and A’O={A0,A0,,...,A0;}
be a generated speech cepstrum vector sequence of length N,
a delta-cepstrum vector sequence of length N, and a delta-
delta cepstrum vector sequence of length N, respectively. Let
S={s,,8,,...,5;} be the given state sequence. The joint
probability of O ,AQ , and AO, given the parameters of the
diagonal Gaussian distributions, is given by

P(O,AO,N°O,S | M,AM ,A*M , %, AT, A’Y)

T T
=[la..I]r, |1.E)p(A0, | A, , AL p(Ao, | A%, , A’E,), (1)

t=1 t=1

where M ={u,u,,... 10}, AM ={Au,,Al,,...,Au,} , and
NM ={Np,,A’w,,...,A’11,} are the cepstrum mean vector se-
quence, the delta-cepstrum mean vector sequence, and the
delta-delta cepstrum mean vector sequence of the Gaussian
distributions along S respectively. Here, Z={Z.%,,...,%,},
AX={AY,AY,,..,AZ,} , and A’L={A’L,A’%,,.., A’} are
the cepstrum variance vector sequence, the delta-cepstrum
variance vector sequence, and the delta-delta cepstrum vari-
ance vector sequence of the Gaussian distributions along S,
respectively. Note that here the word “vector” is used for
variances because we assume that variances are diagonal.
Furthermore, @,,,, is the transition probability from time t to
time t+1, and p(o | i,%) is a Gaussian distribution whose
cepstrum mean vector and variance vector are U and X, re-
spectively.

The trajectory and dynamic parameters, O , AO , and AO,
are decided by maximizing the probability expressed in equa-
tion (1). If there were no relation between O , AO , and A0,
this would correspond to choosing the mean values of the
Gaussian distributions. However, from the definition of the
dynamic parameters, there are the following explicit relations
between the parameters:

i=L

i=L
AO, = 2 io,,, Z i’ and ()]

i=-L i=-L

S(CL+D (S o,

2A(3, HAL+~(3 7))

Ao, = 3)

where L is the window size.
To maximize equation (1) under these conditions, by substi-

tuting equations (2) and (3) into equation (1) and by differen-
tiating with respect to O , we obtain the following equation:

dlog{P(0,AO0,A°0,S | M,AM ,A*M ,%, A%, A’Y)
20

_ 0log{P(O,S | M,AM ,A°M ,,AZ,A’S)

= 5 =

0. )

By calculating equation (4) for all O, , we can obtain simulta-
neous equations and solve them for 0 . Finally, AO and A’O
can be obtained by calculating first order and second order
regression coefficients, respectively.

3. NEW LIKELTHOOD AND TIME-WARPING

MECHANISM

In Section 2, we described how to generate a cepstrum se-
quence for a given state sequence is known. Here, we de-
scribe how to decide the state sequence for input speech. To
do that, we first introduce a new likelihood based on the gen-
erated trajectory for speech recognition. The conventional
Viterbi likelihood for input speech using HMMs is expressed
as:

P(C,AC,A’C,S | M,AM ,A’M 3/, AS', A*S)

T T
= Har,Hal(Cz | #t’zt)p(Act ‘ A:ur 7A2r)p(Azcr | Az:ur 7A22z) s (5)

t=1 =1

where C ={c,,c,,...,c; } is an input speech cepstral vector
sequence. The method proposed here changes the likelihood
into a new likelihood function using the trajectory:

P(C,AC,A’C,S|0,A0,A’0,%',AS, A’Y)

:ﬁam,ﬁp(q \o,,Z,/)p(Ac, \Ao,,AZ,,)p(Azc, \Azo,,AZZ,/), 6)
t=1 t=1

Since mean cepstrum vectors are replaced by the trajectory in
equation (6), we have to reestimate new variances,
2 =(32,.2,,...2, "}, AY ={Ax,,A%, ..., A%, } and
AT = {AZZI', AZZZ',...,AZ):T'} , along with the trajectory. It
1s assumed that new variances are fixed within a state, as in
the conventional HMM definition. Figure 2 illustrates piece-
wise stationary mean sequence and the distribution spreads
(related to the variances) in conventional HMMs, where the
dotted and dashed line shows the input speech. Figure 3 illus-
trates the smooth trajectory and the new distribution spreads
(related to the new variances) in the proposed method, show-
ing that the generated trajectory has explicit time-dependence.
Up to this point, we have focused on the new likelihood .
From here on, we describe how to select the state sequence
using the likelihood. The basic concept is that the state se-
quence whose trajectory is nearest to the input speech cep-
strum sequence (in terms of the new likelihood) should be
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selected. The following two equations can be used:

S =argmax{P(C,AC,A’C,S | 0,A0,N°0,%,AY, N°S)}, ©)
S

and

O =argmax{P(0,S | M,AM ,A>M £, AS,A’S)},  (8)
0]

where equation (8) is for generating the trajectory from the
given states. However, it is difficult to calculate equations (8)
and (8) for all S due to combinatorial explosion. We do not,
therefore, calculate equation (8) for all possible state se-
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Figure 2. Illustration of piece-wise stationary mean sequence

and the distribution spreads in conventional HMMs.
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Figure 3. Illustration of the smooth trajectory and the new

distribution spreads in the proposed method.

quences; we calculate equation (8) only for the best state
sequence decoded by the Viterbi algorithm using conventional
HMMs, as an approximation of (7) and (8).

4. TRAINING VARIANCES

As described in section 3, we suppose that variances are fixed
in a state. Thus, we can introduce the same training method,
referred to as Viterbi training, to calculate the variances for
each state along with the trajectory. The basic procedure is:
(1) Create usual HMMs for training data by the MLE based
Viterbi training method.

(2) Calculate Viterbi paths using these HMMs for all training
data.

(3) Generate trajectories for the training data using the method
described in Section 2.

(4) Divide all the data into short data segments state by state
using state paths from (2).

(5) Calculate variance values using equation (9),

n T
22 =o'
— k=1 t=1
n ’ (9)
T,
g, :

Zvr

B

where n denotes the number of data segments assigned to a
state, s, by the Viterbi algorithm, ¢/ denotes the kth sample of
length 7, , and Otk is the corresponding trajectory gener-
ated by our method. The procedure is performed only once.
Although equation (8) describes only X', AY and A*X’
can easily be obtained using a similar equation. Each obtained
variance is stored in the corresponding HMM state in addi-
tion to the original HMM state variance.

5.EXTENSION TO MIXTURE DISTRIBUTION HMMS
Until now, this paper has described our method based on single
Gaussian HMMs. We can easily extend the method to treat
mixture Gaussian distributions by selecting the best Gaussian
distribution in the state during Viterbi decoding.

The large number of Gaussian components in each state might

N best state sequences

v

Input speech

__Jp| Viterbi decorder = Traj cctory generation us- P Likeli hood —Jp»|  Reordering
ing proposed method calculation
Trajectories *
Result

Figure 4. Recognition process based on trajectory generation and N-best reordering.
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degrade the accuracy of the approximation described in sec-
tion 3, as the number of possible Gaussian sequences increases
exponentially with the number of mixture components. Here,
however, we would like to check the applicability of our method
for Mixture Gaussian HMMs. Thus, we introduce this assump-
tion into our method.

The training method is also changed to handle Gaussian mix-
ture HMMSs. Step (2) in section 4 is changed to select the
maximum Gaussian distribution during Viterbi path calcula-
tion.

6. RECOGNITION EXPERIMENTS

Since the generating method described in Section 2 calculates
a trajectory value at a frame using past and future frame infor-
mation, it is difficult to introduce an efficient search method
such as the Viterbi algorithm, which requires only information
from the previous frame, into our method in the recognition
phase. Thus, the recognition procedure presented in Figure 4
was used. First, input speech is recognized using conven-
tional HMMs, and the top ten candidates are generated. State-
based segmentation is performed by the Viterbi algorithm for
each candidate to obtain putative state durations given the
input utterance. The trajectory for each candidate is then gen-
erated using the method described in Section 2. Given the
generated trajectory, frame-wise likelihood between the gen-
erated trajectory and the input speech cepstrum parameters is
calculated, and the original candidates are reordered accord-
ing to the likelihood scores. The frame-wise modified likeli-
hood is

P(C,AC,A’C,S|0,A0,A0,%, AT/, A’Y)

T T
= Haz—l,/Hp(cz |01 ?Zz )p(AC[ ‘ AO: ?AZ/ )ap(AZC/ | Azoz ?AZZ/ )ﬁ > (9)
=1 1=1

where aand B are weights for the delta-cepstrum and delta-
delta cepstrum likelihood, respectively. Our preliminary experi-
ments described in [7] showed that these weighting values
are effective for our method. The mixture weights are ignored
in the likelihood calculation.

To evaluate the method proposed here, we performed speaker
and task independent word recognition experiments. The sam-
pling rate was 16 kHz, the frame shift was 10 msec and the
cepstrum order was 14; 503 phoneme-balanced sentences ut-
tered by 64 speakers were used for the training data. Context-
dependent HMMs were trained from the data, and the number
of Gaussian distributions for each state was fixed at 3. One
hundred place names uttered by 70 speakers were used for the
evaluation. Table 1 shows the speaker independent recogni-
tion results. The maximum recognition rates were selected
among results for ¢z and B values of 0, 1,2, 3,4 and 5. While
HMM word error rate was 2.2%, that of our method was 1.8%,
corresponding to an error rate reduction of 18.2%. This result

shows that our proposed method is effective even for mixture
distributions.

7. SUMMARY

This paper extended a new speech recognition method that
generates a speech trajectory using a speech synthesis method
so as to enable the use of Gaussian mixture distributions in
HMMs. The training of variances was also extended. Our
method was evaluated with a speaker independent speech
recognition experiment. Our method yielded an 18.2% reduc-
tion in error rate for the recognition task, proving that our
method is effective even for Gaussian mixture HMMs.
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Table 1 Speaker-independent speech recognition results

(word error rates).

Method HMM Proposed method
Word error rate 2.2% 1.8%
. Reduction ) 18.2%
m error rate
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