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ABSTRACT

A joint source-channel decoding scheme that improves
the performance of conventional channel decoders over era-
sure channels by exploiting the cross-correlation between
successive speech frames is presented. Speech spectrum
parameters are quantized using the scheme presented in [1].
The joint probability density function (PDF) of the spectrum
parameters of successive speech frames is modelled using a
Gaussian mixture model (GMM). This model is then used
to process the channel decoder output over erasure chan-
nels. The performance of two decoding strategies, namely,
Maximum Likelihood decoding (ML) and Minimum Mean
Squared Error decoding (MMSE) is shown to provide sig-
nificantly better performance than prediction based schemes.

1. INTRODUCTION

In conventional speech compression schemes, when the num-
ber of erasures introduced by the channel is more than the
erasure correcting capability of the channel code, error con-
cealment is done by employing prediction methods. In this
paper, we propose a joint source-channel decoding scheme
where the joint probability density function between the spec-
trum parameters of successive speech frames is used to aid
the channel decoder. We propose two strategies, namely,
Maximum Likelihood (ML) decoding and Minimum mean
square error (MMSE) decoding. In ML decoding, we choose
that source codepoint that maximizes the conditional prob-
ability given the previous frame and the channel decoder
output. In the MMSE decoding case, we decode to the con-
ditional mean given the previous frame and the channel de-
coder output. We demonstrate that the proposed schemes
can perform significantly better than prediction based schemes
for various channel conditions.

In order to implement the proposed joint source-channel
decoding schemes, the conditional probability of a given
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source code-point needs to be computed. We show that
the framework presented in [1] allows for an easy imple-
mentation of the proposed scheme using results from high-
resolution theory. The scheme proposed in this paper can
be easily extended to a broad range of channels and source-
channel coding schemes.

Section 2 describes the modelling of the source using
Gaussian mixture models. Section 3 provides the details of
the encoding procedure and Section 4 explains the various
decoding strategies. The experimental results are provided
in Section 5 and the computational complexity is analyzed
in Section 6.

2. SOURCE MODEL

In this work, we model the joint probability density function
of the spectrum parameters of successive speech frames us-
ing a Gaussian Mixture Model (GMM). LetX andY bed-
dimensional random vectors representing the spectrum pa-
rameters of current and previous speech frames respectively.

fX,Y(X,Y) =
m∑

i=1

αiNi (µi, Ci) (1)

µi =
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whereNi (µi, Ci) is an individual2d-dimensional Gaussian
with meanµi and covariance matrixCi andαi are positive
scalars that sum to unity.

The parameters of the GMM can be efficiently estimated
using the Expectation-Maximization (EM) algorithm [3].
The marginal density of the spectrum parameters of a speech
frame can be obtained from the joint density as,

fX(X) =
m∑

i=1

αiNi

(
µX

i , CXX
i

)
(4)
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Fig 1 : Overall communication scheme
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3. ENCODING

3.1. Source Encoder

We perform fixed-rate memoryless quantization on the spec-
trum parameters of each frame by using the method pro-
posed in [1]. The marginal density of each frame (cf. Eq. 4)
is used as the source model for the memoryless quantizer.
The source encoder generates ak bit index, IS , for each
frame.

3.2. Channel Encoder

The channel encoder produces an-bit channel codeword,
IC , for each inputk-bit source indexIS . The erasure cor-
recting capability of the channel code is given byecode =
n−k, i.e., the channel code can correct uptoecode erasures.
One example of a channel code that can be employed for
this purpose is a Reed-Solomon code.

4. DECODING

The channel codeword,IC , is sent over a binary erasure
channel with erasure probabilityp. We define the quantity
”excess erasure”,eex, as

eex = np− ecode (5)

eex is a measure of the remaining erasures after channel de-
coding. In this paper, we design source decoders that de-
code in the presence ofeex erasures.

4.1. Channel Decoder

Let ej be the number of erasures introduced by the chan-
nel in thejth speech frame (ej ≤ n). If ej ≤ ecode, the
channel output can be perfectly decoded by the channel de-
coder. Whenej > ecode, the channel decoder outputs a list

Lj containingNj = 2ej
ex entries, whereej

ex = ej − ecode

(ej
ex < k). This list contains the transmitted source code-

point as one of its entries.

4.2. Source Decoder

The source decoder comes into play only when the num-
ber of erasures introduced by the channel is more than the
erasure correcting capability of the channel code, i.e.,ej >
ecode. Under these circumstances, the source decoder tries
to utilize the joint statistics of the spectrum parameters of
successive frames to process the channel decoder output
Lj . It must be noted that the joint source-channel decod-
ing schemes presented in this paper can be employed in any
setting where the channel decoder outputs a list of possible
code-points. One example of a plausible application area is
the list decoding of Reed-solomon codes over additive white
Gaussian channels.

4.2.1. Prediction

In this approach, when the channel decoder is unable to per-
fectly decode the channel output, we predict the spectrum
parameters of the current frame based on the decoded pa-
rameters of the previous frame. We present two options:
Linear Prediction (LP) and Gaussian mixture model predic-
tion (GMM-P).

• Linear Prediction

In this case, we use the optimal linear prediction esti-
mate of the spectrum parameters of the current frame
based on the spectrum parameters of the previous frame.

X̃j
LP = A · (X̃j−1

LP − µX) + µX (6)

A = CXY(CYY)−1 (7)

• GMM Prediction

In this case, we use the conditional mean of the cur-
rent frame based on the previous frame. The condi-
tional density of the current frame based on the frame
is given by [2],

fX|Y (X | Y) =
m∑

i=1

βi(Y)Ni (mi(Y), Σi) (8)

mi(Y) = µX
i + CXY

i

(
CYY

i

)−1 (
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i

)
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i − CXY

i (CYY
i )−1CYX

i

βi(Y) =
αifi(Y)∑m

j=1 αjfj(Y)

fi(Y) = N
(
µY

i , CYY
i

)

Note that the conditional covariance is independent
of Y and can be pre-computed. Let̃Xj

PRED be the
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decoded prediction estimate. This can be computed
from the conditional density as,

X̃j
GMMP = E

(
X | Y = X̃j−1

GMMP

)
(9)

=
m∑

i=1

βi(X̃
j−1
GMMP ) ·mi(X̃

j−1
GMMP )

It can be easily seen that this estimate performs better
than linear prediction estimate for minimizing mean-
squared error criterion since the GMM captures the
joint statistics between successive frames better than
single Gaussians.

4.2.2. Maximum Likelihood

In this approach, we decode to that source code-point that
has maximum probability of occurrence given the previous
decoded frame and the channel decoder output, i.e.,

X̃j
ML = arg max

X∈Lj

P (X = X | Y = X̃j−1
ML ) (10)

In order to compute the probability of occurrence of a given
source code-pointX, we need to integrate the conditional
density over the voronoi cell ofX whose volume isV (X).
We use the high-resolution approximation and approximate
this probability as,

P (X | X̃j−1
ML ) = fX|Y

(
X = X | Y = X̃j−1

ML

)
· V (X) (11)

In high resolution, the volume of a voronoi cell can be ap-
proximated by,

V (X) =
1

2k · Λ(X)
(12)

Table 1. Performance Results
eex L-P GMM-P M-L MMSE

0.0 1.0749 1.0749 1.0749 1.0749
0.2 1.5792 1.5682 1.1463 1.1485
0.4 2.1755 2.1617 1.2370 1.2311
0.6 2.6915 2.6609 1.3244 1.3123
0.8 3.1068 3.0978 1.3700 1.3697
1.0 3.7007 3.6991 1.4603 1.4451

whereΛ(X) is the code-point density of the memoryless
quantizer. As shown in the Appendix, the point density of
the fixed-rate memoryless quantizer is given in closed form
as,

Λ(X) =
∑m

i=1 gi(X)1/3(αiλi)d/(d+2)λ
−d/3
i∑m

j=1(αjλj)d/(d+2)
(13)

gi(X) = N
(
µX

i , CXX
i

)
(14)

whereλi is the geometric mean of the singular values of
CXX

i .

4.2.3. Minimum Mean Square Error

The MMSE estimate is the conditional mean given the pre-
vious frame and the channel decoder output. Specifically,
we use the source model to compute the probability of each
possible codeword and then compute the conditional mean.

X̃j
MMSE = E

(
X | Y = X̃j−1

MMSE ,Lj

)
(15)

=

∑
X∈Lj

P (X | X̃j−1
MMSE , Lj) ·X∑

X∈Lj
P (X | X̃j−1

MMSE , Lj)
(16)

5. EXPERIMENTAL RESULTS

The performance of the proposed scheme was tested in the
application of speech spectrum quantization. Speech was
broken into frames of duration 25 msec and a ten dimen-
sional (d = 10) vector of Line spectrum pairs (LSP) was
extracted from each frame. The joint PDF of the spectrum
parameters of successive speech frames was estimated us-
ing a Gaussian mixture model consisting ofm = 32 clus-
ters. The training database consisted of 100,000 frames of
speech. The proposed scheme was tested on an independent
database consisting of 10,000 frames of speech.

Fixed-rate memoryless quantization is performed on the
LSP parameters withk = 24 bits per frame which pro-
vides an average encoder log spectral distortion of 1.0749
dB. Since the number of bits used by the source encoder per
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Table 2. Computational Complexity

Scheme Ntot (flops per frame)

LP 2d2 + d
GMM-P m(Nexp + 2d2 + d + 3)− 2

M-L 2ej
ex [(2m + 1)Nexp + m(2d2 + d) + 5m− 2]

MMSE 2ej
ex [(2m + 1)Nexp + m(2d2 + d) + 5m + d]

dimension is 2.4, the high resolution approximations em-
ployed in this paper are reasonable [4].

The performance results for all the decoding schemes is
compared in Table 1 and Fig. 2. The average end-to-end
log spectral distortion is plotted against the average excess
erasures seen by the source decoder. A value of 0.1 means
that on an average, the source decoder sees an erasure rate
of one bit in ten source frames. The simulations reveal
that GMM-P perrformance is only marginally better than
LP performance. Furthermore, both ML and MMSE joint
source channel decoding schemes perform significantly bet-
ter than the prediction schemes although there is no dis-
cernable difference between the performance of these joint
source-channel decoding schemes.

6. COMPUTATIONAL COMPLEXITY

In this section, we analyze the complexity of the proposed
schemes. The complexity of the joint source-channel de-
coding schemes scales exponentially with the number of
erasures while the complexity of the prediction based schemes
is independent of the number of erasures. LetNexp be the
number of flops used to perform one exponentiation. Let
ej
ex be the number of excess erasures in thejth frame. Ta-

ble 2 compares the complexity of the proposed schemes.
As shown in the simulations, the added complexity of

GMM prediction is not commensurate with the incremental
improvement in the decoder performance as compared with
Linear prediction. Furthermore, the significantly improved
performance of the M-L and MMSE approaches may be
worth the additional complexity in many applications since
the complexity of these approaches is only a fraction of the
overall source-channel encoder-decoder complexity.

7. CONCLUSION

A joint source-channel decoding scheme for erasure chan-
nels based on Gaussian mixture models is proposed. The
proposed scheme provides significantly better performance
in comparison to prediction based schemes. The proposed
scheme can be extended to other channels where the chan-
nel decoder is capable of providing a short-list of possible

codewords to the source decoder.

8. APPENDIX

In the fixed rate case, the cluster bit-allocation is given by
[1],

2bi = 2btot
(αiλi)d/(d+2)

∑m
j=1(αjλj)d/(d+2)

(17)

Since each cluster quantizer is essentially a product of
individual scalar quantizers, the point density function for a
clusteri is given by,

Λi(X) =
gi(X)1/3

∫
gi(X)1/3dX

(18)

gi(X) = N
(
µX

i , CXX
i

)
(19)

The total point density of the quantizer is given by,

Λ(X) =
m∑

i=1

2bi

2btot
Λi(X) (20)

=
m∑

i=1

(αiλi)d/(d+2)

∑m
j=1(αjλj)d/(d+2)

· Λi(X) (21)

After performing a few manipulations we get,

Λ(X) =
∑m

i=1 gi(X)1/3(αiλi)d/(d+2)λ
−d/3
i∑m

j=1(αjλj)d/(d+2)
(22)
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