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ABSTRACT

A variational inference algorithm for robust speech separa-
tion, capable of recovering the underlying speech sources
even in the case of more sources than microphone obser-
vations, is presented. The algorithm is based upon an gen-
erative probabilistic model that fuses time-delay of arrival
(TDOA) information with prior information about the speak-
ers and application, to produce an optimal estimate of the
underlying speech sources. Simulation results are presented
for the case of two, three and four underlying sources and
two microphones observations corrupted by noise. The re-
sulting SNR gains (32dB with two sources, 23dB with three
sources, and 16dB with four sources) are significantly higher
than previous speech separation techniques.

1. INTRODUCTION

In recent years, numerous techniques for the separation of
multiple simultaneously active speech and noise sources have
been developed (i.e. the "cocktail party” problem) [1, 2, 3,
5]. These techniques include, among others, Independent
Component Analysis (ICA), phase-filtering techniques, and
probabilistic speech separation.

ICA methods, which utilize the assumptions of the sta-
tistical independence and non-gaussianity of the underlying
sources to perform separation, have yielded high SNR gains
and been the subject of much research in the past [3, 6].
The achievement of these gains however, has certain re-
quirements (i.e. as many microphones as sources, limited
Gaussian noisg, etc.) that limit the practicality of ICA tech-
nigues.

Phase-filtering techni ques such astime-frequency mask-
ing and beamforming conversely [1, 8], make no assump-
tions about the underlying sources, and perform speech sep-
aration by utilizing only knowledge about the expected time-
delaysof arrival (TDOAS) of the speech signals. Thesetech-
niques, however, are limited in that they do not incorporate
prior information about the speech sources.

Probabilistic models for speech separation, on the other
hand, incorporate prior information about the sources and
situation to infer the underlying sources, typically modelling
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the spectra or log-spectra of the speech and noise sources.
Various implementations have demonstrated good speech
separation results in low SNR conditions [2, 5]. In pre-
vious implementations however, only a single microphone
was employed.

In this paper, we devel op agenerative probabilistic model
capable of fusing TDOA information with prior information
about the speakers to produce an optimal estimate of the
underlying speech sources. The model is general in that it
can perform separation even when the number of underlying
sources exceeds the number of microphone observations. A
variational inference algorithm is devel oped to facilitate in-
ference.

2. TDOA-BASED SPEECH SEPARATION

In the absence of reverberations and additive noise, the mth
microphone of an M -element microphone array receivesthe
following time-delayed combination of S source signals:

S

Tm (t) = Z ]CZS (t - Ts,m,) (1)

s=1

where we have assumed that the microphone array elements
are sufficiently proximal so that the source intensity scaling
factor k is approximately independent of m, and that the
underlying speech sources are sufficiently far away from the
microphone array o that the intensity scaling factor & is
also approximately independent of the speech sources.

An equivalent linear representation of therelation (1) in
the fourier domain is given by:

X1, Z1,
X2 Z3,

“ = Aw “ (2)
XM, zs,

where z, , isthe Fourier transform of the sth speech source
at frequency w in vectored form, and x,,, , is similarly de-
fined. The matrix A, consistsof 2 x 2 blocks A, , of the
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form:

COS WTm.s
Awm,s = ( '

—SINWTy,s

Sin Wy, s
)@

COS WTn,

Applying (2) over segments of length such that the error in
the relation due to windowing and the assumption of sig-
nal stationarity is minimal (typically 10-20ms), we have for
each segment, given the time delay ensemble {7 ,,, }, asys-
tem of linear equations constraining the underlying source
signal spectra.

Even in the special case of an equal number of sources
and microphones however, the relation (2) is not invertible
at al frequencies. In the general case the system is either
under or over-defined; the former leading to a general solu-
tion of dimension (S — M), the latter leading to potential
contradiction. We do however, have invaluable information
that can be used to aid in the speech separation process.

3. TDOA-BASED PROBABILISTIC SPEECH
SEPARATION

We utilize the source separation information in (2) by devel-
oping a generative probability model of the speech separa
tion process that is able to make use of both the availability
of accurate TDOA information, and prior information about
the speech sources and situation. We then derive a varia-
tional algorithm [4, 7] to facilitate tractable inference of the
underlying sources via the developed model.

Here we concentrate on the development of amodel for
handling the case of additive noise and minimal reverbera-
tion corrupting the observed microphone signals; the gen-
eralization of the proposed technique to highly reverberant
environments will be afocus of future research.

We begin by modelling the magnitude of the spectral
density of each underlying speech source with independent
Gaussian mixture models (MOG), whose parameters may
be learned a priori independently, or adaptively from mixed
speech observations. Assuming that the underlying spectral
density of each speech source isinherently phase invariant,
we may define adensity model for each source spectrainits
respective complex plane by rotating the magnitude spectra
MOG models at discrete, regular intervals, and introducing
phase covariance proportiona to the chosen interval size.
The result is effectively a mixture of Gaussians model for
each speech source in the complex plane which is approxi-
mately phase invariant, given by:

p(a) = 3 30D plailea,0.)p(e.)
cs 0O

p(zi|c.37 91) = N(Zi; “05,95’ 205,95)3 p(cs) = Te,

He, 0, = Res He, s ECS,QS = RGS Ecs (4)

where pi. and X, are the mean and diagonal covariance
of speech cluster ¢, for 8; = 0, and Ry, isadeterministic
rotation matrix.

Assuming that the uncertainty introduced into the rela-
tion (2) by the presence of noise can be adequately modelled
by second order statistics, and assuming that the TDOAs are
known, the resulting generative probability model for the
speech separation processis given by:

p(X1,X2...X01, 21, Z2...25,601,05...05, 1, Ca..Cq) (5)

S
= p(x1,Xa.. X121, 22...25) [] Nle (25|05, cs)p(cs)
j=1

w S
= H N(X’w;Awaa‘I’w) H ]7{[(: N(ZS;HCS,OS,ECS)
w=1 s=1 s

where z, = [z,,2s,... Zs,, | (the DFT of source s), z,, =
(21,22, ..-25,] (@2 X s dimensional vector comprised of the
DFT coefficients of all sources at frequency w), and ¥, is
the covariance of the microphone array spectra at frequency
w, given the source vector x,,. Figure 1 depicts the proba-
bilistic relationships described by (5).

Fig. 1. A Baye's Net depicting the dependencies that exist be-
tween the random variables of our model.

We now turn our attention to the process of forming an
estimate of the source vector z, given the observation vec-
tor x and a learned model to facilitate inference. The first
key observation to make is that any form of exact inference
will necessarily involve margindization over al the class
variables 8, and c, of each source:

p(alx) = 325 p(#16, ¢, %) ®)
c 0

and therefore exact inference of any form is generaly in-
tractable; although the sumsin (6) decouple over the sources,
the marginalization is exponential in the number of speak-
ers.

We proceed therefore to develop a variational algorithm
for inference that operates by finding a surrogate distribu-
tion ¢(z, 0, ¢) of fully factorized form that approximates the
posterior probability of the hidden variables in our model
p(z,0,c|x) [4]. Once ¢(z, 0, c) is identified, inference is
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essentially complete since identifying the optimal estimate
under the identified ¢ distribution becomes trivial. We de-
fine the variational form of ¢ asfollows:

S

w
q(z,0,c) = H H q(cs)q(8s,,

s=1w=1

)a(zs.,)
S W
=11 II xe.vs, N

s=1w=1

(zsm 1y Msy s Qsm) )

where {x,~,n,Q} are the 'variationa’ parameters to be
found so that ¢ best approximates the posterior. To iden-
tify ¢ we minimize the relative entropy (Kullback-Leibler
divergence) between ¢ and p, defined here as:

K= ZZ/ (z,0,c)ln _4(2,8,¢)

p(z,0,c|x)

Because our chosen ¢ distribution is Gaussianinz and p(z|x)
is a mixture of Gaussians, the variational parameters that
maximize K will tend towards a mode of p(z|x) close to
the parameter initialization [5, 7]. Thus inferring an esti-
mate of z|x once ¢ has been learned reduces to selecting the
mean of ¢(z), which is simply the learned parameter 7).

Exploiting the conditional independencies of the under-
lying model p, and the fully factorized form of ¢ we arrive
at the following set of coupled variational parameter update
equations that may be iterated to identify ¢:

Xe, = X,/ (Z X.r) ©)

(8)

’ 1/2 —lTrz la;
Xe, = Te, E /

T
— o 2 L, Tow (l"‘cs.w.eSW “s0) T Begw(Bey .05, ~Msw)

Cs

Qe,

Ysu,050 = ’Y;w,esw /(Z ’Y;w,esw) (10)
o,

"/;w,esw =e
= (qu’:ulAw + (I’w)_l(Az;‘IIJJle +¢,) (1)
Q, = (AT 1A, +®,)! (12)

i’w:diag[ZXcl C1,wvzxcz cQ,un" ZXCS (s w
C1
Zxcl D V160, e w6y,

01,

E XC2ECQM§ 72 BQWH’CQ,U) 02,7

Ozw

E XCS cs,w § ’YSm esw I“I‘CS,LU GSUJ

BSw

T
_% ZXCS Xes (Nt's,’w,esw —Msy) ch,w(l"'cs,w,esﬁj )

Note that although the variational parameter update equa-
tions appear to be complex, each of them hasintuitive inter-
pretation. The q distribution class probabilities x.._, for ex-
ample, are assigned based on the weighted average relative
distance of the mean vector of each class (marginalized over
all 6;) from the current estimate of the posterior mode ..
The update rule for the components of the posterior mode
estimate ns,, moreovey, is based on a weighted average of
the observation and source prior influences. The updates
rulesfor Vsu.0.,, and €2, can be understood similarly.

4. SIMULATION RESULTS

Four subsets of the Wall Street Journal speech database;
(011A1001-011A1014), (014C2001-014C2014),(016C2001-
016C2014),and (017C2001-017C2014), each consisting of
approximately 3.5 minutes of dictated speech of comparable
average power sampled at 16kHz, were used as the underly-
ing speech sources for al the experiments presented herein.
In all of our experiments, a two microphone array was

employed to perform separation of .S underlying speech sources,

where S ranges from 2-4 speakers. To generate the simu-
|ated microphone observations, the underlying sources were
instantaneously mixed at stationary TDOA values, and then
corrupted by 20dB microphone-independent noise (relative
to the avg. power of the speech sources).

Theresulting signal mixtureswere partitioned into 16ms
segments overlapped in time by 8ms, and the 256-point FFT
of each segment of each microphone signal was taken. Be-
cause the dominant features of speech are contained within
the 0-4kHz region of the frequency domain, only thefirst 64
points of the FFT were retained.

Using knowledge of the separated source spectra, aprior
model for the spectral density of each of the underlying
speech sources was learned independently via Expectation
Maximization(EM), based on approximately 3 minutes of
the chosen dataset, and a 60 MOG parametric framework.

In al experiments, perfect TDOA information was used
to define A, and full knowledge of the statistics of the cor-
rupting microphone noise was used to define W, the covari-
ance of the observation vector x.

Using the variational inference technique developed in
the last section, the spectra of al underlying speech sources
was estimated on a frame by frame basis for 100 sequential
frames of observed microphone data not in the training set,
for the two, three and four speaker separation scenarios.

Figure 1 shows atypical example of the speech separa-
tion results obtained for the case of two microphones, and
two underlying speech sources. The top figures show the
magnitude spectra of the microphone observations |z | and
|z2|, and the bottom figures depict plots of the recovered
source spectra |z1|* and |z2|*, against their actual values.
Note that the magnitude spectra of the two microphone ob-
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Fig. 2.  Speech separation results for the case of two speakers
and two microphone observations corrupted by 20dB microphone-
independent Gaussian noise. The average gain over al both source
signalsisin thiscase 38.1 dB

servations are nearly identical, and that we are able to re-
cover highly accurate estimates of the underlying source
spectra, based only on phase diversity in the microphone
observations. The average overal gain for this frame was
38.1dB.

Figure 3 shows a typical example of the speech separa-
tion results obtained for the case of two microphones, and
three underlying speech sources. In this case, there are actu-
ally more sources than microphone observations, and yet we
see that we are still able to recover very good estimates of
the underlying speech source spectra. The average over gain
obtained by our systemin this caseis greater than 23dB, and
more significantly, we can see that the dominant features
of each speaker have been recovered with minimal feature
aliasing.

Over the 100 frames of test data, we obtained average
overall SNR gains of 32dB, 23dB, and 16dB for the case of
2 microphones observations corrupted by 20dB microphone-
independent noise and 2, 3, and 4 underlying speech sources,
respectively. These results are far superior to conventional
beamforming techniques that return less than 5dB gain with
2 microphones[1, 8]; these results are not comparable with
ICA methods since they cannot handl e the situation of more
sources than observations.

5. CONCLUSIONS

In this paper a variational inference algorithm for robust

speech separation, capabl e of recovering the underlying speech

sources even in the case of more sources than microphone
observations, was presented. The algorithm, based upon
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Fig. 3. Speech separation results for the case of three speakers
and two microphone observations corrupted by 20dB microphone-
independent Gaussian noise. The average gain over all three
source signalsisin this case 23.3 dB

a generative probability model that fuses time-delay of ar-
rival (TDOA) information with prior information about the
speakers, was analyzed for the case of two noise corrupted
microphone observations and two, three, and four underly-
ing sources.
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