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ABSTRACT 

In this paper, minimum mean square error (MMSE) estimation 
of the speech short-term predictor (STP) parameters in the line 
spectral frequency (LSF) representation is considered. We 
exploit that the square error between LSF parameter vectors is a 
subjectively meaningful distortion criterion. As speech coding 
algorithms are often used in a noisy environment, it is relevant to 
estimate the STP parameters used in these algorithms under the 
inclusion of noise statistics. In the presented experiments, car 
noise is used as an example of an autoregressive (AR) noise 
process. The MMSE estimates are obtained using a likelihood 
function computed by means of Kalman filtering and empirical 
probability distributions. The method is assessed in terms of the 
resulting root mean spectral distortion between the ‘clean’ 
speech STP parameters and the STP parameters computed using 
the proposed method from noisy speech. 

1. INTRODUCTION 

Speech coding techniques have been applied successfully in 
many areas of personal communication and especially in the 
mobile telephony [1]. Mobile phones are often used in scenarios 
with a high level of additive environmental noise causing severe 
degradation of the intelligibility and perceptual quality of the 
coded speech. The perceptual fidelity of the noisy signal after the 
encoding and decoding operations, is a function of both the 
additive-noise level and the bit rate used to represent the noisy 
speech signal. To improve performance of speech coding 
algorithms under noisy conditions, the effect of additive noise on 
the estimated speech parameters should be considered. This will 
result in an increased intelligibility and perceptual quality of the 
reconstructed speech signal. 
Our work differs in two respects from most recent noise-
suppression methods, including the common approach based on 
the Karhunen-Loeve transform of the noisy signal covariance 
matrix (e.g., [2]) and its approximation using the discrete cosine 
transform. First, we exploit a priori knowledge about the speech 
signal or its parameters.  Second, we focus on the estimation of 
the speech signal model parameters that are used in low rate 
speech coding rather than on the estimation of the speech signal 
itself. This is natural in light of the ubiquitous use of speech 
coding in mobile telephony. The merging of noise reduction 
algorithms and speech coding algorithms has as additional 
advantage that the algorithmic delay is decreased compared to 
conventional sequential operation. An example of the integration 
of noise reduction and linear-predictive-analysis-by-synthesis 
(LPAS) [1] coding is shown in Figure 1. 

The usage of a priori knowledge was introduced to the noise 
reduction problem in [3], which employed the hidden Markov 
model (HMM) as a statistical model. In [4], we used prior 
knowledge to estimate speech parameters, rather than estimating 
the signal itself. We maximized an asymptotic (in the sense of 
infinite frame length assumption) likelihood function over a set 
of spectral shapes trained on clean speech and noise processes. 
We evaluated the enhancement performance by comparison in 
the parameter domain using the root mean spectral distortion 
(SD) measure. 
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Figure 1. Proposed method of integration of a LPAS coder and 

noise reduction 

Although the method of [4] performed quite well, it suffered 
from several drawbacks. We used only the current frame 
observation to compute the model parameters estimates. As a 
result, the excitation variance estimation was relatively 
inaccurate, particularly for time segments where the speech 
signal energy is low. Furthermore, the estimated AR spectral 
shapes were restricted to a finite set of shapes residing in a pre-
defined codebook, which means that the expected estimation 
accuracy is lower bounded by the codebook implied mean 
distortion. 
In this paper, we address the drawbacks of the method described 
in [4] by using a MMSE method to estimate the speech STP 
parameters (replacing the maximum a posteriori method over a 
discrete set of spectral shapes). The new method  also accounts 
for the a priori distribution of the model parameters. The 
estimates are now based on both the current and previous frame 
to obtain a more accurate estimate by exploiting inter-frame 
parameter correlations. The MMSE approach provides an 
inherent smoothing, since the MMSE estimate is a linear 
combination of a set of the STP parameters trained from clean 
(high signal to noise ratio) speech and noise processes.   
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The STP parameters used in our experiments are represented as 
line-spectral frequency (LSF) coefficients. This representation is 
particularly convenient since it assures stability of the averaged 
synthesis filter [5] and since the mean squared error between two 
sets of LSFs is a meaningful measure of perception. The 
estimation of the speech and noise variances is performed in the 
logarithmic domain, since loudness perception is proportional to 
the logarithm of the signal power [6]. 
The experiments presented in this paper are performed for  two 
speakers (one male and one female speaker) and for a relatively 
short test utterance to keep the computational effort low. 
However, the results provide sufficient insight to compare the 
new MMSE based method with the ML estimation method 
proposed previously.  

2. STATISTICAL MODEL 

The observed noisy signal frame sequence { }mr  is given by: 

 m m m= +r s n , (1) 

where ( 1) 1[ ,..., ]Tm mNm Ns s− +=s , ( 1) 1[ ,..., ]Tm mNm Nn n− +=n  

are statistically independent speech and noise vector random 
vectors corresponding to the m -th noisy speech signal frame of 
length N . Note that ts  and tn  are speech and noise samples at 

time instant t . 

2.1 Likelihood function of the parameters 

The underlying speech, noise and noisy speech probability 
functions are multivariate Gaussians specified by the speech and 
noise AR parameters. The probabilistic models of the speech and 
noise processes can be characterized by perfect measurement 
state space systems. The speech process is 

 
| 1p s p sr srt t tt t

s
−

= +s F s G , (2) 

 s pt ts = C s , (3) 

and the noise process is 

 
1| 1q n q n tt tt t

v
−−

= +n F n G , (4) 

 n qt tn = C n , (5) 

where tv  is zero mean, variance 2
nmσ , Gaussian process noise 

and srts  is the process noise (corresponding to ae short-term 

prediction residual signal), modelled as a zero mean, variance 
2
smσ  Gaussian noise. 1[ ,..., ]Tu tt ut z z− +=z  is the vector of the 

recent u signal samples (the regression vector), p  is the order of 
the speech AR model, and q  is the order of the noise AR model. 

Denoting by a b×0  an a b×  zero matrix and aI  an a a×  

identity matrix, the matrices in eqs. (2)-(5) are given by: 

1 1 1

| 1
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s Tt t
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− × −

−

 
 =  −  

0 I
F

a
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a
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The direct form AR coefficients are assumed to be constant 
within frames boundaries, that is: 

( ) ( )
1

[ ,..., ]m m T
s s s sm pt a a= =a a , ( ) ( )

1
[ ,..., ]m m T

n n n nm qt a a= =a a , 

for ( 1) 1...t m N mN= − + . 

With the above definitions, the dynamical system describing the 
noisy observation tr  is given by: 

 1| 1t ttt t −−= +x F x Gv , (6) 

 t tr = Cx , (7) 

where: 
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t
t srt

v
s
 
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To assure stability of the perfect measurement Kalman filter for 
the dynamical system given by eqs. (6) and (7), a transformation 
of the system matrices is introduced as used by Gibson et al. 
[10]. This prevents the singularity of | 1

T
t t−CK C , where 

   1 2| 1 | 1 | 1ˆ ˆ[( )( ) | , ,...]T
t t t tt t t t t tE - - r r− −− − −=K x x x x , 

and 

 1 2 3| 1 | 1ˆ [ | , , ,...]t t tt t t tE r r r− − −− −=x x . 

Let the transformation matrix be: 

 
1 1 1p q p q+ − + − ×

 
 =    

C
T

I 0
. (8) 

The transformed state space equations are now given by: 

=x Tx , 1
| 1 | 1t t t t

−
− −=F TF T , =G TG , 1−=C CT . 

Standard Kalman filter equations are applied to this transformed 
plant to compute the likelihood of the parameters.  

2.2 Representation of the AR parameters  

Parameters used in the estimation are not the direct form AR 
coefficients but the more convenient LSF representation [1]. The 
LSFs are obtained from the direct form AR coefficients by a one-
to-one mapping: 

 1: [ ,..., ]pa a →l 1[ ,..., ]pl l , (9) 

where 1[ ,..., ]pl l  is the vector of the LSF coefficients. 

They posses the property that all minimum phase AR 
polynomials result in a vector of increasingly ordered LSFs 
coefficients that is 1 2 ... pl l l< < <  [5]. It is obvious that any 

linear combination of the ordered LSF vectors is also ordered. 
This is a desirable property as the MMSE estimate is computed 
through linear combination of a set of the LSF vectors taken 
from the parameters region of support and the property assures 
the estimated synthesis filters to be stable. Furthermore, 
interpolated LSF vectors are physically meaningful as is 
illustrated by common usage in speech coding [1]. The 
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parameter vector of the joint, noisy observation probability 
distribution in the m-th frame is: 

 2[log( ), , log( ), ]T T T p q
m s s n nm m m m Rθ σ σ + += ∈l l , 

 ( )s sm m=l l a , ( )n nm m=l l a . 

Similarly, 1mθ −  is the speech and noise parameter vector in the 
(m-1)-th frame.  

2.3 A posteriori  probability density function 

The conditional a posteriori probability distribution of the 
speech and noise parameters in two subsequent frames is, by 
Bayes rule: 

 1 1
1 1

1

( , , , )( , | , )
( , )

m m m m
m m m m

m m

pp
p

θ θθ θ − −
− −

−
= r rr r

r r
. (10) 

2.4 A  priori probability density functions 

We assume that the probability density function (pdf) 

1( , )m mp θ θ −  exists over the speech and noise parameter space 

(i.e., we assume that the vector process formed by the ‘clean’ 
parameters is asymptotically mean stationary [7], that is the 
relative frequencies of all events indicator functions converge to 
an invariant limit).  We assume that the speech and noise 
parameter distributions are independent and that the noise 
parameters do not change in two subsequent frames: 

 
1 1 1

1 , 1

( , ) ( , ) ( , )

( , ) ( )
m m s s s n n nm mm m

s s s n nm m m m

p p p

p p

θ θ θ θ θ θ

θ θ θ
− − −

− −

=

=
, (8) 

where we use the notation [log( ), ]T T
s s sm m mθ σ= l , 

[log( ), ]T T
n n nm m mθ σ= l . 

The pdf of the speech parameters, 1( , )s s sm mp θ θ − , and that of the 

noise parameters, 1( , )n n nm mp θ θ − , are estimated using the 

histogram method, with the data-dependent space partition 
generated by means of the generalized Lloyd algorithm (GLA). 
As shown by Lugosi and Nobel [8] such a density estimator 
converges in the 1L  sense [9], under certain, mild assumptions, 

to the true pdf. The partitioning of the support space of the pdf 

1( , )m mp θ θ −  of the speech parameters is performed in two steps. 

We first perform a GLA partitioning of (single-frame) speech 
data, resulting in a set of cL  Voronoi cells 

1
{ ,..., }s sLc
v v  with 

centroids 
1

{ ,..., }s sLc
c c . The training set for the pdf of the 

speech parameters is denoted by | |1
[ ,..., ]r r

s s sTSs
TS θ θ= , where 

the superscript r  indicates a realization of the speech source and 
| |sTS  is the training-set cardinality.  Next, we obtain 

conditional partitions of frame m  given that frame ( 1)m −  

falls into cell 
isv . That is, we train partitions sij

v  (with 

centroids sij
c ) for each cell 

isv , 1... csj L= , using all 

descendants rs sm TSθ ∈  such that 
1

r
s sim

vθ
−

∈ . 

Given the marginal and conditional partitions, we can estimate 
the joint probability of cells in two successive frames. We first 

compute the relative frequency of each cell si
v  to estimate the 

marginal probability mass function 
1

ˆ ( )s simsP vθ − ∈ . We then 

compute the conditional relatively frequency for each cell sij
v  

that follows a particular cell siv  to obtain an estimate of 

1
ˆ( | )s s s sm mij iP v vθ θ −∈ ∈ . The joint probability function can 

be written as: 

 1
1

ˆ ( )
( )

( )

,
,

s s s sm ij im
s sm m

s sij i

s
s

P v v
p

vol v v

θ
θ θ

θ −
−

∈ ∈
≈

×
, (11) 

where ( ) 1 ( ) ( )s s s sij i ij i
vs sij iv

vol v v d vol v vol vθ
×

× = =∫  is the 

volume of the product region s sij i
v v×  and ˆ()P ⋅  indicates an 

estimated probability mass function.  The resulting models of the 
pdf of the parameters form step-function-approximations to the 
continuous pdf.  
The same approach can also be used to estimate the a priori pdf 
of the noise parameters. However, in our experiments we used an 
AR noise spectrum that is constant across frames. 

3. MMSE ESTIMATION 
OF THE STP PARAMETERS 

The MMSE estimate of the speech and noise parameters is 
obtained by computing the following integral: 

 1 1 2 1
ˆ ˆ( , | , , )m m m m m m m m mp d d

θ θ

θ θ θ θ θ θ− − − −
×Ω Ω

= ∫ r r x . (12) 

In the previous section, we made the implicit assumption that the 
step-function approximations are sufficient for our purposes. If 
we explicitly add the assumption that the probabilities of the 
parameters and parameter values change slowly over the GLA-
generated partition, then we can write: 

 

1 1 2

11 2

ˆ( , | , , )

ˆ ˆ( | , ) ( | , ),

[ , ] , [ , ] ,

m m m m m m

m mijk ijk ik

T T T T T T
s n s nijk ikij ik k

m m

p

y p y p e

y c c e c c

θ θ θ ≅− − −

−− −

= =

r r x

r x r x  

          for  m s nij k
v vθ ∈ × and 1m s ni k

v vθ − ∈ × , (13) 

where 1
ˆˆ ˆ[ ( ) | , , ]m m m mE mN θ −=x x r x  is computed using 

Kalman filter introduced in the previous section.  
Using the proposed approximations, the MMSE speech and 
noise parameter estimation can be performed by summing over 
the GLA-generated parameter space partitions. The likelihood 
values at the centroids in the parameter-pdf models are computed 
using the likelihood formulas for linear dynamic systems as 
given by M. Segal et al. [11, eq. 3]: 

 

1
2

( 1) | 1
( 1)

2
| 1 | 1

( 1)

1
2

ˆ( | , ) [ ]

ˆexp ( ) ( )

T
mN

m m m N t t
t m N
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T

t t t t t
t m N

p

r
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− −

= −

− −
= −
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r x CK C
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The computation of | 1ˆt t−x  and for | 1t t−K  follows from the 

section 2.1. 

4. COMPUTER SIMULATIONS 

Recordings of one male and one female speaker, each about 2.5 
hours in the length and sampled at 8kHz, were used to form a 
training set with about 4 million frames, each containing 160 
samples (20 ms long). We included silence segments to gather 
statistical information about pauses as well. For each frame, we 
computed the AR model excitation variance, 8 LSF coefficients, 

took the natural logarithm of the excitation standard deviation, 
multiplied logarithms of the standard deviation by a scaling 
factor, formally 0.1log( )sσ , and stored the concatenated 

parameters in a file. The scaling of the standard deviations 
logarithms was introduced to reduce spread of the values and 
thus assure a shape of the cells that reflects perception. 
A recording from a vehicle driving fast at constant speed was 
used to compute a mean, 4-th order, AR spectrum. The noise AR 
parameters were averaged in the LSF domain prior to computing 
the likelihood function. A speech sequence, comprising 480 
frames from outside the training set, was mixed with the car 
noise to form a test sequence. The SNR in the resulting test 
sequence was about –8.7 dB. For our experiments we used 

512sL =  and 256csL =  (cf. section 2.4) to approximate 

1( , )s s sm mp θ θ− . 

The results of the spectral distortion measurements are shown in 
Table 1. The two columns in Table 1 show the mean SD 
measurements for the AR spectra and variance normalized AR 
spectra respectively. As a reference, we first ran the proposed 
method on a clean speech signal and compared the resulting 
spectra to the spectra computed using the autocorrelation 
method. The resulting SD measurements are shown in the first 
row. Then, we processed noisy speech with the proposed 
method; the resulting SD measurements compared to the clean 
signal with unquantized AR parameters are shown in the second 
row of Table 2. Finally, we computed AR parameters using the 
autocorrelation method on noisy speech and compared again 
versus the autocorrelation method AR parameters on clean 
speech. The results of table 1 illustrate the SNR performance of 
the method. Preliminary tests show that setting the terms 

1 2ˆ ˆ,m m− −x x , to zero during the computation of (12) is without 

negative influence on the performance. 
The SNR results are shown in Table 2. On the same database, 
the present method shows an improvement of about 1.2 dB 
compared to the method reported in [4].  

5. CONCLUSIONS 

We proposed a new algorithm for obtaining STP parameters of 
the clean speech signal under noisy conditions. The method is 

based on the LSF representation of the STP. In the present 
implementation we used an unweighted distortion measure for 
the LSF. We expect to improve performance further by using a 
weighted distortion measure during partition training. The major 
drawback of the method is its computational complexity. We 
will address this problem in the future by more efficient 
likelihood computations, the usage of gradient search procedures 
and through continuous a priori pdf approximations together 
with the maximum a posteriori  estimation rule.  

 SNR [dB] 
Noisy speech (car noise) -8.7 
Enhanced with AR parameters 
computed using proposed approach 
and the Kalman filter 

 
7.5 

 Mean SD [dB] per frame under 
inclusion of the excitation variances 

Mean SD [dB] per frame 
normalized spectral shapes 

Proposed method on clean speech 2.3 2.1 
Proposed method on noisy speech 4.4 3.1 
Autocorrelation method on noisy speech  6.5 4.7 
Autocorr. method on speech enhanced as in [2] 6.0 4.5 
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Table 1.  Performance of the STP parameter estimation from noisy speech using known methods and the method proposed.  
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