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ABSTRACT

In this paper, minimum mean square error (MMSE) estimation
of the speech short-term predictor (STP) parameters in the line
spectral  frequency (LSF) representation is considered. We
exploit that the square error between LSF parameter vectorsis a
subjectively meaningful distortion criterion. As speech coding
algorithms are often used in a noisy environment, it is relevant to
estimate the STP parameters used in these agorithms under the
inclusion of noise dtatistics. In the presented experiments, car
noise is used as an example of an autoregressive (AR) noise
process. The MM SE estimates are obtained using a likelihood
function computed by means of Kalman filtering and empirical
probability distributions. The method is assessed in terms of the
resulting root mean spectral distortion between the ‘clean’
speech STP parameters and the STP parameters computed using
the proposed method from noisy speech.

1. INTRODUCTION

Speech coding techniques have been applied successfully in
many areas of personal communication and especialy in the
mobile telephony [1]. Mobile phones are often used in scenarios
with a high level of additive environmental noise causing severe
degradation of the intelligibility and perceptua quality of the
coded speech. The perceptual fidelity of the noisy signal after the
encoding and decoding operations, is a function of both the
additive-noise level and the bit rate used to represent the noisy
speech signal. To improve performance of speech coding
algorithms under noisy conditions, the effect of additive noise on
the estimated speech parameters should be considered. This will
result in an increased intelligibility and perceptual quality of the
reconstructed speech signal.

Our work differs in two respects from most recent noise-
suppression methods, including the common approach based on
the Karhunen-Loeve transform of the noisy signal covariance
matrix (e.g., [2]) and its approximation using the discrete cosine
transform. First, we exploit a priori knowledge about the speech
signal or its parameters. Second, we focus on the estimation of
the speech signal model parameters that are used in low rate
speech coding rather than on the estimation of the speech signal
itself. This is natura in light of the ubiquitous use of speech
coding in mobile telephony. The merging of noise reduction
algorithms and speech coding agorithms has as additional
advantage that the algorithmic delay is decreased compared to
conventional sequential operation. An example of the integration
of noise reduction and linear-predictive-anaysis-by-synthesis
(LPAS) [1] coding is shown in Figure 1.
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The usage of a priori knowledge was introduced to the noise
reduction problem in [3], which employed the hidden Markov
model (HMM) as a statistical model. In [4], we used prior
knowledge to estimate speech parameters, rather than estimating
the signal itself. We maximized an asymptotic (in the sense of
infinite frame length assumption) likelihood function over a set
of spectral shapes trained on clean speech and noise processes.
We evaluated the enhancement performance by comparison in
the parameter domain using the root mean spectral distortion
(SD) measure.
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Figure 1. Proposed method of integration of aLPAS coder and
noise reduction

Although the method of [4] performed quite well, it suffered
from several drawbacks. We used only the current frame
observation to compute the model parameters estimates. As a
result, the excitation variance estimation was relatively
inaccurate, particularly for time segments where the speech
signa energy is low. Furthermore, the estimated AR spectral
shapes were restricted to a finite set of shapes residing in a pre-
defined codebook, which means that the expected estimation
accuracy is lower bounded by the codebook implied mean
distortion.

In this paper, we address the drawbacks of the method described
in [4] by using a MMSE method to estimate the speech STP
parameters (replacing the maximum a posteriori method over a
discrete set of spectral shapes). The new method also accounts
for the a priori distribution of the model parameters. The
estimates are now based on both the current and previous frame
to obtain a more accurate estimate by exploiting inter-frame
parameter correlations. The MMSE approach provides an
inherent smoothing, since the MMSE edstimate is a linear
combination of a set of the STP parameters trained from clean
(high signal to noise ratio) speech and noise processes.
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The STP parameters used in our experiments are represented as
line-spectral frequency (LSF) coefficients. This representation is
particularly convenient since it assures stability of the averaged
synthesis filter [5] and since the mean squared error between two
sets of LSFs is a meaningful measure of perception. The
estimation of the speech and noise variances is performed in the
logarithmic domain, since loudness perception is proportiona to
the logarithm of the signal power [6].

The experiments presented in this paper are performed for two
speakers (one male and one female speaker) and for arelatively
short test utterance to keep the computational effort low.
However, the results provide sufficient insight to compare the
new MMSE based method with the ML estimation method
proposed previously.

2. STATISTICAL MODEL
The observed noisy signal frame sequence {r,,} isgiven by:

@

T,

m = Sm T My,

where Sm = [S(m—l)ﬁV-%—l"”’SmN]T Dy = [n(wz—l)i\/+l”"’n771N]T

are statistically independent speech and noise vector random
vectors corresponding to the m -th noisy speech signa frame of
length N . Notethat s, and n, are speech and noise samples at

timeinstant ¢ .
2.1 Likeihood function of the parameters

The underlying speech, noise and noisy speech probability
functions are multivariate Gaussians specified by the speech and
noise AR parameters. The probabilistic models of the speech and
noise processes can be characterized by perfect measurement
state space systems. The speech processis

Sp, = st,\f,f1spf, + GySa s 2
5, = Csspt , 3
and the noise processis
n, = F”f,\f,—lnqt—l + G, , 4
n, = Cnnqt , 5)

where v, is zero mean, variance o, , Gaussian process noise
and Sor, is the process noise (corresponding to ae short-term
prediction residual signa), modelled as a zero mean, variance
5, Gaussian noise. z,, +wip-s2]" isthe vector of the
recent u signal samples (the regression vector), p isthe order of
the speech AR model, and ¢ isthe order of the noise AR model.
Denoting by 0,, an axb zero matrix and I, an axa
identity matrix, the matricesin egs. (2)-(5) are given by:
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The direct form AR coefficients are assumed to be constant
within frames boundaries, that is:

™

m
Sp bR a< )

— — m)1T _ _ m T
as, = a,, _[ 70121 )] vant =a,, = [a7<zq)7-~-7 ny ] ’

for t = (m —1)N +1..mN .

With the above definitions, the dynamical system describing the
noisy observation 7, isgiven by:

x, =F, x,_, + Gv,, (6)
r, = Cx,, @)
where:
Ilqt Fn,f‘f71 qup Gn 0q><1
e, B0, B "7 0 @l
t PXq sf‘f71 px1 sr
Uy
v, = ,C=]C,,C,].
557‘,

To assure stability of the perfect measurement Kalman filter for
the dynamical system given by egs. (6) and (7), atransformation
of the system matrices is introduced as used by Gibson et al.

[10]. This prevents the singularity of CKM n 1CT , where

K

. PN
ft—1 = El(x, - Xt\t—L)(Xt - Xy ) AT P

and

5(,‘,71 = E[Xr\rfl |7 Ty

Let the transformation matrix be:

C

T—|, (®)

pt+q—1 p+q—1x1

The transformed state space equations are now given by:

F,,=TF, T' G=TG, C=CT".

tt—1
Standard Kalman filter equations are applied to this transformed
plant to compute the likelihood of the parameters.

x = Tx,

2.2 Representation of the AR parameters

Parameters used in the estimation are not the direct form AR
coefficients but the more convenient L SF representation [1]. The
L SFs are obtained from the direct form AR coefficients by a one-
to-one mapping:

I

where [1,,...,1,] isthe vector of the LSF coefficients.

They posses the property that all minimum phase AR
polynomials result in a vector of increasingly ordered LSFs
coefficients that is || < I, < ... <, [5]. It is obvious that any

linear combination of the ordered LSF vectors is also ordered.
This is a desirable property as the MM SE estimate is computed
through linear combination of a set of the LSF vectors taken
from the parameters region of support and the property assures
the estimated synthesis filters to be stable. Furthermore,
interpolated LSF vectors are physicaly meaningful as is
illustrated by common usage in speech coding [1]. The
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parameter vector of the joint, noisy observation probability
distribution in the m-th frameis:

9771 = UOg(Usm)alsTmJOg(Unm )7171;,”

lsm = l(asm) ’ lnm = l(anm )

Similarly, 6,,_, is the speech and noise parameter vector in the
(m-1)-th frame.

}T c R[)+q+2

2.3 A posteriori probability density function

The conditional a posteriori probability distribution of the
speech and noise parameters in two subsequent frames is, by
Bayesrule:

p(rm ) r777,*1 ) 9”1 ) 9”1*1)

10
p(rm ? r]ll*l) ( )

p(9777,79777,*1 | r”l’r”lfl) =

2.4 A priori probability density functions

We assume that the probability density function (pdf)
p(6,,,0,,—,) exists over the speech and noise parameter space

(i.e., we assume that the vector process formed by the ‘clean’
parameters is asymptotically mean stationary [7], that is the
relative frequencies of al events indicator functions converge to
an invariant limit). We assume that the speech and noise
parameter distributions are independent and that the noise
parameters do not change in two subsequent frames:

p(9777,7 9771—1) = ps (93771 3 esm_l )p'ﬂ (e'ﬂm ? enm_l ) (8)

= Ps (93,,1 193777/71 )pn (9"'777,477,—1 ) ’
where we use the notation 6, = [log(o,, )1 ",
enm = [IOg(Onm, ) ; lszm ]T .

The pdf of the speech parameters, p;(6;,,,6s,,_,) » and that of the
Opm_,), ae estimated using the

histogram method, with the data-dependent space partition
generated by means of the generaized Lloyd agorithm (GLA).
As shown by Lugosi and Nobel [8] such a density estimator
converges in the L, sense [9], under certain, mild assumptions,
to the true pdf. The partitioning of the support space of the pdf
p(0,,,0,,_,) of the speech parameters is performed in two steps.

We first perform a GLA partitioning of (single-frame) speech

data, resulting in a set of L, Voronoi cells {vsl,...,vsb } with
C

centroids {csl,...,csL }. The training set for the pdf of the

speech parameters is denoted by 7S, = [9;‘1,...79‘:‘ng‘

the superscript  indicates a realization of the speech source and
| TS, | is the training-set cardinaity. Next, we obtain

conditional partitions of frame m given that frame (m — 1)
fals into cell That is, we train partitions U (with

Sm—1

noise parameters, p, (6,

nm»

|, where

Vs, -
centroids Csij) for each cell v, J =1Ly, using al
descendants 0; € TS, suchthat 6;

m m—1

Given the marginal and conditional partitions, we can estimate
the joint probability of cells in two successive frames. We first

€ U, -
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compute the relative frequency of each cell v, to estimate the
marginal probability mass function £,(6 € v,). We then

compute the conditional relatively frequency for each cell U,

Sm—1

that follows a particular cellvsl, to obtain an estimate of

P, < Vs, | 0, , € vs,). The joint probability function can
be written as:
PS(HSW € ”517‘95 L €u,) 11
) 9 9 ~ 1, m— T ,
(0,0, ) wollo, % 1) 11)

Sij

f 1d6 = vol(vgl,],)vol(vsi) is the

Vg . XVg.
5 7 Vsi

where Uol(vsi], X vg,)

volume of the product region Uy X 0y, and Jf’(~) indicates an

estimated probability mass function. The resulting models of the
pdf of the parameters form step-function-approximations to the
continuous pdf.

The same approach can aso be used to estimate the a priori pdf
of the noise parameters. However, in our experiments we used an
AR noise spectrum that is constant across frames.

3. MMSE ESTIMATION
OF THE STP PARAMETERS

The MMSE estimate of the speech and noise parameters is
obtained by computing the following integral:

f 9”11)(9”77/79”1*1 | r’l77/7r’lﬂ,*17i”l*2)d9’lﬂ,*ld9’lﬂ, '(12)
Q0><99

éﬁl

In the previous section, we made the implicit assumption that the
step-function approximations are sufficient for our purposes. If
we explicitly add the assumption that the probabilities of the
parameters and parameter values change slowly over the GLA-
generated partition, then we can write:

emp(rmu rlnfl ‘ 0"11 0"1*17 X777,*2) =

yi]'kp(rm | yl’]’wﬁm—l)p(rnzﬂ ‘ eik7ﬁm—2)7
y,’j},; = [C‘Z;]_,CZ;; }Tae,'k = [C‘Z;,C,,jl;‘; ]T,

for 6,, € Usyj X Uny and 0,,_, € Vs, X U, (13

where %, = E[x(mN) | r,,.6,,,%,,_,] is computed using
Kaman filter introduced in the previous section.

Using the proposed approximations, the MMSE speech and
noise parameter estimation can be performed by summing over
the GLA-generated parameter space partitions. The likelihood
values at the centroids in the parameter-pdf models are computed
using the likelihood formulas for linear dynamic systems as
given by M. Segdl et al. [11, eg. 3]:

mN
~ 71—1
(T, | GWL,X(Wl_l)N) x H [CKt‘t_lcl] 3
t=(m—-1)N
mN (14)
expi—3 > (5 —C%, )’(CK, C")
t=(m—-1)N




and for K follows from the

The computation of x -1

section 2.1.

tlt—1

4. COMPUTER SIMULATIONS

Recordings of one male and one female speaker, each about 2.5
hours in the length and sampled at 8kHz, were used to form a
training set with about 4 million frames, each containing 160
samples (20 ms long). We included silence segments to gather
statistical information about pauses as well. For each frame, we
computed the AR model excitation variance, 8 LSF coefficients,

based on the LSF representation of the STP. In the present
implementation we used an unweighted distortion measure for
the LSF. We expect to improve performance further by using a
weighted distortion measure during partition training. The major
drawback of the method is its computational complexity. We
will address this problem in the future by more efficient
likelihood computations, the usage of gradient search procedures
and through continuous a priori pdf approximations together
with the maximum a posteriori estimation rule.

Mean SD [dB] per frame under
inclusion of the excitation variances

Mean SD [dB] per frame
normalized spectral shapes

Proposed method on clean speech 2.3 21
Proposed method on noisy speech 4.4 31
Autocorrel ation method on noisy speech 6.5 47
Autocorr. method on speech enhanced asin [2] 6.0 45

Table 1. Performance of the STP parameter estimation from noisy speech using known methods and the method proposed.

took the natural logarithm of the excitation standard deviation,
multiplied logarithms of the standard deviation by a scaling
factor, formaly 0.1log(o,), and stored the concatenated

parameters in a file. The scaling of the standard deviations
logarithms was introduced to reduce spread of the values and
thus assure a shape of the cells that reflects perception.

A recording from a vehicle driving fast at constant speed was
used to compute a mean, 4-th order, AR spectrum. The noise AR
parameters were averaged in the LSF domain prior to computing
the likelihood function. A speech sequence, comprising 480
frames from outside the training set, was mixed with the car
noise to form a test sequence. The SNR in the resulting test
sequence was about —8.7 dB. For our experiments we used
L, =512 and L, = 256 (cf. section 2.4) to approximate

ps(esm—hesm) '

The results of the spectral distortion measurements are shown in
Table 1. The two columns in Table 1 show the mean SD
measurements for the AR spectra and variance normalized AR
spectra respectively. As a reference, we first ran the proposed
method on a clean speech signal and compared the resulting
spectra to the spectra computed using the autocorrelation
method. The resulting SD measurements are shown in the first
row. Then, we processed noisy speech with the proposed
method; the resulting SD measurements compared to the clean
signal with unquantized AR parameters are shown in the second
row of Table 2. Finally, we computed AR parameters using the
autocorrelation method on noisy speech and compared again
versus the autocorrelation method AR parameters on clean
speech. The results of table 1 illustrate the SNR performance of
the method. Prediminary tests show that setting the terms
X, X, o, t0 zero during the computation of (12) is without

X

negative influence on the performance.

The SNR results are shown in Table 2. On the same database,
the present method shows an improvement of about 1.2 dB
compared to the method reported in [4].

5. CONCLUSIONS

We proposed a new agorithm for obtaining STP parameters of
the clean speech signal under noisy conditions. The method is

X
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SNR [dB]
Noisy speech (car noise) -8.7
Enhanced with AR parameters
computed using proposed approach 75
and the Kalman filter

Table 2. SNR results of the noise reduction procedure.
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