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ABSTRACT source code-point needs to be computed. We show that
the framework presented in [1] allows for an easy imple-
mentation of the proposed scheme using results from high-
resolution theory. The scheme proposed in this paper can
be easily extended to a broad range of channels and source-
fhannel coding schemes.

Section 2 describes the modelling of the source using
%aussian mixture models. Section 3 provides the details of
the encoding procedure and Section 4 explains the various
decoding strategies. The experimental results are provided
In Section 5 and the computational complexity is analyzed
in Section 6.

A joint source-channel decoding scheme that improves
the performance of conventional channel decoders over era-
sure channels by exploiting the cross-correlation between
successive speech frames is presented. Speech spectrum
parameters are quantized using the scheme presented in [1
The joint probability density function (PDF) of the spectrum
parameters of successive speech frames is modelled using
Gaussian mixture model (GMM). This model is then used
to process the channel decoder output over erasure chan
nels. The performance of two decoding strategies, namely,.
Maximum Likelihood decoding (ML) and Minimum Mean
Squared Error decoding (MMSE) is shown to provide sig-
nificantly better performance than prediction based schemes. 2. SOURCE MODEL

In this work, we model the joint probability density function
1. INTRODUCTION of the spectrum parameters of successive speech frames us-
ing a Gaussian Mixture Model (GMM). L& andY bed-
Wmensional random vectors representing the spectrum pa-

ber of erasures mtroduce@ by the channel is more than therameters of current and previous speech frames respectively.
erasure correcting capability of the channel code, error con-

cealment is done by employing prediction methods. In this

paper, we propose a joint source-channel decoding scheme fxyX)Y) = Z ;N (pi, Cy) (1)
where the joint probability density function between the spec-

trum parameters of successive speech frames is used to aid 5 = ( M%( ) )
the channel decoder. We propose two strategies, namely, ! %

Maximum Likelihood (ML) decoding and Minimum mean CXX  OXY

square error (MMSE) decoding. In ML decoding, we choose Ci = ( CZYX C:YY > 3)

that source codepoint that maximizes the conditional prob-

ability given the previous frame and the channel decoderwhereN; (1, C;) is an individuaRd-dimensional Gaussian

output. In the MMSE decoding case, we decode to the con-with meany; and covariance matrig’; andq; are positive

ditional mean given the previous frame and the channel de-scalars that sum to unity.

coder output. We demonstrate that the proposed schemes The parameters of the GMM can be efficiently estimated

can perform significantly better than prediction based schemuasing the Expectation-Maximization (EM) algorithm [3].

for various channel conditions. The marginal density of the spectrum parameters of a speech
In order to implement the proposed joint source-channel frame can be obtained from the joint density as,

decoding schemes, the conditional probability of a given

XX
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L; containingN; = 2¢t: entries, wherel, = ¢/ — ecode

J i i i i -
Source Channd (ee.m < k). ThIS. list co.ntams the transmitted source code
Input = —= , point as one of its entries.

X Encoder 7o Encoder Tl

4.2. Source Decoder

Erasure The source decoder comes into play only when the num-
Channdl ber of erasures introduced by the channel is more than the
erasure correcting capability of the channel code, é’e
ecode- Under these circumstances, the source decoder tries
_ to utilize the joint statistics of the spectrum parameters of
b Source lci Channel T’ .
ouput [} <~ successive frames to process the channel decoder output
Decoder Decoder L;. It must be noted that the joint source-channel decod-
ing schemes presented in this paper can be employed in any
Fig 1: Overall communication scheme setting where the channel decoder outputs a list of possible
code-points. One example of a plausible application area is
the list decoding of Reed-solomon codes over additive white
Gaussian channels.

3. ENCODING

3.1. Source Encoder o
4.2.1. Prediction

We perform fixed-rate memoryless quantization on the spec- i )
trum parameters of each frame by using the method pro_Inth|s approach, when the channel decoder is unable to per-

posed in [1]. The marginal density of each frame (cf. Eq. 4) fectly decode the channel output, we predict the spectrum
is used as the source model for the memoryless quantizerP@rameters of the current frame based on the decoded pa-

The source encoder generates ait index, Zs, for each rameters of the previous frame. We present two options:
Linear Prediction (LP) and Gaussian mixture model predic-

frame. .
tion (GMM-P).
3.2. Channel Encoder e Linear Prediction
The channel encoder produces:#it channel codeword, In this case, we use the optimal linear prediction esti-
e, for each inputk-bit source indexZs. The erasure cor- mate of the spectrum parameters of the current frame
recting capability of the channel code is given dy,. = based on the spectrum parameters of the previous frame.
n—k, i.e., the channel code can correct uptg;. erasures. =i Sicl X x
One example of a channel code that can be employed for Xip = A)'(S((X“;Yi_ﬁi )+n 6)
this purpose is a Reed-Solomon code. A = CHH(CTY) )
¢ GMM Prediction
4. DECODING . "
In this case, we use the conditional mean of the cur-
The channel codewordlc, is sent over a binary erasure rent frame based on the previous frame. The condi-
channel with erasure probabilify We define the quantity tional density of the current frame based on the frame
"excess erasured,,, as is given by [2],
Cex = NP — €code (5) Fxiy (X1Y) = SN (mi(Y),S)  (8)
=1

e IS @ measure of the remaining erasures after channel de- 1

. . . X XY YY Y
coding. In this paper, we design source decoders that de- mi(Y) = ui +C; (Oi ) (Y My )
code in the presence ef, erasures. Y, = CZ,XX _ CZXY(CZ.YY)—lciYX

aifi(Y)
Bi(Y) = = F~n

4.1. Channel Decoder ijl a; fi(Y)
Let ¢/ be the number of erasures introduced by the chan- fi(Y) = N(uY,oXY)
nel in the j** speech framee{ < n). If e/ < e.oq4e, the
channel output can be perfectly decoded by the channel de- Note that the conditional covariance is independent
coder. Where? > e.q., the channel decoder outputs a list of Y and can be pre-computed. LXt}DRED be the
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Table 1. Performance Results

m——=  Mazimum Likebhood| | L i /
L] = MMSE ' ' : 1

[eex | L-P [GMM-P | M-L | MMSE |

— / 0.0 [[ 1.0749] 1.0749 [ 1.0749] 1.0749
g A 0.2 || 1.5792| 1.5682 | 1.1463| 1.1485
g ] 0.4 || 2.1755| 2.1617 | 1.2370| 1.2311
- P 0.6 || 2.6915| 2.6609 | 1.3244| 1.3123
0.8 || 3.1068| 3.0978 | 1.3700| 1.3697
3 1.0 || 3.7007| 3.6991 | 1.4603| 1.4451
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Fig. 2: Performance

decoded prediction estimate. This can be computed

from the conditional density as,

E (X Y = Xg;}/}MP)

Z Bi (Xé;V}AlP) nmy (Xé;V}AlP)
i=1

9)

v
XGMMP

where A(X) is the code-point density of the memoryless
quantizer. As shown in the Appendix, the point density of
the fixed-rate memoryless quantizer is given in closed form
as,

S i) @) AT
Sl @
XX

2

A(X)

gi(X) = N (Mz?(v

(14)

where )\; is the geometric mean of the singular values of
XX,

4.2.3. Minimum Mean Square Error

The MMSE estimate is the conditional mean given the pre-

It can be easily seen that this estimate performs betteryioys frame and the channel decoder output. Specifically,
than linear prediction estimate for minimizing mean- ye yse the source model to compute the probability of each
squared error criterion since the GMM captures the ,,sgjhle codeword and then compute the conditional mean.

joint statistics between successive frames better than

single Gaussians.

4.2.2. Maximum Likelihood

In this approach, we decode to that source code-point tha
has maximum probability of occurrence given the previous
decoded frame and the channel decoder output, i.e.,

Xjp =argmax PX =X [Y=X{) (10

€L;

In order to compute the probability of occurrence of a given
source code-poink, we need to integrate the conditional
density over the voronoi cell o whose volume i/ (X).

We use the high-resolution approximation and approximate
this probability as,

POX | X = fxpy (X =X 1Y = X{1) - vx) ()

In high resolution, the volume of a voronoi cell can be ap-
proximated by,

12)
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XJJWMSE E (X ‘ Y = X]]\4MSE7‘Cj)
-

ZXeLj P(X | XZJ\/[MSE’LJ') ’

xer, POX | Xipnrse L)

(15)

X
(16)

t

5. EXPERIMENTAL RESULTS

The performance of the proposed scheme was tested in the
application of speech spectrum quantization. Speech was
broken into frames of duration 25 msec and a ten dimen-
sional @ = 10) vector of Line spectrum pairs (LSP) was
extracted from each frame. The joint PDF of the spectrum
parameters of successive speech frames was estimated us-
ing a Gaussian mixture model consistingref= 32 clus-

ters. The training database consisted of 100,000 frames of
speech. The proposed scheme was tested on an independent
database consisting of 10,000 frames of speech.

Fixed-rate memoryless quantization is performed on the
LSP parameters witlk = 24 bits per frame which pro-
vides an average encoder log spectral distortion of 1.0749
dB. Since the number of bits used by the source encoder per



codewords to the source decoder.

Table 2. Computational Complexity

| Scheme]] Nio: (flops per frame) \
LP 24 +d
GMM-P _ m(Nezp + 2d*> +d +3) — 2 (]
M-L 2¢e:[(2m + 1) Negyp + m(2d% + d) + 5m — 2] ’
MMSE | 2%[(2m + 1) Newp + m(2d2 + d) + 5m + d]

dimension is 2.4, the high resolution approximations em-
ployed in this paper are reasonable [4].

8. APPENDIX

In the fixed rate case, the cluster bit-allocation is given by

(i) ¥/ (4H2)

9bi — 9btot -
Ej:l(aj)\j)d/(d+2)

17)

Since each cluster quantizer is essentially a product of

individual scalar quantizers, the point density function for a

The performance results for all the decoding schemes isclusteri is given by,

compared in Table 1 and Fig. 2. The average end-to-end
log spectral distortion is plotted against the average excess
erasures seen by the source decoder. A value of 0.1 means
that on an average, the source decoder sees an erasure rate
of one bit in ten source frames. The simulations reveal
that GMM-P perrformance is only marginally better than
LP performance. Furthermore, both ML and MMSE joint
source channel decoding schemes perform significantly bet-
ter than the prediction schemes although there is no dis-
cernable difference between the performance of these joint
source-channel decoding schemes.

6. COMPUTATIONAL COMPLEXITY

In this section, we analyze the complexity of the proposed
schemes. The complexity of the joint source-channel de-
coding schemes scales exponentially with the number of
erasures while the complexity of the prediction based schemes
is independent of the number of erasures. Ngji, be the
number of flops used to perform one exponentiation. Let
el be the number of excess erasures intheframe. Ta-

ble 2 compares the complexity of the proposed schemes.

As shown in the simulations, the added complexity of [1]
GMM prediction is not commensurate with the incremental
improvement in the decoder performance as compared with
Linear prediction. Furthermore, the significantly improved
performance of the M-L and MMSE approaches may be
worth the additional complexity in many applications since
the complexity of these approaches is only a fraction of the
overall source-channel encoder-decoder complexity.

7. CONCLUSION 3]
A joint source-channel decoding scheme for erasure chan-
nels based on Gaussian mixture models is proposed. The
proposed scheme provides significantly better performance[4]
in comparison to prediction based schemes. The proposed
scheme can be extended to other channels where the chan-
nel decoder is capable of providing a short-list of possible
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1/3
ME) = S 19)
G(X) = N(uX.CX) (19)

The total point density of the quantizer is given by,

AX) = ZT}W A(X) (20)
i=1
1)/ (@+2)
= Z m d/(d+2) A7(X) (21)
After performing a few manipulations we get,
g (X3 (s d/(d+2) \~d/3
A(X) — 27,:19 ( ) (a ) 7 (22)

2 (ag Ay )4 +2)
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